Publications - Publikációk
If an URL (= web address) below does not work, then try the following. To see the list of publications together with citations, click to For another list, visit MTMT (The Database of Hungarian Scientific Publications) and search for my name there;
the direct URL is this.
|
|||||
(P0) Chapters and sections in monographs
Fejezetek és részletek monográfiákban |
|||||
[I] Gábor Czédli: Identities and quasi-identities in submodule lattices. Section (pp. 323-325) in G. Grätzer: Lattice Theory: Foundation. Basel: Birkhäuser, 2011 (see here, and see its content)
[II] Gábor Czédli and George Grätzer: Planar Semimodular Lattices: Structure and Diagrams. DOI 10.1007/978-3-319-06413-0_3 . Chapter 3 (pp. 91-130) in G. Grätzer and F. Wehrung (editors): Lattice Theory: Special Topics and Applications I. Birkhäuser, 2014, XIII+468 pp. (see here, and see its content)
(P1) Scientific papers
Tudományos cikkek |
|||
[1] George Hutchinson and Gábor Czédli, A test for identities satisfied in lattices of submodules, Algebra Universalis, 8, (1978), 269--309. (DOI: 10.1007/BF02485400 ) pdf
[2] G. Czédli, On the lattice of congruence varieties of locally equational classes, Acta Sci. Math. (Szeged), 41(1979), 39--45. pdf
[3] G. Czédli, An application of Mal'cev type conditions to congruence varieties, Colloquia Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergom (Hungary), 1977, 169--171. pdf
[4] G. Czédli, Which distributive lattices have 2-distributive sublattice lattices?, Acta Math. Acad. Sci. Hungar., 35 (1980), 455--463. (DOI: 10.1007/BF01886317 ) pdf
[5] G. Czédli, On the 2-distributivity of sublattice lattices, Acta Math. Acad. Sci. Hungar., 36 (1980), 49--55. (DOI: 10.1007/BF01897090 ) pdf
[6] G. Czédli, d-dependency structures in the relational model of data, Acta Cybernetica, 5 (Szeged, 1980), 49--57. pdf
[7] G. Czédli, On dependencies in the relational model of data, EIK (Elektronische Informations-verarbeitung und Kybernetik), 17 (1981), 23, 103--112. pdf
[8] G. Czédli, A Mal'cev type condition for the semi-distributivity of congruence lattices, Acta Sci. Math. Szeged), 43 (1981), 267--272. pdf, DOI: 10.1007/BFb0063432
[9] G. Czédli, A note on compactness of the consequence relation for congruence varieties, Algebra Universalis, 15 (1982), 142--143. (DOI: 10.1007/BF02483715 ) pdf
[10] Gábor Czédli and Jonathan D. H. Smith, On the uniqueness of Mal'cev polynomials, Colloquia Math. Soc. J. Bolyai, 28. Finite Algebra and Multiple-valued Logic, Szeged (Hungary), 1979, 127--145. pdf
[11] G. Czédli, Függőségek relációs adatbázis modellben [Dependencies in the relational database model], Alkalmazott Matematikai Lapok, 6 (1980), 131--143 (in Hungarian). pdf
[12] G. Czédli, Factor lattices by tolerances, Acta Sci. Math. (Szeged), 44 (1982), 35--42. pdf
[13] Gábor Czédli and Attila Lenkehegyi, On congruence n-distributivity of ordered algebras, Acta Math. Hungar., 41 (1--2), (1983), 17--26. (DOI: 10.1007/BF01994057 ) pdf
[14] G. Czédli, On properties of rings that can be characterized by infinite lattice identities, Studia Sci. Math. Hungar., 16 (1981), 45--60. pdf
[15] Gábor Czédli, András P. Huhn and László Szabó, On compatible ordering of lattices, Colloquia Math. Soc. J. Bolyai, 33. Contributions to Lattice Theory, Szeged (Hungary), 1980, 87--99. pdf
[16]Gábor Czédli and Lajos Klukovits, A note on tolerances of idempotent algebras, Glasnik Matematicki (Zagreb), 18 (38) (1983), 35--38. pdf
[17] Gábor Czédli and Attila Lenkehegyi, On classes of ordered algebras and quasiorder distributivity, Acta Sci. Math. (Szeged), 46 (1983), 41--54. pdf
[18] G. Czédli, A characterization for congruence semi-distributivity, Proc. Conf. Universal Algebra and Lattice Theory, Puebla (Mexico, 1982), Springer-Verlag Lecture Notes in Math. 1004, 104--110. pdf
[19] Gábor Czédli and Alan Day, Horn sentences with (W) and weak Mal'cev conditions, Algebra Universalis, 19, (1984), 217--230. (DOI: 10.1007/BF01190431) pdf, DOI: 10.1007/BF01190431
[20] G. Czédli, Mal'cev conditions for Horn sentences with congruence permutability, Acta Math. Hungar., 44 (1--2) (1984), 115--124. (DOI: 10.1007/BF01974108 ) pdf, DOI: 10.1007/BF01974108
[21] Gábor Czédli and Ralph Freese, On congruence distributivity and modularity, Algebra Universalis, 17, (1983), 216--219. (DOI: 10.1007/BF01194531 ) pdf
[22] Gábor Czédli, András P. Huhn and E. Tamás Schmidt, Weakly independent subsets in lattices, Algebra Universalis, 20 (1985), 194--196. (DOI: 10.1007/BF01278596 ) pdf, extended version: pdf
[23] G. Czédli, Horn sentences in submodule lattices, Acta Sci. Math. (Szeged), 51 (1987), 17--33. pdf
[24] Gábor Czédli and George Hutchinson, An irregular Horn sentence in submodule lattices, Acta Sci. Math. (Szeged), 51 (1987), 35--38. pdf
[25] Gábor Czédli and Zsolt Lengvárszky, Two notes on independent subsets in lattices, Acta Math. Hungar., 53 (1--2) (1989), 169--171. (DOI: 10.1007/BF02170068 ) pdf
[26] G. Czédli, A note on lattice Horn sentences with three variables, Mathematica Balkanica, 4 (1990), 209--210. pdf
[27] G. Czédli, On the word problem of lattices with the help of graphs, Periodica Math. Hungar., 23 (1) (1991), 49--58. (DOI: 10.1007/BF02260393 ) pdf
[28] G. Czédli, Notes on congruence implication, Archivum Mathematicum (Brno), 27 (1991), 149--153. pdf
[29] G. Czédli, Some nontrivial implications in congruence varieties, Acta Sci. Math. (Szeged), 56 (1992), 15--18. pdf
[30] Ivan Chajda and Gábor Czédli, A note on representation of lattices by tolerances, J. of Algebra, 148 (1) (1992), 274--275. (DOI: 10.1016/0021-8693(92)90248-K ) pdf
[31] Ivan Chajda and Gábor Czédli, Mal'tsev functions on small algebras, Studia Sci. Math. Hungar., 28 (1993), 1--10. pdf
[32] G. Czédli, How are diamond identities implied in congruence varieties?, Algebra Universalis, 30 (1993), 291--293. (DOI: 10.1007/BF01196101 ) pdf
[33] G. Czédli and G. Hutchinson, Submodule lattice quasivarieties and exact embedding functors for rings with prime power characteristic, Algebra Universalis, 35 (1996), 425--445. (DOI: 10.1007/BF01197183 ) pdf
