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On Dependencies
in the Relational Model of Data

By Gdbor Czédli

Abstract, Functional dependencies in the relational model of data were introduced by
Codd. 1t whs Armstrong who gave an abstract characterization for this concept. In the
present paper three other types of dependencies are characterized in a similar abstract way.
Simultaneous characterizations for these concepts are algo given.

1. Introduetion

The use of the relational model of data structures proposed by E. F. Codd [2, 3]
is a promising mathematical tool for handling data. In this model the user’s data are
represented by relationships.

For definition, let £ be a finite non-empty set, and for each b¢ £ let T be a non-
empty set associated with b. The elements of Q are called attribute names and 7,
is said to be the domain of b. Now a relationship over £2 is defined to be any finite sub-

set of ]| 4% A relationship R over £ = {a,, ... , &4} can be represented by a two-
bef2

dimensional table in which the columns correspond to attribute names and rows
correspond to the elements of R:

ay a, - ay

g glm)  glay) #an)

(g€ R and g(as) € T'). This table is not unique, the order of columns and that of
rows are arbitrary.

In the relational model a data base is & system of {initely many time-varying
relationships.

The concept of functional dependency is due to Codd [2, 3]. For definition, let 4
and B be subsets of £2 and let R be a relationship over £. We say that B funciionally

depends on 4 in R (in notation 4 jf? B or simply 4 N B)ifforallg,he B
(Vae 4) (gle) = h(a)) = (Vb e B) (g(b) = k(b))

ia satisfied. The link 4 _1’;, B is said to be a functional dependency {(or briefly f-depen-
dency).

From the above definition we can obtain three other concepts of dependencies by
changing the quantifiers.

8‘
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Definition ([4, 5]). Let 4 and B be subsets of £ and let B be a relationship over £2.
B is said to be d-dependent on A if for any g, he R

(3a € 4) (gla) = k{a)) = (Tb € B) (9(b) = k(b))

holds. B is said to be strongly dependent (or briefly s-dependent) on A if for any g,
he B

(Sa € A) (gla) = k(@) = (Vb ¢ B) (g(b) = k(b))
holds. B is said to be weakly dependent (or w-dependent) on A if for any g, he R
(Va € 4) (ga) = k(@) = (Fb ¢ B) (g(b) = k(b))
holds. ¥orze {f,d,s, w}let 4 _132_. B mean that B is z-dependent on A in the relationship
R
In order to expound what made us to deal with these concepts let us consider the
following example. Let

£ = {author, title, room, bookcase}

Table 1
author t title | TOOIm ’ bookcase
1 1 1 2
2 2 1 3
3 3 1 1
4 4 1 2
5 5 2 3
6 6 2 1
7 7 2 2
8 8 2 3
9 9 3 1
10 | 10 3 2
11 11 3 3
12 12 3 1
1 4 1 1
5 8 3 3
4 1 1 3
7 10 3 2
6 10 2 2
6 9 2 1

and let a relationship B be given in Table 1. For the sake of visibility we can think &£
ig a library in which eighteen books are stocked. The library consists of three rooms,
each room has three bookcases, and only two books can go in each bookcase. The
library is organized so that {author, title} _I‘:_.{ room, hookcase}. Furthermore, the

book with author — title — i (i = 1, 2, ... , 12) is in the [”; 3]—th room in the

1+3 - -th bookcase. (Here [x] denotes the largest integer not greater than z and
3 g (=3 g

{x} = = — [z].) A visitor who knows that either the title or the author of a particular

[1 4; 3]-th room and the (1 +3 {%})-th

book is, say, i can find the book by scanning the
bookeases only.

Now in conmection with this example we try to express why the concepts of f-
d-, 8-, and w-dependencies can have some practical importance. The final purpose of
any data bank system is providing the user with actual information. In the general
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case the user “knows™ (all or at least one of) the values of attributes of a given set 4
of attribute names and wants to learn the values, all or at least one, of attributes of
another set B. The user can succeed in obtaining the information he wants if and only
if B is dependent on A4 in the given relationship. Ie., dependencies are in a close
connection with user’s activities.

