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ABSTRACT. For a unital ring R of prime power characteristic pF let the class, in
fact the quasivariety, of lattices embeddable in the submodule lattices of R modules
be denoted by L(R). Let W(p¥) = {L(R) : char R = p*}. Hutchinson in [2]
gave a necessary condition, leading to interesting consequences, for the inclusion
L(R1) C L(R2) when L(R1), L(R2) € W(pF). However, it is not known if this
condition is sufficient. Another open problem from [2] is whether W (p¥) is closed
with respect to arbitrary joins. Using certain appropriate lattice Horn sentences, the
present paper shows that at least one of the above-mentioned two problems has a
negative solution.

For a ring R with unit the class of lattices embeddable in the submodule lattices
of R modules is known to be a quasivariety (cf. Makkai and McNulty [6]). This
quasivariety will be denoted by

L(R) ={Su(rM) : gM is an R-module }.

We will consider rings with prime power characteristic p* where k& > 1. All the
rings in the sequel, unless otherwise stated, will be assumed to be of characteristic
pF. Let W(p*) denote the class { L(R) : char R = p* }. While the variety H £(R)
depends only on p*, the characteristic of R (cf. [5]), and W (p) is a singleton (cf.
3, p. 88]), W(p*) consists of continuously many quasivarieties £(R), cf. [2] .
The proof of this result was proved by the following powerful tool. Let 7 denote
the similarity type consisting of operation symbols V, A, -, T, |,0,1 with respective
arities 2,2,2,1,1,0,0. The set Z(R) of two-sided ideals of R becomes a T-algebra in a
natural way: V, A are the lattice operations, 0 = {0}, 1 = R, - is the usual product
ofideals, | X = {pz:x € X},and 1 X ={z:px € X }. Let K(R) denote the
set of all nullary 7-terms o such that ¢ = 1 (= R) holds in Z(R), and let X(R)
denote the set of (universal) lattice Horn sentences satisfied in £(R).

Theorem A. (Hutchinson [2]) If L(R1) C L(R2) then K(R;y) O K(Ry).
The proof of this theorem is based on the following
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Theorem B. (Hutchinson [3] and [4]) L(R1) C L(R2) is equivalent to the exis-
tence of an exact embedding functor R1-Mod — Ry-Mod.

Note that X'(R1) O Y (R2) is also equivalent to £L(R1) C L(Rs). Therefore our
present investigation based on Horn sentences might be interesting from abelian
cathegory theoretical point of view, too.

Our goal is to deal with the following two open problems, the first of them is
related to the converse of Theorem A.

Problem C. Does K(Ry) 2 K(R3) imply L(Ry) C L(R2)?

Problem D. Is W(p*) closed with respect to arbitrary joins (taken in the lattice
of all latice quasivarieties)?

Note that W (p*) is closed with respect to finite joins. It is shown in [2] that
(W (p*); ©) contains large chains and antichains and it has a nontrivial automor-
phism, namely L(R) — L(R°P), but we do not know if it is a lattice. An affirma-
tive answer to Problem D or (much less trivially!) to Problem C would imply that
W (pF) is a lattice. The analogous problems for the set of lattice varieties HL(.9),
where the S are rings of any characteristic, have positive solutions (cf.[5]).

Main Theorem. At least one of Problems C and D has a negative answer.

The proof of the Main Theorem is based on certain lattice Horn sentences
x(m,p), which might be of separate interest. Note that x(2,2) appeared in [1]
but without any application that time. Our proof is divided into several lemmas.