[34] G. Czédli, Some lattice Horn sentences for submodules of prime power characteristic, Acta Math. Hungar., 65(2) (1994), 195--201. (DOI: 10.1007/BF01874313 ) pdf
[35] G. Czédli, The congruence variety of metaabelian groups is not selfdual, Acta Math. Univ. Comenianae, 63 (1994), 155--159. pdf
[36] G. Czédli, Diamond identities for relative congruences, Archivum Math. Brno, 31 (1995), 65--74. pdf
[37] I. Chajda and G. Czédli, Four notes on quasiorder lattices, Mathematica Slovaca, 46 (1996), 371--378. pdf
[38] G. Czédli, A Horn sentence for involution lattices of quasiorders, Order, 11 (1994) 391--395. (DOI: 10.1007/BF01108770 ) pdf
[39] G. Czédli and Gy. Pollák, When do coalitions form a lattice?, Acta Sci. Math. (Szeged), 60 (1995), 197--206. pdf
[40] G. Czédli and L. Szabó, Quasiorders of lattices versus pairs of congruences, Acta Sci. Math. (Szeged), 60 (1995), 207--211. pdf
[41] G. Czédli, Natural equivalences from lattice quasiorders to involution lattices of congruences, Proc. Summer School at Horní Lipová 1994, Palack'y University of Olomouc (Czech Republic), 33--44. MR1342538 (96i:06015). pdf
[42] I. Chajda, G. Czédli and I. G. Rosenberg, On lattices whose ideals are all tolerance kernels, Acta Sci. Math. (Szeged), 61 (1995) 23--32. pdf
[43] G. Czédli, A Horn sentence in coalition lattices, Acta Math. Hungarica 72 (1996), 99--104. (DOI: 10.1007/BF00053700 ) pdf
[44] G. Czédli, B. Larose and Gy. Pollák, Notes on coalition lattices, Order 16 (1999) 19-29. (DOI: 10.1023/A:1006384427518 ) pdf
[45] I. Chajda and G. Czédli, How to generate the involution lattice of quasiorders? Studia Sci. Math. Hungar. 32 (1996), 415--427. pdf
[46] G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. (Szeged) 62 (1996), 47--69. pdf
[47] G. Czédli, Lattice generation of small equivalences of a countable set, Order 13 (1996), 11--16. (DOI: 10.1007/BF00383964) pdf
[48] I. Chajda, G. Czédli and I. G. Rosenberg, Kernels of tolerance relations, Acta Math. Univ. Comen. 65 (1996), 189--193. pdf
[49] G. Czédli, (1+1+2)-generated equivalence lattices, J. Algebra, 221 (1999), 439--462. (DOI: 10.1006/jabr.1999.8003 ) pdf
[50] G. Czédli, Weak congruence semidistributivity laws and their conjugates, Acta Math. Univ. Comenianae 68 (1999) 153--170. pdf
[51] G. Czédli and G. Takách, On duality of submodule lattices, Discussiones Matematicae, General Algebra and Applications 20 (2000) 43-49. pdf, publisher's version.pdf, DOI: 10.7151/dmgaa.1004
[52] K. Balog and G. Czédli, Mal'cev functions on smallgebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 38 (1999) 7-16. pdf
[53] L. Beran and G. Czédli, Distributivity via first meanders, Contributions to general algebra, 11 (Proc. Conf. Olomouc/Velké Karlovice, 1998), 1-3, Heyn, Klagenfurt, 1999. pdf
[54] G. Czédli, Two minimal clones whose join is gigantic, Publicationes Math. Debrecen 55 (1999) 155--159. DOI 10_5486_PMD_1999_2112, pdf
[55] G. Czédli, R. Halas, K. A. Kearnes, P. P. Pálfy and Á. Szendrei, The join of two minimal clones and the meet of two maximal clones, Algebra Universalis 45 (2001) 161-178. DOI 10.1007/s00012-001-8159-7, pdf, Shared link (Springer Nature, read-only): https://rdcu.be/dYbGP or https://rdcu.be/dYb3D
[56] G. Czédli, Two notes on n-lattices, Proceedings of the Dresden Conference 2000 (AAA60) and the Summer School 1999, Verlag Johannes Heyn, Klagenfurt 2001, pp. 103-105. pdf
[57] G. Czédli and A. Walendziak, Subdirect representation and semimodularity of weak congruence lattices, Algebra Universalis 44 (2000), no. 3-4, 371--373. (DOI: 10.1007/s000120050193 ) pdf
[58] A. Tanács, G. Czédli, K. Palágyi and A. Kuba, Point-based registration assuming affine motion, Lecture Notes in Computer Science 1888 (Proc. Conf. Algebraic Frames for the Perception-Action Cycle, Kiel, 2000), Springer-Verlag, Berlin, Heidelberg, 2000, pp. 329-338. pdf
[59] A. Tanács, G. Czédli, K. Palágyi and A. Kuba, Affine matching of two sets of points in arbitrary dimensions, Acta Cybernetica, 15 (2001) 101-106. pdf
[60] G. Czédli, E. K. Horváth and L. Klukovits, Associativity in monoids and categories, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 40 (2001) 47-53. pdf
[61] G. Czédli and L. Heindorf: A class of clones on countable sets arising from ideals, Studia Sci. Math. Hungarica, 37 (2001), 419-427. pdf
[62] I. Chajda, G. Czédli and E. K. Horváth: The shifting Lemma and shifting lattice identities, Algebra Universalis 50 (2003), 51-60. (DOI: 10.1007/s00012-003-1808-2 ) pdf
[63] G. Czédli and E. K. Horváth: Congruence distributivity and modularity permit tolerances, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 41 (2002) 39-42. pdf
[64]I. Chajda, G. Czédli and E. K. Horváth: Trapezoid Lemma and congruence distributivity, Math. Slovaka, 53 (2003) 247-253. pdf
[65] G. Czédli and E. K. Horváth: All congruence lattice identities implying modularity have Mal'tsev conditions, Algebra Universalis 50 (2003), 69-74. (DOI: 10.1007/s00012-003-1818-0 ) pdf
[66] G. Czédli and E. K. Horváth: Reflexive relations and Mal'tsev conditions for congruence lattice indentities in modular varieties, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 41 (2002) 43-53. pdf
[67] G. Czédli, E. K. Horváth and S. Radeleczki: On tolerance lattices of algebras in congruence modular varieties, Acta Math. Hungar. 100 (2003), 9-17. (DOI: 10.1023/A:1024643815068) pdf
[68] G. Czédli, E. K. Horváth and P. Lipparini: Optimal Mal'tsev conditions for congruence modular varieties, Algebra Universalis 53 (2005), 267-279. DOI: 10.1007/s00012-005-1893-5 ) pdf
[69] G. Czédli: Jordan-Hölder condition with subsemilattices of coalition lattices, Contributions to General Algebra 16 (Proc.Conf Dresden 2004, AAA68, and Summer School 2004), Verlag Johannes Heyn, Klagenfurt 2005, 55-62. pdf
[70] G. Czédli: 2-uniform congruences in majority algebras and a closure operator, Algebra Universalis 57 (2007), 63-73. DOI: 10.1007/s00012-007-2021-5. Submitted final version: pdf.