In any time-varying data structure at a particular moment of time there are
dependencies. Some of them may be fortuitous or unimportant, but it is reasonable to
require that at least certain dependencies be present at any time. Organizing the data
structure and some of the user’s activities can be based on these constant dependencies.
In case of functional dependencies this has been shown in Codd’s papers [2, 3].

Now the following five reasons have been collected to show the advantage of using
more types of dependencies besides the functional one.

{1) The user can happen to know only at least one but not all the values of attributes
of A in the “life”. Just think of the visitor of the library in our example. If 4 is a set
of several attributes of a criminal, say 4 = {length, age, citizenship, ...} and R is
a relationship of a criminal data bank then a detective also can be such a user at the
beginning of his investigation. Now the d- and s-dependencies are related just to this
situation.

(2) Sometimes the user can need only the value of at least one attribute of a given

set B. B.g., if the user is interested in ¢, B is an intermediate step and B —;—» C holds
in another relationship .

(3) There can be other types of dependencies between A and B even if there is no
functional one between them.

(4) Sometimes the information supply can be accelerated by deseribing a particular
dependency with functions. The only requirement tailored to those functions is that
they should be computed easily or stored in relatively small tables. For instance, in
our example, the dependency

{author, title} % {room, bookcase}

is described with the functions [64‘; 3

]and 143 ".31’_ . Owing to these functions the

user, looking for a particular book, need not scan the whole table of R, he has to scan
only a part of it.

{b) {author, title} —If; {room, bookecase} also holds in our example. Consequently,
there exists a function which deseribes this dependency. But the table of this function
is the table of R itself and so scanning the whole table cannot be avoided in this way.
However, based on d-dependency, we have seen that scanning the whole table is not
necessary. Le., sometimes it is not the functional dependency which yields the most
economic way of information supply.

Given a relationship R over 2, for any z ¢ {{, d, s, w} let & z denote the set {(A, B):
A, BS Qand A 5> B). & is called the z-fomily of R. Similarly, let Z% = {(4, B):
A % @ and (4, B) € Xg}, which is called the z+-family of R. Let P{02) and P+{2)
denote the set of all subsets and all non-empty subsets of Q, respectively.

Armstrong’s famous theorem [1] characterized all subsets of R(2} x P(R) which
coincide with Fp for some relationship B over (. Similar characterizations for Dy
and < p were proved in [4, 5]. Since the empty set usually has no practical importance
as a component of a dependency, we can be content with characterizations for &£ % as
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well. ¥or any z € {f, d, w, s} &z and X can be characterized trivially, thus, without
loss of generality, the case B = & will be left out of our considerations.

Qur main result, Theorem 3.1, will characterize #%. From this Theorem a cha-
racterization for F§ (which is a weakened form of Armstrong’s result) and that for
Dgr and Fx will be deduced. Although these characterizations for %, Dr and Fp
have been known, their proofs in this paper are relatively short and entlrely new.
Finally, we are interested in more than one of the families F %, Dg, @t and Fp that
are associated with the same relationship R. Such simultaneous characterizations will
be presented in the last section.

2, Connections between dependencies

In this section we are interested in connections between &g, Dr, Fr and #¥g for
a fixed relationship R.

Claim 2.1 ([5]). Let R be a relationship over £ and let A, B = Q. Then we have
A5 B iff (Ybe B) (4 - {b});
A% B iff (Vae 4)({a} 7 B);
A-7B iff (vbe By (d-2{b});
A B iff (VacA)({a}) 5+ B). O

This claim is an immediate consequence of definitions, thus the proof is omitted.
We have obtained that %'z uniquely determines Fr, F%, @ and 5 Simple
examples show that Dp does not determine F ¢ or F¥, and vice versa.

3. A charaeterization of w*-families
We intend to prove the following

Theorem 3.1. Let 2 be a finite non-empty sel. Then for any subset W of L) x
x P(£2) the following two conditions are equivalent.