First we define appropriate rings. The ring of integers modulo p* will be denoted
by Z,x. For a given n let F,, denote the polynomial ring

Zpk[fl,---,fn,m,---,Un]-

Let I,, be the ideal generated by

{&mi—p" 1 1<i<n}u{pp:1<i<n}U
(PPl u{&g1<i<n, 1<j<nlu{nm:1<i<n, 1<j<n}
U{&nj:1<i<n, 1<j<n, i#j},

where ¢y = 1. Put R, = F,/I,,, x; =& + 1, y; =n; + I,. Note that o = 1.
By the definition of R,, we have

(1) zyi=p" o1, wy; =0, xx; =0, zy =0, p‘z;=0,

pF e, =0, py;=0 fori,j,le{1,2,...n}, 1 # L.

Lemma 1. The elements x; (i=0,1,...,n—1), 2, andy; (i=1,2,...,n)
are of respective additive order p¥, pF~'  and p. Further, the additive group
of R, is the direct sum of the additive cyclic subgroups generated by these elements.

In other words, each element of R,, has a unique canonical form

n—1 n
(2) D w4+ Brn + Y Vs
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where o; € {0,1,...,pF =1}, 3 € {0,1,...,pF"' =1} and ; € {0,1,...,p —
1}. The rules of computation in R, are (1) together with the azioms of unital
commutative rings of characteristic p*.

Proof. Tt suffices to show the uniqueness of (2); the rest is clear. Assume that
0 € R, is of the form (2). Then, by the definition of I,,, we have

n—1 n n n
3) Y &+ B+ = fi- Emi—p"T )+ gi-pmi
i=0 i—1 i—1 i=1

n n mn mn n n
+ gop™ M + Z Z hij - &&5 + Z Z Tig - MM + Z Z Sij + &
i=1 j=1 i=1 j=1 i=1 =1
l#1
where f;, gi, hij, 7i5, Sij € F,,. We treat the elements of F;, as polynomials in the
usual canonical form. Hence these polynomials are sums of uniquely determined
summands and each summand consists of uniquely determined factors (i.e, powers
of indeterminants) and a unique coefficient (from Z,). Suppose we have performed
the operations on the right-hand-side of (3). Then each summand on the right-hand-
side in which 7; is the only indeterminant has a coefficient divisible by p. Therefore
~v; = 0 for all i. We obtain § = 0 similarly.

Suppose a; # 0 for some i. The only source of & on the right is fiy1- (§i+17mi+1 —
pF1¢;). Since p* does not divide a4, the constant ¢ in f;y; is not divisible by p.
But then 6&;11m;+1 cannot be cancelled by other summands. This contradiction
completes the proof.

Before describing K (Z,) we make the set {0,1,2,...k} into an algebra of type
T via putting x Vy = max{z,y}, = Ay = min{z,y}, T = = min{z + 1,k},
lz=max{z —1,0}, 0=0, 1=%k andz-y=max{zx+y—k,0}. (Toavoid
confusion, the ordinary product of z and y will be denoted by the concatenation
xy.) Denoting the set of nullary 7-terms by Py, let h be the map associating with
any element of Py its value in the above-defined algebra {0,1,2,...k }.

Lemma 2. K(Z,)={occPy:h(oc)=Fk}.
Proof. An easy induction on the length of o yields that the value of o in Z(Zx) is
pk_h(”)Zpk =|k—h(o) Z,, whence the lemma follows.
Lemma 3. (° | K(R,) = K(Zx)
Proof. For 0 <t <n—1and 0 <j <k we consider the following subsets of R,:
AW ={pa i 1<li<n—t, izk—j i>0},
BMY ={pa;:in—t<i<n—1,i+tl>n—t+k—j—1,i>0}
O = {pay:i>k—j—1,i>0},
Dj(-z):{yl:lglgn, j>0} and
EW ={p:izk—jruaPuBuc ud'.
Note that Dﬁ) ={yi,...,yn} for j > 0 and D(()Z) = (. Let IJ(-Z) be the additive
subgroup of R,, generated by E](Tz) With the help of Lemma 1 it is not hard to



4 GABOR CZEDLI

see that the IJ(-?:) are ideals of R,, I,gnt) = R,, 0<t; <ty <n—1implies
LW c 1) and 0 < ji < jo < k implies 1"} C I\"),. Further, | 1} C I\")