[71] G. Czédli, B. Seselja and A. Tepavcevic: On the semidistributivity of elements in weak congruence lattices of algebras and groups, Algebra Universalis 58 (2008) 349-355. DOI: 10.1007/s00012-008-2076-y . Submitted final version: pdf
[72] G. Czédli: Idempotent Mal'cev conditions and 2-uniform congruences, Algebra Universalis 59 (2008) 303-309. The original publication is available at www.springerlink.com (DOI: 10.1007/s00012-008-2047-3 ) Submitted final version: pdf
[73] G. Czédli: Some varieties and convexities generated by fractal lattices, Algebra Universalis, 60 (2009), 107-124. DOI: 10.1007/s00012-008-2096-7. submitted final version: pdf
[74] G. Czédli: The product of two von Neumann n-frames, its characteristic, and modular fractal lattices, Algebra Universalis 60 (2009), 217-230. The original publication is available at: www.springerlink.com (DOI: 10.1007/s00012-009-2107-3 ) , Submitted final version: pdf.
[75] G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215. ( DOI: 10.1016/j.ejc.2008.02.005 ). Submitted final version: pdf.
[76] G. Czédli: Stronger association rules for positive attributes, Novi Sad Journal of Mathematics 38/1, 103--110 (2008). pdf ; journal's final version here or here .
[77] G. Czédli and E. T. Schmidt: How to derive finite semimodular lattices from distributive lattices?, Acta Mathematica Hungarica, 121/3 (2008) 277-282. DOI: 10.1007/s10474-008-7199-2 ). Submitted final version: pdf. (Note that the details of the table in [79], which is another paper, are given at [79] below.)
[78] G. Czédli: On averaging Frankl's conjecture for large union-closed sets, Journal of Combinatorial Theory - Series A, 116 (2009), 724-729. (DOI: 10.1016/j.jcta.2008.08.002 ). Submitted version: pdf.
[79] G. Czédli: A fixed point theorem for stronger association rules and its computational aspects, Acta Cybernetica, 19 (2009), 149-158. author's pdf, published version, DOI: 10.14232/actacyb.19.1.2009.10, the details of Table 1.
[80] G. Czédli and E. T. Schmidt: Frankl's conjecture for large semimodular and planar semimodular lattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47 (2008), 47-53. pdf .
[81] G. Czédli: A visual approach to test lattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 48 (2009), 33-52. pdf
[82] G. Czédli and E. T. Schmidt: CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged) 75 (2009), 49-53. pdf .
[83] G. Czédli, M. Hartmann and E.T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009). DOI 10.5486/pmd.2009.4320, authors' pdf.
[84] G. Czédli, M. Maróti and E. T. Schmidt: On the scope of averaging for Frankl's conjecture, Order, 26 (2009), 31-48. DOI: 10.1007/s11083-008-9105-5, authors' pdf.
[85] G. Czédli and M. Maróti: Two notes on the variety generated by planar modular lattices, Order 26 (2009), 109-117. ( DOI: 10.1007/s11083-009-9110-3) pdf.
[86] G. Czédli and M. Maróti: On the height of order ideals, Mathematica Bohemica 135 (2010), 69-80. pdf
[87] G. Czédli: Sums of lattices and a relational category, Order 26 (2009), 309318. (DOI: 10.1007/s11083-009-9127-7) pdf
[88] G. Czédli and B. Skublics: The ring of an outer von Neumann frame in modular lattices, Algebra Universalis, 64 (2010) 187-202. Authors' preprint in pdf (Tiny url: czedli-skublics). Published final version: DOI: 10.1007/s00012-010-0098-8
[89] G. Czédli, M. Erné, B. Seselja and A. Tepavcevic: Characteristic triangles of closure operators with applications in general algebra, Algebra Universalis 62 (2009) 399-418. DOI: 10.1007/s00012-010-0059-2 ) authors' pdf.
[90] G. Czédli: Some new closures on orders, Mathematica Slovaca, 61/6 (2011) 859870. (DOI: 10.2478/s12175-011-0053-y ) pdf (An extended earlier version, withdrawn from publication: A stronger association rule in lattices, posets and databases, pdf )
[91] G. Czédli and E. T. Schmidt: Some results on semimodular lattices, Contributions to General Algebra 19. Proceedings of the Olomouc Conference 2010 (AAA 79+ CYA 25) , Verlag Johannes Hein, Klagenfurt 2010, 45-56. ISBN 978-3-7084-0407-3. pfd
[92] G. Czédli and E. T. Schmidt: A cover-preserving embedding of semimodular lattices into geometric lattices, Advances in Mathematics 225 (2010) 24552463. (DOI: 10.1016/j.aim.2010.05.001) pdf
[93] G. Czédli and E. T. Schmidt: Finite distributive lattices are congruence lattices of almost-geometric lattices, Algebra Universalis 65 (2011), 91-108. (DOI: 10.1007/s00012-011-0119-2) pdf
[94] G. Czédli and G. Grätzer: Lattice tolerances and congruences, Algebra Universalis 66 (2011) 5-6. (DOI: 10.1007/s00012-011-0139-y). pdf
[95] G. Czédli and E. T. Schmidt: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices, Algebra Universalis 66 (2011) 69-79. (DOI: 10.1007/s00012-011-0144-1) ) pdf
[96] G. Czédli: The matrix of a slim semimodular lattice, Order 29 (2012) 85-103. (DOI: 10.1007/s11083-011-9199-z ) pdf
[97] G. Czédli and E. T. Schmidt: Slim semimodular lattices. I. A visual approach, Order 29, 481-497 (2012). (DOI: 10.1007/s11083-011-9215-3) pdf T1.1TÁMOP-hope
[98] G. Czédli : Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices, Algebra Universalis 67, 313-345 (2012) Page 313-345 . pdf , (DOI: 10.1007/s00012-012-0190-3) T1.2Támop-paid
[99] G. Czédli and A. B. Romanowska: An algebraic closure for barycentric algebras and convex sets, Algebra Universalis 68, 111-143 (2012) (DOI: 10.1007/s00012-012-0195-y) pdf , See Maple html here, Save Maple worksheet T1.0 TÁMOP
[100] I. Chajda, G. Czédli, and R. Halas: Independent joins of tolerance factorable varieties, Algebra Universalis 69, 83-92 (2013), DOI: 10.1007/s00012-012-0213-0 (submitted on February 16, 2012), pdf, arXiv T1.0 TÁMOP
[101] G. Czédli and E. W. Kiss: Varieties whose tolerances are homomorphic images of their congruences, Bulletin of the Australian Mathematical Society, 87 (2013), 326-338 , DOI 10.1017/S0004972712000603 (Submitted on April 12, 2012) pdf, arXiv
[102] I. Chajda, G. Czédli, R. Halas, P. Lipparini: Tolerances as images of congruences in varieties defined by linear identities, Algebra universalis 69 (2013), 167-169. DOI:10.1007/s00012-013-0219-2 . (Submitted on May 10, 2012), pdf , arXiv.