(i) There exists a non-empty relationship R over Q such that % = W5;
(ii) % has the following four properties:
(W1 (4, Ay € @ for any A € [H2),
(W2) If (4, B)e W, AS A" and B S B, then (A', B'Yc W,
(W3) If A, Be PHQ) and, dencting Q \ Y by ¥ for any ¥ ¢ P(£2),
' (VX ¢ B(2) (4 S X & B implies (X, X) e ¥)
holds, then (4, B) € %,
(W) @ < PH(L2) x BH(Q)
Proof. Suppose (i) is satisfied. It is trivial that (W 1), (W 2) and (W4) hold. Suppose
that (W3) is not satisfied. Then there exists a pair (4, B) ¢ # — %'} such that
(VX e P(£2)) (4 € X = B implies (X, X) ¢ ¥ %)
holds. Since (A, B) ¢ ¥, there are g, h € R such that gla) = k(a) for all a ¢ 4 and
g(d) == h(b) for all be B. Let us set X = {a¢ 2:¢g(a) =h(a)}- Then 4 S X< B
and (X, X) ¢ ¥} yield a contradiction. We have proved that (i) implies (ii).
In order to prove the converse we need some preliminaries. Since the wt-family of
an at most two-element relationship can be described easily, for a given % we shall

construct a suitable relationship R from at least two-element ones. That is why an
addition concept for relationships will be introduced in the following.
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Definition. Let B, (¢ € I, I finite, non-empty) be non-empty relationships over £.
Then 3 K, the sum of Ry, is defined to be the relationship
iel
{(t,g):ie L, ge By and (7, 9) (a) = (¢, gla)) holds for all @ € Q} .
Roughly saying, 3 R, is the “disjoint” union of R
tel

Lemma 3.2. Suppose B is the sum of the relationships Ey, 1€ I, where I is a finite
non-empty index set. Then Wi = ﬂI wit. O

The proof is straightforward, so it is left to the reader.

For any subset X of Q, @ 4= X == £2, we define a two-element relationship By ={g,
k) in the following way: gla) = 1 for any ac £2, h(e) = 1 for a ¢ X and h{a) = 0 for
aeX.

Lemma 3.3. Let % be a subset of P » P+(£2) satisfying (W 1), (W2), (W3) and
(W4). Suppose (X, X) ¢ ¥ for some X € BH), X & Q. Then W S Wiy

Proof. Suppose (C, D) € % but (C, D) ¢ % zy. Then ¢ X and D S X. Therefore
(X, X) e % by (W2), a contradiction. []

Now suppose % is a subset of P+(£2) x P*(£2) satisfying (W1), (W2), (W3) and
(W4). If (X, X)e % holds for any X ¢ S,B"'(.Q), X == Q, then W = FH{2) x BN
follows from (W3) and (W4). Thus % = %} stands for any one-element relationship
K. TE (X X)e W does not hold for all X ¢ ‘*B‘*(.Q) N {2} we can define a relationship
E as follows:

R= Y Rx.
X
(x, X)w
We obtain # = %'}, from Lemmas 3.2 and 3.3. Suppose 4, Be BH{£2) and (4, B)f f¢
Then, by (W3), thereisan Y, A S Y & B such that (Y, Y) ¢ %. Then
(A B)QWRY— M WRx:wR-

PoXce
(X, X))

"Henee % == #W} completing the proof of Theorem 3.1. O

So far we do not know any analogous characterization for w-families. To make the
difficulties perceptible we mention that for £2 = {a, b} and

W = {(2, ), {a}, {a}), Ha}, 2), (B}, {b}), ({B}, 2), (2, {a}), (2, {b}), (2, 2)}

{(W1), (W2) and (W3) hold. However, as an easy consideration shows, there is no
relationship R such that % == #5.