Jatl JatQ’ j,t’
and T Ij(-z) - IT(?)t Now we claim that Ij(-z) -IS(?? - IJ(-Z)’HT Suppose a € EJ(Z) and
b e ES(T? It suffices to check ab € E](T;)t +1- We omit the straightforward but long

details and consider only the case a € BJ(-? and b € Dgt?. Then a = p'z;, n—t<
I<n—-1, i+l>n—t+k—j—1and s > 0. We may assume that b = y; as
otherwise ab = 0. We conclude ab = p***~1o; |, n—(t+1)<I—-1<n-—1and
(i+k—1)+(-1) = i+l+k—2 > n—t+k—j—1+k—2 = n—(t+1)+k—(j+1-k)—1 >
n—(t+1)+k—(j+5—k)—1 > n—(t+1)+k—j-s—1, yielding ab € B, | C E")

j-s,t+1°

For a 7-term o € Py let or, denote the value of o in Z(R,). The length |o| of

o is defined via induction: |0| = |1| =1, | T o|=||o|=lo|+1, |og Voo =
|o1 ANoa| = |01 - 03] = |o1]+ |02 + 1. The inclusions among the Ij(g) we have already

established yield

(4) or, C I

h(o)lo| provided |o| < n,

via an easy induction on |o|.

Now the proof of Lemma 3 will be completed easily. Suppose that o ¢ K(Z ).
Then h(o) < k — 1 by Lemma 2. Choose an n with n > |o|+ 2. Then, by (4) and
Lemma 1,

R S I tol € W go) € Hn2 2 1

whence o ¢ K(R,,). Therefore (2, K(R;) 7 K(Zx).

Conversely, an easy induction on |o| yields og, D |*~"(©) R,. In particular, if
h(c) = k then og, = R,. Hence Lemma 2 yields (2, K(R;) 2 K(Z,x), proving
Lemma 3.

Now let m = pF—1.

lattice terms:

On the set of variables {z,y, z,t} we define the following

r=(xVy)A(zVt), ho = go = t, R = (h; Vy) A (zV 2)
hivi= (R Vr)A (@ VE),  gi=(gVT)A(yVz), gir1=(gVr)A[yVe),
ro = (hm—1V2) Ay, Go=xVzVgpi1, qg=r10Vx.

Let x(m, p) denote the lattice Horn sentence
ro<qgo = 1 <¢.

Lemma 4. x(m,p) does not hold in L(Z,).

Proof. Let M be the Z,x-module freely generated by {fi, f2, f3}. Consider the
submodules z = [fa], y=[fi—f2], z=1[fs], t=][f1i—fs3]. An easy calculation
gives r = [f1]. (We do not make a notational distinction between lattice terms and
the submodules obtained from them by substituting the submodules x,y, z,t for
their variables.) It is not hard to check, via induction on i, that A} = [(i + 1) fo —
fsl, hi =[fi+ifa—fs], gi = [+ 1) fi =@+ fe—fs], g =[(i+1)fr —if2 — f5].
These equations yield ro = {a(fi— f2) : ma = 0} = [p(fi—f2)], a0 = [pf1, for fol,
q = [pfi1, fo]. Therefore x(m,p) does not hold in Su(M).
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Lemma 5. x(m,p) holds in L(R,,) for everyn > 1.

Proof. Assume that x,y, z, t are submodules of an R,,-module M such that ry C qq,
and let f; € M be an arbitrary element of . Our aim is to show f; € ¢. Since
fier=(zx+y)N(z+1t), we can choose fo, f3 € M such that fo € z, f1 — fa € y,
f3 € z, fi — f3 € t. An easy calculation, essentially the same as in the previous
lemma, gives (i+1)fo—f3 € hl, fi+ifo—fs € h;, and {a(f1—f2): ma =0} Cr.
In particular, =, (f1 — f2) € ro.

