FOUR NOTES ON QUASIORDER LATTICES

IvaAN CHAJDA AND GABOR CZEDLI

ABSTRACT. The quasiorders, i.e. reflexive, transitive and compatible relations, of

a (partial) algebra A form a lattice Quord(A) with an involution p — p~! =

{{z,y): (y,z) € p}. It is shown that every algebraic lattice with involution is iso-
morphic to Quord(A) for some partial algebra A. Any finite distributive lattice
with involution is isomorphic to Quord(A) for some finite algebra A such that the
quasiorders of A are 3-permutable. Every distributive lattice with involution can
be embedded in Quord(A) for some set A. Any algebraic lattice is isomorphic to
Quord(A) for some algebra A such that Quord(A) = Con(A).

INTRODUCTION

A triplet L = (L; <, ~!) is called an involution lattice or a lattice with involution
if =1: L — L is a lattice automorphism such that (z=)~! = z holds for all z € L.
The fixed points of the involution form a sublattice {x € L: 27! = 2}, whose
elements will be called the fixed elements (of the involution). If the context is
involution lattices then embeddings, isomorphisms and homomorphisms are always
supposed to preserve the involution operation ~—!. Every lattice can be turned into
an involution lattice by considering the identical map as involution. To present a
natural but less trivial example, let us consider a partial algebra A = (A; F). A
binary relation p C A? is called a quasiorder of A if p is reflexive, transitive, and
compatible, i.e. for any f € F and any (ai,...,a,),(b1,...,b,) in the domain
of fif (a1,b1),...,{(an,b,) € p then (f(ay,...,an), f(b1,...,b,)) € p. Defining
p~t = {{x,y): (y,x) € p} as usual, the set Quord(A) of quasiorders of A becomes
an involution lattice Quord(A4) = (Quord(A); C, ~1). The fixed elements of this
lattice are just the congruences of A. Like congruences of algebras, quasiorders
arise naturally in case of ordered algebras as homomorphism kernels, cf. [4] and
Bloom [1]. Our aim is to deal with the following two problems of [3].

Problem A. Which algebraic lattices are isomorphic to Quord(A) for some algebra
A?

Problem B. Characterize pairs (L, Lo) of (algebraic) lattices such that L1 C Lo
and there exist an algebra A and a lattice isomorphism ¢: Ly — Quord(A) with
©(L1) = Con(A).
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It is pointed out in [3] that L; cannot be an arbitrary complete sublattice of
Ls. In connection with Problem A it is worth mentioning that the analogous char-
acterization of Con(A) is solved by a celebrated theorem of Grétzer and Schmidt
6].

While our first theorem solves Problem A, we are still far from solving Problem
B. A recent result [12] shows that not every algebraic lattice with involution is
isomorphic to Quord(A) for some algebra A. Moreover, certain algebraic lattices
with involution cannot be embedded in Quord(A) for any set A. This is a bit
surprising in the view of Theorems 2,3 and 4 of the present paper.

RESULTS AND PROOFS

Theorem 1. For any algebraic lattice L there is an algebra A such that L =
Quord(A) and, in addition, Quord(A) coincides with Con(A).

Proof. We will use the yeast graph construction given by Pudldk and Ttuma [9]
which gives an algebra with Con(A) = L, we will show Con(A) = Quord(A) only.
The graph construction in Chapter 1 of [9] is much more general than needed here,
so we describe only as much of it as necessary. Let J = (J;V, 1) be a semilattice
with involution. The elements of J will be denoted by lowercase Greek letters. Let
V be a nonempty set, let P»(V') denote the set of two-element subsets of V' and let
E C J x P5(V). An element (a,{a,b}) of E will mostly be denoted by (a, a, b);
of course (a,a,b) = (b,a,a) and a # b. A pair G = (V, E) is called a J-graph
or simply graph if, for any a,b € V and «,3 € J, (a,a,b), {a,3,b) € E implies
a = (3. The elements of V' are called vertices while the elements of E are called
edges. Here a resp. a,b are called the colour resp. endpoints of the edge (a, a, b).
The endpoints of an edge uniquely determine its colour. Our graphs will often have
two distinguished vertices referred to as left and right endpoints. Given two graphs,
G1 = (V4, Ey) and Gy = (Va, Es), a map f: Vi — Vs is called a homomorphism if
for every (a,a,b) € Fy either f(a) = f(b) or (f(a),q, f(b)) € F5. Isomorphisms,
endomorphisms and automorphisms are the usual particular cases of this notion.