4, d-families and f+-families

The following theorem gives a characterization for d-families:

Theorem 4.1 ([4, 5]). For any subset D of B(L2) x B(£2) the following two conditions
are equivalent:
(i) There exists a non-empty relationship R over 2 such that D = Dy,
(i1} D satisfies the following five properties:
(D1) (4, AYe D for all A € P(2),
(D2) Forany A, B, C ¢ B8, (4, Bye D and (B, C) ¢ D imply (4, C)e D,
(D3) If (4, B)e_?) CCS Aand BS DS 2, then (C,D)e T,
(D4) If {4, BYe D and (C,Dye Dthen (A uC,BuD)e D,
(DB) (4, &) ¢ 2D implies A = (7.
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Proof. It is trivial that (i) implies (ii). To prove the converse let D be a subset of
P(£2) x P(£2) which satisfies (D1), ... , (D5). Let us define

Wo={(4, B eP N xP g+ XEdand G4 YS B
for some (X, Y)e D},
W, = {(4, Bye P+(2) x PHD): for any X e B, AS X S B
implies (X, X) e %,} ,
W =W, uW,.
We claim that there is a relationship R such that % = #}. By Theorem 3.1, it is
sufficient to check (W1), ..., (W4), (W1) follows from (D1), while (W2) and (W4) are
trivial. Observe that (X, X) ¢ # iff (X, X) ¢ %, whence (W3) follows.

It remains to prove that D = Dp. As a consequence of (D1), (D3) and (D4), we
have that, for any 4, Be P, (A, Bye D iff ({a}, B)ec D for all ac A. Since Dp
also satisfies (D1), ... , (DB), it is suificient to show that, for any a ¢ £2 and B ¢ P+(Q2),
({a}, B) € Diff ({a}, B) € Dx. Suppose ({a}, B) ¢ D. Then ({a}, B) e W, S % = Wa,
whence Claim 2.1 yields ({a}, B) € Dg.

Conversely, let us assume that though ({a}, B) € Da, ({2}, B) ¢ D. Then we have
{{a}, By ¢ % by Claim 2.1. It follows from (D3} that ({a}, B) ¢ #,. Set B, = {we 02:
({z}, B) € D}. Now a ¢ B, and, by (DI} and (D3), B & B,. We obtain (B,, B)c ¥,
from {a} S B, € B and ({a}, B) € ®,. Therefore (X, Y)e D forsome @ = X & B,
and g+ ¥ C B,. Let us choose an element g from X, then (D3) yields ({q}, B)e .@
Since, by (D4), (Bl, B) = ( U {=}, U B) €D, (D2) ylelds ({g}, B) ¢ . Hence

. zeB,

g € BB, which contradicts ¢ ¢ X <—__ B,. Theorem 4.1 has been proved. |-

The characterization of f+-families is very similar to that of d-families. The following
theorem is a little bit weakened form of Armstrong’s result [1].

Theorem 4.2. For any subset F of P+(2) f P(L2) the following two conditions are
equivalent:
(i) There exists @ non-empty relationship R over Q such that & = F
(ii) F satisfres the following four properiies:
(F1) (4,4) ¢ F for all A ¢ BH(),
(F2) Whenever (4, Bye F and (B, (') ¢ F then (4, C) ¢ F,
(F3) If (A4, B)e F,AS C S Qand D S B, then (C, D} e F,
(F4) If (4, B)¢ F and (C, D)= F then (A u €, B u D)€ F.
Proof. Evidently, (i) implies (ii). To prove the converse let F baa subset of P+(£2) X
x P(£2) which satisfies (F1), ..., (F4). Let us define
Wy ={(4, By e Pr Q) x P Q): @+ XCdand g =Y S B
hold for some (X, ¥Y) e F} , ’
W, = {(4, Bye PH(R) x P+(Q):forany X e P(2), ASX S B
implies (X, X) € #%,} ,
¥ = Wu u ‘Wl .
Tt is easy to check that % satisfies (W1), ..., (W4). Hence, by Theorem 3.1, we can
choose & non-empty relationship R such that % = #%%. So it suffices to show that
F = F%. From properties (F3), (F4) and (F1I) it is not hard to check that, for