[103] G. Czédli and E. T. Schmidt: Slim semimodular lattices. II. A description by patchwork systems, ORDER 30 (2013), 689-721. (submitted: August 23, 2011) (DOI: 10.1007/s11083-012-9271-3 ) pdf
[104] G. Czédli, L. Ozsvárt and B. Udvari :How many ways can two composition series intersect? Discrete Mathematics 312, 3523-3536 (2012) (DOI: 10.1016/j.disc.2012.08.003), pdf , See also Maple txt or Maple worksheet . T1.0 TÁMOP
[105] G. Czédli, J. Grygiel, K. Grygiel: Distributive lattices determined by weighted double skeletons, Algebra Universalis 69 (2013) 313-326. DOI: 10.1007/s00012-013-0232-5 (submitted: October 7, 2011) pdf , arXiv
[106] G. Czédli and G. Grätzer: Notes on planar semimodular lattices. VII. Resections of planar semimodular lattices, Order 30 (2013) 847-858; DOI 10.1007/s11083-012-9281-1 , pdf , arXiv , (submitted on June 23, 2012)
[107] G. Czédli and I. V. Nagy: Varieties of distributive rotational lattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 52/1 (2013) 71-78. (submitted on August 27, 2012), pdf (appeared), authors' pdf, arXiv .
[108] G. Czédli and E. T. Schmidt: Composition series in groups and the structure of slim semimodular lattices, Acta Sci Math. (Szeged) 79 (2013), 369-390. (Submitted on May 23, 2011), DOI 10.1007/BF03651325, shared link (Springer Nature, read-only): https://rdcu.be/dYcMc, authors' pdf, old pdf , arXiv . T1.0, TÁMOP
[109] G. Czédli: Coordinatization of finite join-distributive lattices. Algebra Universalis 71/4 (2014), 385-404. DOI 10.1007/s00012-014-0282-3, shared link (Springer Nature, read-only): https://rdcu.be/dYcFf , author's pdf , all versions: arXiv . (Submitted on October 12, 2012
[110] G. Czédli:CD-independent subsets in meet-distributive lattices. Acta Math. Hungarica 143/1 (2014), 232-248. DOI 10.1007/s10474-013-0371-3 , Shared link (Springer Nature, read-only): https://rdcu.be/dYcEG , author's pdf , arXiv. (Submitted on July 9, 2013)
[111] G. Czédli: Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72/2 (2014) 125-154; DOI 10.1007/s00012-014-0294-z (submitted on August 8, 2013), recent pdf .
[112] G. Czédli: A note on congruence lattices of slim semimodular lattices, Algebra Universalis, 72/3 (2014) 225-230; DOI: 10.1007/s00012-014-0286-z, Shared link (Springer Nature, read-only): https://rdcu.be/dYcDS , author's pdf .
(Submitted on August 21, 2013 )[113] G. Czédli, M. Maróti, A. B. Romanowska: A dyadic view of rational convex sets, Commentationes Mathematicae Universitatis Carolinae 55 (2) (2014) 159173, (submitted on November 5, 2012), pdf (appeared), authors' pdf, arXiv
[114] G. Czédli and A. Romanowska: Generalized convexity and closure conditions, Internation International Journal of Algebra and Computation,Vol. 23, No. 8 (2013) 1805-1835. DOI 10.1142/S0218196713500458 (submitted on December 26, 2012), pdf.
[115] K. Adaricheva and G. Czédli: Note on the description of join-distributive lattices by permutations, Algebra Universalis, 72/2 (2014) 155-162. DOI: 10.1007/s00012-014-0295-y (submitted on October 12. 2012), pdf , arXiv
[116] G. Czédli: Finite convex geometries of circles, Discrete Mathematics 330 (2014) 61-75 ; DOI 10.1016/j.disc.2014.04.017 (submitted on December 14, 2012); recent pdf, arXiv.
[117] G. Czédli, T. Dékány, L. Ozsvárt, N. Szakács, B. Udvari: On the number of slim, semimodular lattices, Mathematica Slovaca, 66 (2016), 5-18. DOI 10.1515/ms-2015-0111 (submitted on June 5, 2012), pdf .
[118] G. Czédli, T. Dékány, G. Gyenizse and J. Kulin: The number of slim rectangular lattices, Algebra Universalis 75/1 (2016) 33-50, DOI: 10.1007/s00012-015-0363-y . Shared link (Springer Nature, read-only): https://rdcu.be/dYcwf (submitted on November 20, 2013) pdf, Maple.mws, Maple.txt; OEIS: A273988 and A273596.
[119] G. Czédli: Large sets of lattices without order embeddings, Communications in Algebra, 44:2 (2016) 668-679, DOI: 10.1080/00927872.2014.967352 (submitted on October 5, 2013), pdf
[120] G. Czédli and D. Jakubíková-Studenovská: Large rigid sets of algebras with respect to embeddability, Mathematica Slovaca 66/2 (2016) 401-406, DOI: 10.1515/ms-2015-0145 (submitted on October 12, 2013), pdf
[121] G. Czédli: The ordered set of principal congruences of a countable lattice, Algebra Universalis 75/3 (2016), 351-380; DOI: 10.1007/s00012-016-0376-1, shared link (Springer Nature, read-only): https://rdcu.be/dYcwy (submitted on May 7, 2013), author's pdf, arXiv
[122] G. Czédli: Representing a monotone map by principal lattice congruences, Acta Mathematica Hungarica 147 (1) (2015), 12-18. DOI: 10.1007/s10474-015-0539-0 . Shared link (Springer Nature, read-only): https://rdcu.be/dYcDy , author's pdf. (Submitted on September 4, 2014)
[123] G. Czédli and Á. Kunos: Geometric constructibility of cyclic polygons and a limit theorem, Acta Sci. Math. (Szeged) 81 (2015), 643-683 ; DOI: 10.14232/actasm-015-259-3 : open access! (submitted on February 13, 2015), pdf , arXiv (February 9, 2015), Maple-worksheet.mws, Maple-worksheet.txt (old version: July 23, 2013 pdf , Maple-worksheet.pdf, Maple-worksheet.mws)
[124] G. Czédli: The asymptotic number of planar, slim, semimodular lattice diagrams, Order 33 /2 (2016) 231-237 (submitted on June 16, 2012), DOI 10.1007/s11083-015-9361-0, Shared link (Springer Nature, read-only): https://rdcu.be/dYcxr, author's pdf, Maple, arXiv
[125] G. Czédli: Quasiplanar diagrams and slim semimodular lattices, Order 33 /2 (2016) 239-262. (submitted on December 31, 2012) DOI 10.1007/s11083-015-9362-z , Shared link (Springer Nature, read-only): https://rdcu.be/dYcxh, author's pdf, arXiv
[126] G. Czédli: A selfdual embedding of the free lattice over countably many generators into the three-generated one, Acta Math. Hungarica 148 (2016), 100-108. DOI: 10.1007/s10474-015-0560-3 , Shared link (Springer Nature, read-only): https://rdcu.be/dYcCZ , author's pdf. (Submitted on April 28, 2015.)