With any positive integer k and (o, as, ... ,ax) € J* we associate a graph R(a,

., ag), called arc, such that the vertex set of R(aq,...,ax) is {ag,a1,... a2}
and the edge set is {(ao, a1, a1), (a1, a2, a2), ... , (ar—1, Ok, ak), (@k, Q1, Gry1), (Qrt1, 2, apg2) ]

, (aok—1, ag, asr) }. The vertices ag resp. agy are the left resp. right endpoints of

R(aq,...,ax). Given an a € J, we define a graph C(«a), called a-cell, as follows.
We start with Co(a) = ({bo, b1}, {(bo, v, b1)}. I.e., Cp(a) consists of two vertices,
which are its endpoints, and a single a-coloured edge connecting them. For each
k > 1 and for each (a1, as,...,a;) € J* such that a < a; Vas V...V ay let
us take (an isomorphic copy of) the arc R(aj,as,...,ax). The arcs we consider
must be disjoint from each other and from Cy(«) as well. Now identifying the
left endpoints of these arcs with by and their right endpoints with b; we obtain
C'(a). The vertices by and by are the left and right endpoints of C'(«), respectively,
and the edge (bg, v, b1) is called the base edge of C(«a). Let us cite from [9] that
C(a) admits an automorphism interchanging its endpoints. Indeed, we obtain a
desired automorphism by mapping the vertices of R(a, as, ..., ax) to the vertices
of R(a, g—1, ... ,0aq) in the reverse order.

Now, for all £ > 0 and o € J we define a graph G, (o) = (V,(a), E,(«)) via
induction on n as follows. Let Go(«) be the a-cell C(a) and let E 1(a) = 0. W
obtain G, 41(«a) from G, (a) as follows. For each edge (a,3,b) € E,(a)\ E,— 1(a)
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we take (an isomorphic copy of) the (3- cell C'(3). These cells, even those associated
with distinct edges of the same colour, must be disjoint form each other and from
Gy (a). Now, for each (a,3,b) € E, () \ E,—1(«) at the same time, let us identify
a resp. b with the left resp. right endpoint of (the copy of) C(3) associated with
this edge. (In other words, to each edge in E,(a) \ E, 1(a) we glue the base edge
of a cell with the same colour, and we use disjoint cells for distinct edges.) The
graph we have obtained is G, 4+1 ().

Now Vp(a) € Vi(a) € Va(a) C ... and Ep(a) C Ei(a) C Ea(a) C ..., so
we can define V(a) = U,—, Va(a), E(a) = U,—, En(a), and let G(a) = Goo(w)
denote the graph (V(«), E(a)). The base edge and the endpoints of G(a) are
that of Go(a) = C(a), respectively. Since Go(a) = C(a) has an automorphism
interchanging its endpoints, a trivial induction shows that so does G(a) = G ()
as well.

Now we are ready to define the last of our graphs, denoted by G(J). For each
a € J let us take (a copy of) G(a) such that G(«) and G(3) be disjoint when
a # (. Identifying the left endpoints of these G(a) to a single vertex we obtain
G(J) = (V(J), E(J)).

Let us consider the algebra A = (V(J), F) where F is the set of endomorphisms
of the graph G(J). Further, let J be the set of nonzero compact elements of L.
It is well-known, cf. Grétzer and Schmidt [6] or Grétzer [8, p. 22], that the ideal
lattice Z(J) of J is isomorphic to L. (Here the empty set is also considered an
ideal.) Consequently, the first chapter of [9] yields that L is isomorphic to Con(A).
(Indeed, the “quadricle” (J,<,D,L) in [9] corresponds to (J,=,D,Z(J)) in our
case where D = {(a,{aq,... ,ax}r a € J, {a1,...,a} CJ, a<a;V...Vag}.)
So we have to show that every quasiorder of A is symmetric, i.e. a congruence.

Suppose p is a quasiorder of A, a # b € A and (a,b) € p. It is shown in [9],
cf. RC 5 and the proof of Lemma 1.9, that there is a “path” from a to b, i.e. a
sequence

<C(),Oél, Cl>7 <Cl,0[2, 62>7 DRI <Ck;_1,0ék;,C]€> € E(J)

of edges such that cg = a, ¢, = b, and for ¢« = 1,2,... ,k there is an f; € F with
{fi(a), fi(b)} = {ci—1,c;}. We want to show the existence of a g; € F such that
gi(a) = ¢; and g;(b) = ¢;—1. For a fixed i let u resp. v denote the left resp. right
endpoints of G(«;), and let h be an endomorphism of G(q;) interchanging them.
Clearly, the map

fOVI) S V), oz { g(x), ii Z ggz;

belongs to F' and interchanges u and v. By [9], cf. RC 4 of Theorem 1.6, there are
f@, f®) € F such that {f®)(u), f®(v)} = {¢; 1,¢:} and {f®(¢; 1), fO(e;)} =
{u,v}. Since F is closed with respect to composition, f@ @G foand f@ FG)
belong to F', and one of them is an appropriate g;.