Ac BH(Q) and Be B(2), (4, BYc F iff for all be B (A, {b}) e F. Since F§ also
satisfies the properties (F1}, ..., (F4), we have only to show that, for A ¢ ‘]3* (£,
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be 2, (A, {b)) e F iff (4, {b}) ¢ FL. Suppose (4, {b}) < F, then (4, {b}) e ¥, S ¥,
and so (4, {#}) ¢ FL follows from Claim 2.1.
Now let us assume that though (4, {b})c Fk, (4, (b))} ¢ F. Set 4; = {xc Q:

(4, {x})e F}. Then b ¢ 4,. Moreover, A © 4, by (F1) and (F3). Claim 2. 1 yields (4,
{b})e ¥. Since A & A; € {b} and (4, {b}) ¢ ¥, follows from (F3), we obtain (4,,
Ay e Wy Hence (X, Y)e F holds forsome ¢ =X S 4, and ¢ = F € 4,. Fix an
element y¢ Y, then (A4,, {¢}) ¢ F follows from (F3). Since (4, {a}) ¢ F stands for
any a ¢ 4y, (F4) yields (4, 4,) € F. From (F2) we conclude (4, {y}) e F, i.e. ye A,.
This is & contradiction, completing the proof. []

5. s-families
For s-families we have the following characterization.

Theorem 5.1 ([5]). For any subset & of P(R2) x P(£2) the following two conditions
are equivalent:

(i) There is @ non-empty relationship B over £ such that & = Fp;
(i} o satisfies the following five properties:

(S1) Whenever (A, Bye &, C S A and D € B then (C, D)€ ¥,

(82) Forany 4, B,Ce BN f (A, B)c F,(B,CYe Fand B &+ then (4,0 F,
(S3) If (4, BY€ & and (C, DY F then (A 0 C, BuD)e F,

(84) If (4, BYe S and (C,Dye S then (A v, Bn Dye

(85) Forallac £2: ({a},{a}) e F.

Proof. The present proof, being based on Theorem 4.1, is quite different from that
in [5]. It is easy to see that (i) implies (ii). To prove the converse, let # be supposed
a subset of P(£) X P(42) satisfying (S1), ..., (35). Let us define
.@0 = {(4, By e P(£2) x P(42}: there exist k> 1 and, for ¢ =0,1,... , k — 1, (X,

Ye Fsuch that A S U Xy, U Y; € B, and, for

i<k i<k
i<k, Yok @)U
u{(J, @)}

and
D= {(4, B) e P(£2) x R(£2): there exist k => 1 and, for 1 £ k, X; & O such that
A= X, B=X; and, for i« <k, (X, Xi;1) € Dp)-

We claim that 2 is a d-family, i.e. & — D for some relationship . By Theorem 4.1
we have only to check properties (D 1), ..., (D5). 2 evidently satisfies (D2). We obtain
from (85) that (D1) holds in D, and 2. Evidently, 2, satisfies properties (D3), (D4)
and (D5). Hence if (X,, X;11)e D, for ¥ <k and C € X, D 2 X,, then (C, X,),
(X1, Xp), oo, (Xg—1, D) all belong to -Dy. Therefore (D3) holds in #. Similarly, if
m =k, (X, X)) € Dy for i <k and (Y4, ¥ia) € Dy for ¢ < m then, by letting ¥,
be equalto Ymforj=m +1,... , k, wehave (X; u Y, Xj5q v ¥ipi)e Dyfori < k.
Consequently, 2 satisfies (D4). Finally, 2D satisfies (D5) since 80 does 7.