[127] Gábor Czédli, Robert C. Powers, and Jeremy M. White: Planar graded lattices and the c_1-median property. Order 33 (2016), 365-369; DOI: 10.1007/s11083-015-9372-x (submitted on April 2, 2014), Shared link (Springer Nature, read-only): https://rdcu.be/dYcwY, authors' pdf
[128] G. Czédli: An independence theorem for ordered sets of principal congruences and automorphism groups of bounded lattices, Acta Sci. Math. (Szeged) 82 (2016), 3-18. DOI: 10.14232/actasm-015-817-8 (submitted in September 2015) ; pdf, arXiv
[129] Gábor Czédli: Geometric constructibility of Thalesian polygons, Acta Sci. Math. (Szeged) 83 (2017), 61-70; (submitted on September 2015); DOI: 10.14232/actasm-015-072-8 , author's pdf , open access.pdf
[130] G. Czédli: Representing some families of monotone maps by principal lattice congruences. Algebra Universalis 77(1) (2017), 51-77. , DOI: 10.1007/s00012-016-0419-7 ; see Shared link , or see the author's version here: pdf (submitted on May 2, 2015)
[131] G. Czédli: Lattices embeddable in three-generated lattices. Acta Sci. Math. (Szeged) 82 (2016), 361-382, DOI: 10.14232/actasm-015-586-2 (submitted on December 12, 2015), pdf, arXiv
[132] G. Czédli: Diagrams and rectangular extensions of planar semimodular lattices. Algebra Universalis, 77 (2017) 443--498., DOI 10.1007/s00012-017-0437-0. Shared link (Springer Nature, read-only): https://rdcu.be/dYcnK , (submitted on June 20, 2015): pdf ( arXiv : December 15, 2014)
[134] G. Czédli: Four-generated quasiorder lattices and their atoms in a four-generated sublattice; Communications in Algebra, 45/9 (2017) 4037-4049. DOI : 10.1080/00927872.2016.1257710 (submitted on November 6, 2015); recent pdf, .
[135] G. Czédli and L. L. Stachó: A note and a short survey on supporting lines of compact convex sets in the plane. Acta Universitatis Matthiae Belii, Series Mathematics 24, 3-14, 2016 (Online Edition: Issue 2016, 44--55, ISSN 1338-7111, Online Edition, http://actamath.savbb.sk); pdf at the publisher, arXiv (December 5, 2016), author's file pdf
[136] Gábor Czédli and Géza Makay: Swing lattice game and a direct proof of the swing lemma for planar semimodular lattices, Acta Sci. Math. (Szeged), 83, 13-29, 2017 (submitted on July 15, 2016), DOI: 10.14232/actasm-016-036-3, recent pdf, arXiv, Swing lattice game program
[137] G. Czédli: Complete congruence lattices of two related modular lattices. Algebra Universalis, 78 (2017), 251-289 (submitted on April 11, 2016), DOI: 10.1007/s00012-017-0457-9 , shared online version at Springer Nature (top window), author's pdf
[138] G. Czédli: An easy way to a theorem of Kira Adaricheva and Madina Bolat on convexity and circles, Acta Sci. Math. (Szeged) 83 (2017), 703-712. DOI: 10.14232/actasm-016-307-7 (submitted on October 8, 2016), recent pdf, extended version in pdf, arXiv.
[139] G. Czédli: Characterizing circles by a convex combinatorial property. Acta Sci. Math. (Szeged) 83 (2017), 683-701 (Submitted December 13, 2016), DOI: 10.14232/actasm-016-570-x, recent pdf , extended version: arXiv
[140] G. Czédli and J. Kincses: Representing convex geometries by almost-circles. Acta Sci. Math. (Szeged) 83 (2017), 393-414, (submitted on August 23, 2016), DOI: 10.14232/actasm-016-044-8, recent pdf, arXiv
[141] G. Czédli: Characterizing fully principal congruence representable distributive lattices. Algebra Universalis, Algebra Universalis 79:9 (2018) (online April 12, 2018), DOI: 10.1007/s00012-018-0498-8 (submitted on July 22, 2017) , arXiv , author's recent pdf , shared online version at Springer Nature (top window)
[142] G. Czédli, G. Grätzer and H. Lakser: Congruence structure of planar semimodular lattices: The General Swing Lemma. Algebra Universalis (2018) 79:40 (pages 1-18) (published online: April 30, 2018) (submitted on October 16, 2016), DOI: 10.1007/s00012-018-0483-2, recent pdf, shared online version at Springer Nature (top window)
[143] G. Czédli: On the set of principal congruences in a distributive congruence lattice of an algebra. Acta Sci. Math. (Szeged) 84 (2018), 357-375, DOI: 10.14232/actasm-017-538-7 (submitted on May 30, 2017, revised on February 8, 2018), arXiv , recent pdf .
[144] G. Czédli: Cometic functors and representing order-preserving maps by principal lattice congruences. Algebra Universalis (2018) 79:59 (pages 1-32) DOI: 10.1007/s00012-018-0545-5 , Shared link (Springer Nature, read-only): https://rdcu.be/dYcmb , (submitted on December 28, 2016), recent (March 17, 2018) pdf .
[145] G. Czédli: A note on finite lattices with many congruences. Acta Universitatis Matthiae Belii, Series Mathematics Online (2018), 22-28 (submitted on December 19, 2017), author's pdf, published online (April 25, 2018) open access.pdf, earlier arXiv.pdf
[146] G. Czédli: Representing an isotone map between two bounded ordered sets by principal lattice congruences. Acta Mathematica Hungarica 155 (2) (2018), 332-354 (published online June 26, 2018), DOI: 10.1007/s10474-018-0844-5 , shared online version at Springer Nature (top window), (submitted on October 9, 2017), recent pdf .
[147] Delbrin Ahmed, Gábor Czédli and Eszter K. Horváth: Geometric constructibility of polygons lying on a circular arc. Mediterranean Journal of Mathematics (2018) 15:13, DOI: 10.1007/s00009-018-1166-0 , published online May 31, 2018 (submitted on October 23, 2017), (1660-5446/18/030001-14); recent pdf , arXiv, shared online version at Springer Nature ("+ -" in eq. (3.16) should be "-") in top window, Maple worksheet.pdf, Maple worksheet.mws
[148] G. Czédli: Finite semilattices with many congruences. Order, 36(2), 233-247 (2019) (published online July 7, 2018), DOI: 10.1007/s11083-018-9464-5 (submitted on January 6, 2018), most recent pdf, earlier arXiv.pdf, shared online version at Springer Nature (top window)
[149] G. Czédli and Áprád Kurusa: A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categories and General Algebraic Structures with Applications 11, 57-92 (2019), DOI: 10.29252/CGASA.11.1.57 , online.pdf (see also at http://cgasa.sbu.ac.ir/article_82639.html), (submitted on July 9, 2018 ), arXiv, authors' pdf , Maple worksheet to run and to print.