Since the g; preserve p, we obtain (c;,¢; 1) = (gi(a), g;(b)) € p, and (b,a) =
(ck, co) € p follows by transitivity. [

The quasiorders of an algebra A are called 3-permutable if c o foa=Foao
holds for any «, 5 € Quord(A).
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Theorem 2. For any finite distributive involution lattice L there exists a finite
algebra A such that L and Quord(A) are isomorphic as involution lattices and, in
addition, the quasiorders of A are 3-permutable.

We remark that if the quasiorders of all algebras in a given variety V are 3-
permutable then Con(A) = Quord(A) for all A € V, cf. [2].

Proof. Let J be the set of join-irreducible elements of L, 0 is included. For each
a € J\ {0} we define a unary operation

0, ifxr=a,

o J — J,
J - w'_){al, if x # a.

Let us call a map ¢g: J — J a contraction of J if g(z) < z holds for all z € J.
Let F consist of all contractions of J and all f,, a € J\ {0}. Consider the algebra
A = (J; F); we intend to show that L and Quord(A) are isomorphic.

A subset Y of J is called hereditary if for any € J and y € YV if z < y
then x € Y. Let H(J) denote the set of nonempty hereditary subsets of J. It is
well-known, cf. Grétzer [7, Theorem I1.1.9 on page 61], that the map a — {z €
J: x < a} is a lattice isomorphism from L to the lattice H(J) = (H(J);U,N).
Clearly, H(J) becomes an involution lattice by defining Y1 = {y~!: y € Y} and
the above-mentioned map preserves this involution. So it suffices to prove that the
map ¢ H(J) — Quord(A), Y — (Y x YY) U {(z,z): x € J} is an isomorphism.
Clearly, ¥(Y) is reflexive, transitive and preserved by all contractions of J. To show
that f, preserves ¢)(Y') suppose that (u,v) € ¥(Y') and, without loss of generality,
fulu) % fo(v). Then either fo(u) = 0, v = a and (fa(u), fa(v) = (0,a~1) € $(Y)
since a =u €Y, or fo(v) =0, v =a and (f,(u), fo(v)) = (a71,0) € (V) since
al=v1te (Y H =Y. Thus ¥(Y) is a quasiorder of A. Clearly, ¢ is meet-
preserving, whence it is monotone. Assume that (u,v) € (X UY) and u # v.
Then u € XUY, v € (XUY) 1 = X"tyY~l There are four cases depending
on the location of u and v but each of these cases can be treated similarly, so we
detail the case u € Y, v € X~ ! only. Then (u,0) € ¥(Y) and (0,v) € ¥(X), so
by reflexivity we obtain (u,v) € ¥(X) o (Y)o(X) C (X)V(Y) and (u,v) €
YY) op(X)op(Y) C (X) VY(Y). Besides proving that 1 is join-preserving,
this also shows that ¢ (X) and ¥(Y) 3-permute. Clearly, ¥(X 1) = ((X))™1,
therefore v is a homomorphism. If z € Y\ X then (z,0) € ¥(Y) \ ¥(X), whence
1) is injective.

To prove surjectivity, assume that p € Quord(A) and let X = {zx € J: (z,0) € p}
and Y = {y € J: (0,y) € p}. Thanks to the fact that p is preserved by the
contractions we conclude that X,Y € H(J). If x € X \ {0} then (0,271) =
(fz(x), f-(0)) € p, whence z = (z~')~! € Y~!. Similarly, if y € Y \ {0} then
(y=1,0) = (f,(0), fy(y)) € p, whence y ' € X givesy € X . From X CY ! and
Y C X! weobtain Y = X 1.

Now, to show that p = (X), suppose a # b and (a,b) € p. Then (b=1,0) =
(fola)., Fo(B)) € p gives =) € X, ie. be X1, while (0,aL) = {fa(a). fu(b) € p
gives a=! €Y, ie. a€Y~! = X, yielding (a,b) € X x X~! C 4(X). Conversely,
suppose that a # b and (a,b) € ¥(X). Then, by definitions and Y = X1, (a,0) € p
and (0, b) € p, yielding (a,b) € p by transitivity. O

Whitman [11] has shown that every lattice can be embedded in a partition lattice.
The preceding theorem trivially gives a corollary stating that each finite distributive
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involution lattice L can be embedded in Quord(A) for an appropriate set A. We
have even proved that L has a type 2 representation in Jénsson’s sense, cf. [5], which
means that L is isomorphic to a sublattice S of Quord(A) such that the members of
S are 3-permutable. However, the assumption of finiteness can be easily removed,
for we have

Theorem 3. For each distributive involution lattice L there is a set A such that
L has a type 2 representation in Quord(A).