Now we can choose a non-empty relationship R such that 2 = Dg. It suffices to
show that & = Fg. Properties (S81), (83) (and, in case B = (74, (84) and (85)) yicld
that, for any A, B¢ R(D), (4, Bye & iff forall be B (4, {b}) ¢ ¥. Since #Fp also
satisfies (81), ..., (85), it is sufficient to prove that (4, {b}) € & iz equivalent to
(4, {b}) € Fp. Let us assume that (A4, {b}) ¢ F, then (4, {b}) ¢ D, S D. Hence (4,
{b}} € Fr follows from Claim 2.1.
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Conversely, let (A4, {b}) ¢ & be supposed. Claim 2.1 yields (4, {b}) € D. We need
the following observation:

(*y For arbitrary U & £2 and ve 2, (U, {v}) € D, implies (U, {#}} € F.
Indeed, f U & U X, U Y, € le} and, for i<k, (X;, Y))e & and ¥ = &,

i<k i<k
then ¥, = {v} holds for all <. From (83) we obtain ( U Xy {v}) € . Hence (81)
yields (U, {v}) e . i<k

Since (4, {b}) € D, there exist a positive integer &, which will be supposed minimal,
and Z,, ... , Z; € P(42) such that Z, = 4, Z; = {b} and (Z;, Z; 1) € D, for all 7 < k.
For 4 = ¢ (81) and (55) immediately imply (4, {b})e . S0 4 & & can be sup-
posed. Since D, has property (D5), Z; == ¢J holds for each ¢ = k. Let us assume that
& = Z. Let ¢ be an arbitrary element of Z;_ 5. Since 2 satisfies (D3}, ({c}, Zz_1) € D,
Therefore there are m and, for i < m, (X, ¥;) € Fsuchthat {¢} E\J X\, 1) ¥, S Z; 1

i<m i< m

and Y¢i¢ @ for i < m. Let us fix anindex 4, § <7 m, such that ¢ ¢ X;. From (81)
we obtain ({¢}, ¥,) ¢ &. Since {Z;_4, {b}} € J holds by (), (81) yields (¥, {b}) ¢ &,
too. Hence (82) applies and we obtain ({c}, {b}) ¢ . Since ¢ was an arbitrary element
of Zy_g, (84) implies (Zz_q, {b}) € &. This contradicts the minimality of &.

Therefore & =1 and (4, {}) ¢  immediately follows from (*¥). The proof is
complete. [

6. Simultaneous characterizations

A subset %+ of P(L2) x P(2) is called an (abstract) wt-family if it satisfies con-
dition (ii} of Theorem 3.1.

Clearly, #+ is a wt-family iff %+ = ®¥% for some non-empty relationship R.
Similarly, a subset D (F+, &, resp.) of P(2) x P(2) is called an (abstract) d-family
(f+-family, s-family, resp.) if it satisfies (ii} of Theorem 4.1 (4.2, 5.1, resp.).

Definition. Let %+, D, J and F* be an abstract w*-family, d-family, s-family and
f+-family over {2, respectively. Let us define
DMWY = {(4, Bye P(£2) x P(2): for each ac 4, ({a}, By e ¥},

FHWH) = {(4, B) e P x P(Q): for each be B, {4, {b})c ¥+},
F(FH) = {(d, B) ¢ P(£) x B(LN: for each ac A, ({a}, B) ¢ Ft},
F(D) = {(4, B) ¢ P(2) x P(): for ecach be B, (4, {b})ec D} .

From Claim 2.1 and Theorem 3.1, 4.1 and 4.2 we can conclude that:

Claim 6.1. D(¥) and FHW*) are ¢ d-family and an j+-family, respectively, while
F(F) and F(D) are s-families. Moreover, for any non-empty relationship B we have
DWE) = D, F*HWE) = F% and F(FE) = F(Dp) = Fr [

Definition. Given a subset K of B(£2) x PB(£2), let us define WHK) by

WHHK) = {(4, B) e PH() x BN :forany X e B2, AS XS B
implies (X, X) € %Wy(H)} v Wo(H)
where
WK ={{A, B e PH) X Pr: g+ X< Adand g Y B
hold for some (X, ¥Y)e X} .

Claim 6.2. For any d-family & and ft-fomily F+ WD) and WHFH) are w*-
families, and we hove D(WH(D)) = D and FH(W+(F*))= F+.