[150] G. Czédli: Circles and crossing planar compact convex sets. Acta Sci. Math. (Szeged) 85 (2019), 337-353 , DOI: 10.14232/actasm-018-522-2 (submitted on February 18, 2018), most recent pdf, arXiv.pdf
[151] G. Czédli, G. Gyenizse and Á. Kunos: Symmetric embeddings of free lattices into each other. Algebra Universalis (2019) 80:11 (pages 1-), DOI: 10.1007/s00012-019-0583-7 ; (submitted on May 8, 2018) Open access pdf: https://rdcu.be/blOjN , authors' pdf, earlier arXiv.pdf ; a related computer program: zipped (all files, including sample data files) or see wpflCzG 2018 here .
[153] G. Czédli and Eszter K. Horváth: A note on lattices with many sublattices, Miskolc Mathematical Notes 20 (2019), No. 2, pp. 839--848. Author's pdf, at the publisher.pdf, DOI: 10.18514/MMN.2019.2821, arXiv.pdf .
[154] G. Czédli: Eighty-three sublattices and planarity, Algebra Universalis, (2019) 80:45 (online 21 October 2019), DOI: 10.1007/s00012-019-0615-3, Open access pdf: https://rdcu.be/bVoPh , author's.pdf, recent-extended.pdf , Springer's pdf, arXiv-extended-.pdf; related computer program (see subsize 2019) and its data files .
[155] G. Czédli and C. Muresan: On principal congruences and the number of congruences of a lattice with more ideals than filters. Acta Sci. Math. (Szeged) 85 (2019), 363-380, Open access: DOI: https://doi.org/10.14232/actasm-018-538-y , authors' earlier version ; arXiv.pdf (submitted on April 14, 2018).
[156] G. Czédli: One hundred twenty-seven subsemilattices and planarity, Order (2020) 37:559-569 ; Open access short link https://rdcu.be/b7VLx , DOI : 10.1007/s11083-019-09519-x ( author-created.pdf, submitted extended.pdf, arXiv.pdf, related computer program (see subsize 2019) and its data file .
[157] G. Czédli: Planar semilattices and nearlattices with eighty-three subnearlattices, Acta Sci. Math. (Szeged), Acta Sci. Math. (Szeged), 86 (2020), 117-165. DOI: 10.14232/actasm-019-573-4 , most recent author's version (abridged) pdf, most recent extended pdf, and arXiv (extended) pdf, related computer program (see sublatts 2019) and its data file (submitted on August 23, 2019).
[158] G. Czédli: Doubling tolerances and coalition lattices. Journal of Multiple-Valued Logic and Soft Computing 36/4-5 (2021) 275-297 . most recent pdf = https://tinyurl.com/czgdtclat-pdf , arXiv.pdf .
[159] Gábor Czédli and Lillian Oluoch: Four-element generating sets of partition lattices and their direct products. Acta Sci. Math. (Szeged) 86 (2020) 405-448. DOI: 10.14232/actasm-020-126-7 (submitted on June 26, 2020. Supported by K134851), authors' most recent pdf , arXiv , computer program (see Equgen 2020 there).
[160] Gábor Czédli, Robert C. Powers, and Jeremy M. White: Medians are below joins in semimodular lattices of breadth 2. ORDER 38, 351--363 (2021), DOI: 10.1007/s11083-020-09544-1 , Open access link (submitted on November 5, 2019), authors' pdf, arXiv.pdf .
[161] G. Czédli: Four-generated direct powers of partition lattices and authentication, Publicationes Mathematicae (Debrecen) 99 (2021), 447-472 ; DOI: 10.5486/PMD.2021.9024 (for subscribers) ( Submitted on July 21, 2020. Supported by K134851); most recent pdf, arXiv.pdf (Jule 20, 2020); related computer program (see equmgn.zip and equmgn.exe, 2020, there) .
[162] G. Czédli: On the number of atoms in three-generated lattices. Acta Sci. Math. (Szeged) 87 (2021), 23--38; DOI: 10.14232/actasm-020-769-4 . (submitted on January 9, 2019), author's pdf, arXiv.pdf .
[163] G. Czédli: Atoms and coatoms in three-generated lattices. Novi Sad Journal of Mathematics, Vol. 52, No. 2, 2022, 189--215; DOI 10.30755/NSJOM.12402 , available online since August 30, 2022. Author's recent pdf, arXiv.pdf, computer program (see atoms3 2020 and isitlat 2020 there). . Supported by K134851 .
[164] G. Czédli: Lamps in slim rectangular planar semimodular lattices; Acta Sci. Math. (Szeged) 87 (2021), 381-413 , DOI: 10.14232/actasm-021-865-y most recent pdf, arXiv.pdf (http://arxiv.org/abs/2101.02929) , submitted on January 15, 2021, supported by K134851 .
[165] Ahmed Delbrin and Gábor Czédli: (1+1+2)-generated lattices of quasiorders; Acta Sci. Math. (Szeged) 87 (2021), 415-427, DOI 10.14232/actasm-021-303-1 (submitted on May 3, 2021, supported by K134851 ); extended version, short version, arXiv.pdf .
[166] G. Czédli and G. Grätzer: A new property of congruence lattices of slim, planar, semimodular lattices. Categories and General Algebraic Structures with Applications 16/1, 1-28, 2022 (Submitted on March 7, 2021, accepted on August 21, 2021). Download from the journal (direct link), Author's pdf, arXiv.pdf . Supported by K134851 .
[167] G. Czédli: Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures. Archivum Mathematicum Brno 58/1 (2022) 15--33, DOI: 10.5817/AM2022-1-15, (submitted on March 30, 2021, accepted on November 2, 2021) ; open access published.pdf , author's recent pdf, arXiv.pdf . Supported by K134851 .
[168] G. Czédli: Permuting 2-uniform tolerances on lattices. Journal of Multiple-Valued Logic and Soft Computing, 39/1, 97--104, 2022 (submitted on November 7, 2019, accepted on November 11, 2021) most recent pdf, arXiv.pdf .
[169] Gábor Czédli and Ali Molkhasi: Absolute retracts for finite distributive lattices and slim semimodular lattices. Order 40, 127-148 (2022), DOI 10.1007/s11083-021-09592-1 , appeared online on April 19, 2022: Shared view-only version (submitted on June 15, 2021) author's recent pdf , arXiv.pdf . Supported by K134851 .
[170] Gábor Czédli: A property of meets in slim semimodular lattices and its application to retracts. Acta Sci. Math. (Szeged), 88, 595--610 (2022), DOI 10.1007/s44146-022-00040-z , Shared link at Springer (read-only): https://rdcu.be/cX3mh , (Submitted on December 15, 2021) Author's journal version.pdf; a different arXiv version. . Supported by K134851 .