Proof. Knowing the canonical bijection between prime filters (i.e. dual prime ideals)
and nonzero join-irreducible elements of a finite distributive lattice, cf. Grétzer (7,
p. 63], it is easy to adapt the previous proof to the present theorem. Let A = {P: P
is a prime filter of L or P = L}. We claim that the map ¢: L — Quord(A),
x— {(P,Q): x € Pand 27! € Q, or P = Q} is an embedding. By Stone’s prime
ideal theorem, cf. [10] or [7, p. 63], ¥ is injective. Using the basic properties of
prime filters and some ideas of the previous proof, Theorem 3 follows easily. [

Theorem 4. For any algebraic involution lattice L there is a partial algebra A
such that L is isomorphic to Quord(A).

Proof. Let S be the set of compact elements of L. Then S is a join-sub-semilattice
of L and clearly S is closed with respect to the involution of L. The set Z(S) of
ideals, i.e. hereditary nonempty V-closed subsets, of S form an algebraic lattice
with involution where Y! = {a™!: @ € Y}. It is known that ¢: L — Z(S),
x+— {a €8: a <z} is alattice isomorphism, cf. Griatzer and Schmidt [6] or [8, p.
22]. Evidently, ¢ preserves the involution, too. The rest of our proof borrows a lot
of ideas from the congruence lattice counterpart of our theorem, cf. Gréatzer and
Schmidt [6] or [8, pp. 96-97]. We define the following partial operations on S, each
of them has a two-element domain as indicated:

(1) for a,b € S\ {0}  fap: (a,b) — a Vb, (0,0) — O;
(2) fora>beS gu: ar—b, 0+ 0;

(3) fora#be S ha: a—a, b 0;

(4) fora e S\ {0} ps: a— 0,0 a" "

Note that the partial operations (1), (2) and (3) also occur in [8, pp. 96-97]. Let A
be the partial algebra (S; F') where F is the collection of partial operations (1)—(4).
Let a: Z(S) — Quord(4), Y — (Y x Y 1)U {{(a,a): a € S} and B: Quord(A) —
Z(S), pr—{s € S: (s,0) € p}.

It is straightforward to check that a(Y) € Quord(A) for Y € Z(S). Using the
partial operations (1) and (2) it follows easily that 3(p) € Z(S) for p € Quord(A).
It s € Bp ) then (5,0) € p ! = (0,5) € p = (5~1,0) = (py(0), ps(5)) € p =
sl e B(p) = s=(s71)"1 € (B(p))~!. Conversely, if s € (8(p))~! then s7! €
Blp) = (s71,0) € p== (0,57") € p~! = (5,0) = (p-1(0),ps2(s7") € p' =
s € B(p~1). Therefore B(p~1) = (B(p))~!, i.e. 3 preserves the involution. Clearly,
so does a, too. Since both a and 3 are monotone, it suffices to show that they
are inverses of each other. It is straightforward that f(a(Y)) =Y for Y € Z(9).
Now let p € Quord(A), a,b € S and a # b. Suppose first that (a,b) € p. Then
(0,0) = (hap(a), ha(b)) € p gives a € B(p) while (b,0) = (hya(b), hua(a)) € o~
gives b € B(p~ 1) = (B(p)) !, and we infer {a,b) € a(B(p)). Conversely, suppose

that {a,t) € a(3(p)). Now a € B(p) yields (a,0) € p, b€ (B(p) " = Blo ") gives
(b,0) € p~! implying (0,b) € p, and {(a,b) € p follows by transitivity. Therefore
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a(B(p)) = p, and « is an isomorphism. Consequently, a o p: L — Quord(A) is an
isomorphism as well. [

Contrary to Theorem 2, Theorem 4 does not lead to any corollary concerning

embeddability of involution lattices in Quord(A) for sets A, for the joins are differ-
ent.

Added at final revision. Recently A. G. Pinus has informed us that he also had
proved Theorem 1 independently. His paper ”On the lattice of quasiorders on
universal algebras” (in Russian) is submitted to Algebra i Logic.
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