Now let us suppose that z;(fi1 — f2) € ro for some j > 0. We intend to show
xj—1(f1— f2) € ro; then f1— fo = xo(f1 — f2) € 7o follows by (downward) induction
on j. From rg C qo we infer x;(f1 — f2) € g0 = v + 2+ gp—1. Hence there exist
elements ep and e; in M such that ey € z, e1 —ep € 2z and z;(f1 — f2) —e1 €

Ip—1 = (gp_o +7) N (y +1). This 1mp11es the existence of two elements, say et

and effl € M such that e; —el] ey, zi(fi — f2) — € Yet e — eb le Ip—2>
and z;(f1 — fo) —eb L er. Continuing this parsing and denoting z;(fi — f2) by e}
we obtain that there exist elements e; € M fori=1,2,...,p—1land{=1,2,...,6
such that for i € {1,2,...,p—1}

. . . . ) L
e1—es €y, e —eicy, eh—eicz e —eflct, e —ecu,
: : L , L
ey —elcx, et —elcy eh—eicz, et —eict, e —ef €t

Clearly, el =zi(f1 — f2) € y Let us observe that z contains ug = z;f2 +eg +
Zz 1 (62 —ef). But ug = Zz 1 (62 —eg) + Zz 1 (66 _611“) (zj(fr—f2) _ei_l) +
vi(fr—fs)+aifs+(eo—er)+(er—et)+(eh ' —ef )+ (e ' —el)+(ef —ef ),
whence ug € r. Now ug € x and ug € r imply ug € h; for all ¢ > 0. In particular,
ug € hy—_1. Let u; = eo—el—eé—i—eé for 1 < i < p—1. We have, for i > 0,
u; =eo—(e1—eh) —el + 3777 ( Th—eb)+ +3005 (65_@2) > '1,—|—1(62 l) crty
and u; = (eg — el) (62 - 63) € z, whence u; € r. Let v; = e; + €} —ej. Since
el—el = (el—e1)+(ey—el) € y+tand, fori > 1, el—ef = (ef—e} )—(e;—ef ')+
(e1 —€b) € y+t, we have v; = (e; — el ')+ (87" —eb) +eP + (el —€}) € y+t. But
v; = eg—(eg—e1)+ (et —eb)+(eh—el) € x+2, whence v; € R (1=1,2,...,p-1).
For 1 < i <p-11et w; = ey + e} —eb. From w; = v; +u; € hjy +r and
w; = eg + (b — €4) € x we infer that w; € hy. This together with w; € z yield
wW; € hym—1.-

Now x;_1(f1 — f2) € y and, by y;jz; = ma;—; and py; =0, z;_1(f1 — f2) =
wi—1(fi+(m—1)fa— f3) —yjuo — >0} yjwi +2j-1f3 € hyn_y +2. Thus z;_1 (f1 —
f2) € ro, as intended.

Finally, fi = (f1 — f2) + fa € ro + x = q completes the proof of Lemma 5.

Proof of the Main Theorem. Let us assume that Problem C has an affirmative
answer. We claim that

(5) \/ L(R,) = ['(Zp’“)

where the join is formed in (W(p*);C). Since K(R,) 2 K(Z,) by Lemma 3,
we obtain L(R,) C L(Z,x), for every n, by the assumption. (Note that L(R,) C
L(Z,) also follows from Theorem B.) On the other hand, suppose £(S) € W (p¥)
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and, for all n, £L(R,) C L£(S). Theorem A yields K(R,) 2 K(S). From Lemma 3
we conclude K (Z,+) = (,—; K(R,) 2 K(S), and the assumption on Problem C
gives L(Z,r) € L(S). This proves (5).

Now if Problem D had an affirmative answer then (5) would be true even in the
lattice of all quasivarieties of lattices. But this would contradict to Lemmas 4 and

5.
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