[171] Gábor Czédli: A property of lattices of sublattices closed under taking relative complements and its connection to 2-distributivity. Mathematica Pannonica 28 (2022) 109-117, DOI 10.1556/314.2022.00014, available online at DOI (submitted on January 18, 2022, accepted on May 16, 2022). Author's pdf ; for pre-runner with reduced and somewhat different content, see "2-distributivity and lattices of sublattices closed under taking relative complements" at arXiv = this file here . Supported by K134851 .
[172] Gábor Czédli: Lattices of retracts of direct products of two finite chains and notes on retracts of lattices. Algebra Universalis (2022) 83:34 appeared online August 2, 2022, DOI: 10.1007/s00012-022-00788-z , Shared link (read only at Springer Nature): https://rdcu.be/cSVBh, author's pdf . (Earlier and different version with a different title: Retracts of rectangular distributive lattices and some related observations: arxiv ) . (Submitted on December 27, 2021, accepted for publication on June 2, 2022.) Supported by K134851 .
[173] Gábor Czédli: Length-preserving extensions of a semimodular lattice by lowering a join-irreducible element. Order 40, 403-421 (2023), DOI 10.1007/s11083-022-09620-8, Shared link at Springer Nature (read-only): https://rdcu.be/c0whu (Submitted: June 16, 2021, accepted for publication: November 13, 2022) Author-made (journal version) pdf; = https://tinyurl.com/czedli-ext-low-j; recent extended pdf , extended arXiv version (http://arxiv.org/abs/2108.03773) . Supported by K134851 .
[174] Gábor Czédli: Infinitely many new properties of the congruence lattices of slim semimodular lattices. Acta Sci. Math. 89, 319--337 (2023) DOI 10.1007/s44146-023-00069-8 , Shared link at Springer Nature (read-only): https://rdcu.be/daUvd published onliy April 28, 2023. (Submitted: July 10, 2022) Recent (journal version) pdf = https://tinyurl.com/czedli-cde-con-sps . This paper is a thoroughly rewritten and improved version of a part of " Notes on congruence lattices and lamps of slim semimodular lattices", available from http://arxiv.org/abs/2206.14769 or here. Supported by K134851 .
[175] Gábor Czédli: Revisiting Faigle geometries from a perspective of semimodular lattices; Discussiones Mathematicae - General Algebra and Application, 43 (2023) 207--222. https://doi.org/10.7151/dmgaa.1416, author's pdf = https://tinyurl.com/czedli-revfaigle , extended arXiv:2107.10202 pdf (or = here) . Supported by K134851 .
[176] Gábor Czédli: Lattices with lots of congruence energy. Novi Sad Journal of Mathematics, DOI 10.30755/NSJOM.15406 (online first on October 14, 2023, submitted on December 2, 2022) author's pdf, arXiv:2205.02294. Supported by K138892.
[177] Gábor Czédli: C_1-diagrams of slim rectangular semimodular lattices permit quotient diagrams. Acta Sci. Math. 90, 1--40 (2024), DOI 10.1007/s44146-023-00101-x. (Published online on December 18, 2023; submitted on January 24, 2023.) Shared link (Springer Nature, read-only): https://rdcu.be/dtWyG; https://tinyurl.com/czedli-qdiagr-sr (author's pdf). (An earlier version entitled "Two notes on multifork extensions of slim rectangular lattices with applications to the congruence lattices of these lattices" is still available at arXiv:2208.03606v1 .) The latest arXiv version is at arXiv or here. Supported by K134851 . .
[178] Gábor Czédli: Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices. Mathematica Bohemica Vol. 149, No. 4, pp. 503--532, 2024. DOI: 10.21136/MB.2024.0006-23 (submitted on January 10, 2023, accepted on August 24, 2023, online February 27, 2024). Author's version: here . Other version: https://tinyurl.com/czedli-conspsalg , arXiv Supported by K138892. . DOI: 10.21136/MB.2024.0006-23
[179] Gábor Czédli: Generating the direct powers of a Boolean lattice with an extra 0. In: Algebra and model theory 14, edited by A. G. Pinus, E. N. Poroshenko, and S. V. Sudoplatov, Collection of papers from the 15th Summer School "Problems Allied to Model Theory and Universal Algebra", Erlagol, June 21-28, 2023. Novosibirsk State Technical University (ISSN 2619-0486), pages 25-40 (2023). Author's version: here. (For the whole monograph, see at the publisher's cite.) Supported by K138892.
[180] Gábor Czédli: Minimum-sized generating sets of the direct powers of free distributive lattices. CUBO, A Mathematical Journal 26/2, 217-237 (August 2024), OA, DOI:10.56754/0719-0646.2602.217 . (accepted for publication on April 15, 2024, submitted on November 8, 2023. Earlier title: Minimum-sized generating sets of the direct powers of the free distributive lattice on three generators and a Sperner theorem.) Preprint and an extended (arXiv) version = arxiv:2309.13783 . Supported by K138892. CUBO
[181] Gábor Czédli: Sperner theorems for unrelated copies of posets and generating distributive lattices. Ural Mathematical Journal 10/1, 44--60, 2024. DOI 10.15826/umj.2024.1.004 (Appeared on July 29, 2024, , submitted on August 31, 2023) here (or click on DOI), author's pdf here = see also at https://tinyurl.com/czg-spmgd ; arxiv:2308.15625 Supported by K138892. (UMJ)
[182] Gábor Czédli: Generating some large filters of quasiorder lattices. Acta Sci. Math. DOI : 10.1007/s44146-024-00139-5. Shared link: https://rdcu.be/dI08N (Springer Nature, read-only) Accepted on May 9, 2024. Recent version: here or at tinyurl.com/czg-genfquo . Earlier versions: arXiv (February 28, 2023), Supported by K138892.. , (Submitted ASM July 31, 2023)
[183] Gábor Czédli: Slim patch lattices as absolute retracts and maximal lattices. Algebra Universalis 85:28 (2024); DOI: 10.1007/s00012-024-00861-9 . Shared link (Springer Nature, read-only): https://rdcu.be/dK63d . (Published online on June 17, 2024, submitted on June 16, 2021) Author's most recent pdf , arXiv:2105.12868. Supported by K134851 . AU
[184] Gábor Czédli: Generating subspace lattices, their direct products, and their direct powers. Acta Sci. Math. DOI 10.1007/s44146-024-00145-7. (Submitted on January 17, 2024; appeared online on June 26, 2024); Shared link (Springer Nature, read-only): https://rdcu.be/dL1AP , author's pdf , extended version in pdf = arxiv:2401.00842 Supported by K138892. (ASM)
[185] Gábor Czédli: Generating Boolean lattices by few elements and exchanging session keys. Novi Sad Journal of Mathematics, DOI 10.30755/NSJOM.16637, Online first: October 8, 2024. (Submitted October 29, 2023; accepted September 20, 2024; online first: October 8, 2024. ) Further links: author's pdf, arXiv. Related computer program (BooGnFtr 2003) Supported by K138892. (Earlier title: Generating Boolean lattices by few elements and a related cryptographic protocol for authentication (and cryptography based on an NP-complete problem) )
[186] Gábor Czédli: Four-element generating sets with block count widths at most two in partition lattices. Bulletin of the Irkutsk State University, Series Mathematics, accepted on on November 19, 2024 (submitted on October 10, 2024); author's pdf, extended version. Supported by K138892.
[187] Gábor Czédli: Duality for pairs of upward bipolar plane graphs and submodule lattices. Author's pdf = https://tinyurl.com/czg-graphdl , arXiv:2406.15989 . Math.Bohemica, submitted June 24, 2024, revised April 27, 2025, accepted April 27, 2025. Supported by K138892.
[188] Gábor Czédli: Four generators of an equivalence lattice with consecutive block counts. In: Model Theory an Algebra 2024, Collection of papers edited by y M. Shahryari, S. V. Sudoplatov, pp. 14--24, Novosibirsk State University, 2024, ISBN 978-5-7782-5285-1. pdf here = https://tinyurl.com/czg-4gcons , and pdf at the publisher. Supported by K138892.
[189] Gábor Czédli: Atoms in four-element generating sets of partition lattices. Mathematica Pannonica New Series, DOI : 10.1556/314.2025.00010, published online ahead of print on June 7, 2025 (submitted on October 25, 2024), available at DOI ; author's pdf here = https://tinyurl.com/czg-at4gpl . Extended version here = https://tinyurl.com/czg-at4gpl or at arXiv:2410.19650. Supported by K138892.
[190 ???] Gábor Czédli: A pair of four-element horizontal generating sets of a partition lattice. pdf = https://tinyurl.com/czg-h4gen. Revised on June 24, 2025 (submitted on Aug. 21, 2024), extended version = https://tinyurl.com/czg-h4ge. Related Pascal program: find czg-equ2024p here or (direct link) https://tinyurl.com/czg-equ2024p. Supported by K138892. (UMJ)
[191 ???] Gábor Czédli: The largest and all subsequent numbers of congruences of n-element lattices. Author's pdf = https://tinyurl.com/czg-bsconl . Submitted on April 11, 2025. Supported by K138892. (UMJ)
[192 ???] Gábor Czédli: Notes on the congruence densities and quasiorder densities of sublattices. Author's pdf = https://tinyurl.com/czedli-cdS . Submitted on May 13, 2025. Supported by K138892. (Erlagol)
You can click on https://tinyurl.com/pr-czedli to hear how to pronounce my name.
(The strategy of numbering: when a paper is submitted, it receives a temporary red number. When accepted, it gets its final number in green, which is the least number that is neither black, nor green; note that the remaining red numbers may change to avoid gaps. When the paper is published online or in print, its green number becomes black.) https://tinyurl.com/czg-dps
(P2) Theses
Értekezések |
|||
[I] Czédli Gábor, Kongruenciavarietások, egyetemi doktori értekezés [Congruence varieties, University Doctorate Thesis], Szeged, 1979.
[II] Czédli Gábor, Univerzális algebrák jellemzése hálóazonosságokkal, kandidátusi értekezés (pdf 103 oldal) [Characterizing universal algebras by lattice identities, Thesis for the Candidate (PhD) Degree], Szeged, 1983. értekezés tézisei (pdf, 10 oldal)
[III] Czédli Gábor, Horn-formulák kísérőhálókban, habilitációs tézisek, Szeged, 1994.
[IV] G. Czédli, Horn sentences in related lattices, akadémiai doktori értekezés [Horn sentences in related lattices, thesis for the doctor of science degree], Szeged, 1994. pdf
(P3) University textbooks
Egyetemi tankönyvek és jegyzetek |
|||
[A] Bálintné Szendrei Mária, Czédli Gábor és Szendrei Ágnes, Absztrakt algebrai feladatok [Problem Book in Abstract Algebra] Tankönyvkiadó (Budapest) 1985, 1988, JATEPress (Szeged) 1993, 1998; Polygon (Szeged) 2005, 512 oldal.
[B]Czédli Gábor, Boole-függvények [Boolean Functions] JATEPress, Szeged 1994, 89 oldal; Polygon, Szeged, 1995 (132 oldal), 2009 (119 oldal).
[C] Czédli Gábor és Szendrei Ágnes, Geometriai szerkeszthetőség [Geometric Constructibility], Polygon Könyvtár, Szeged, 1997. V+329 oldal.
[D] Czédli Gábor, Hálóelmélet [Lattice Theory], JATEPress, Szeged, 1999, 230 oldal.
[E] Czédli Gábor, Szerkeszthetőségi feladatok [Problem Book on Geometric Constructibility], JATEPress (Szeged) 2001, 149 oldal.
(P4) Other publications
Egyéb publikációk |
|||
[a] Czédli Gábor: Jelentés az 1983. évi Schweitzer Miklós Matematikai Emlékversenyről, Matematikai Lapok (Budapest), 32 (1981-84), 161-176.
[b] G. Czédli: n-distributive lattices versus projective geometries, TEMPUS JEP--0153 Lecture Series, Potenza (Italy) 1992, 17 pages. pdf
[c] Czédli Gábor és Schmidt Tamás: Fogalomhálók, Polygon IV/2 (1994) 27--46; ismeretterjesztő cikk. pdf
[d] G. Czédli: A tribute to George Hutchinson, Order 15 (1999) 195-198. pdf at DOI: 10.1023/A:1017240109511 , author's pdf
[e] Czédli Gábor: A III. Béla Gimnáziumtól az egyszerű zsonglőrminták átlagtételéig, Tanulmányok a bajai III. Béla Gimnázium jubileumára, 2007, pp.72-78. Bajapress Nyomda 2007, ISBN: 9789630630597. pdf
[f] G. Czédli: The mathematics of G. Grätzer and E. T. Schmidt, Algebra Universalis 59 (2008) 11-30. (DOI 10.1007/s00012-008-2130-9 .) pdf
[g] G. Czédli and L. Zádori: Conference on Lattices and Universal Algebra. Szeged, August 3-7, 1988. Algebra Universalis 45, 2-3 (2001), 107-115. (The foreword of a special issue devoted the the conference, Szeged, 1998.) pdf
[h] L. Fuchs, B. Beeton and G. Czédli: Reminiscences about George Grätzer and E. Tamás Schmidt, Algebra Universalis 59 (2008) 3-10. (DOI 10.1007/s00012- 2129-2 .) pdf
[i] G. Czédli: Celebrating professor George A. Grätzer, Categories and General Algebraic Structures with Applications 11, 1--9, 2019; see here (appeared) or here (submitted); the journal: http://cgasa.sbu.ac.ir/
[j] G. Czédli: An interview with George A. Grätzer, Categories and General Algebraic Structures with Applications, 11, 11-17, 2019; see here (appeared) or here pdf (submitted); the journal: http://cgasa.sbu.ac.ir/
(P5) DOI and other information:
|
|||
How to handle DOI names (digital object identifiers) above? Go to http://dx.doi.org/, copy the name (something like 10.1016/j.ejc.2008.02.005), click on "DOI", and paste the name to arrive at the publisher's version. Please use DOI names in citations. (Sometimes the above instruction does not work; clicking on the given "springelink" may help.)