Proof. Let D be a d-family. In the proof of Theorem 4.1 we have shown that
W+(D) is a wr-family and, choosing & non-empty refationship B such that @+(D) =
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= W}, Dp=D. Hence we have D = -@R—M by Claim 8.1. For
an f+-family #+ inthe proof of Theorem 4.2 we have shown that #+(F+) is & w*-family.
and F§ = F+* holds for any non-empty rela,tlonshlp R satisfying Wi = W+ (FH)
Thercfore 7+ = &5 = FHilg) = FHWHF"). O
(Given a finite non-empty set £, let 7(£2) denote the set of w+-families over £2.
Since the intersection of w*-families is a2 wt-family and () has a largest element,
namely B+(2) x [H(Q), F(Q) = (£(42); A, V) is a lattice with operations A and v
defined by
W ANy =W, nW,,
VW, =N {WecF(2 W, SW and ¥, = W) .
Another description of the join in #(£2) is given in the fdllowing

Lemms 6.3. For arbitrary %y, W, ¢ Y(L) we have %, v ¥, = {(4, B) ¢ P*(£) x
X JH(d): forany X, A € X S B implies (X, X) e %, v ¥,}.
Proof. Let % stand for the right hand side of this equality. (W2) vields %, = %

fort = 1, 2. If ¥ isa wt-family containing %', and #,, then % = ¥ follows from (W 3).
Finally, it is easy to check that % is a wr-family itself. [

Now all kinds of simultaneous characterizations can be based on the following

Theorem 6.4. Let D and F* be a d-family and an {7-family over 2, respectively.
Then the following two conditions are equivalent:

(i) There exists @ non-empty relationship R such that D = Dy and F+ = F§;
(i) D(WHD) v WHFH) = D and F*(W(D) v WHF*) = F.

Proof. Let us first assume that {ii) holds, and denote ¥+(D) v ¥+(F+) by ¥+. By
Theorem 3.1 we can choose a non-empty relationship B such that %+ = %'%. Then we
have Dy — DWE) = DW+) = D and F§ = FHWL) = FH(W+) = F*, indeed.

To prove the converse we need the following two observations:

(1) Let D be a d-family. If for a wt-family ¥ we have D = D(¥) then WHD) S ¥.
{2) Let * be ant*-family. If for a w*-family¥ we have F*=F*(¥) then ¥+ (F) S¥.

Suppose we have wt-families ¥ and ¥ such that & = D(¥) and F+ = FHV). To
show WH(D € ¥ and ¥W*(F*) & V, by (W3) it is sufficient to prove that Wy (D) & ¥
and Wy (F*) E V. tuppose (A, B)e WD), say @ F X EAdand @+ Y S B hold
for (X, Y} ¢ D. Bince D = D(U), ({z}, ¥) ¢ ¥ holds for any x ¢ X. Hence (4, B) e ¥
follows from (W2). Similarly, if (4, B)e Wy(F ) then g =X S Aand @+ Y E B
hold for some (X, Y)e F*. Since F+ = FHV), (X, {y}) e V stands for any ye Y.
Thus (4, B) ¢ ¥ follows from (F2). Obgervations (1) and (2) have been shown. [J

Now let (i} be agsumed. Since Claim 6.1 implies (% %) = fDR = Dand FH¥ ) =
= F} = F 7, our observations (1} and (2) yield ¥+(D) € ¥E and WHIFH S Wi
Moreover, for any two wh-families ¥ and ¥V, ¥ € V, evidently we have D(U) & D(V)
and FH(¥) = FH(V). Therefore, by making use of Claim 6.1, we can compute as
follows:

D= D(WH(D) S DWHD) v WHFH) S DU = Dp= 2D,
Fr = FHWHIH) S FHWHD) v WHT ) S FH B R = Fh — F-.
We have obtained (ii), which was to be proved. (O
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Corollary 6.5. Let D, F*, & and W+ stand for abstract d-, f+-, 3- and w*-families
over £, respectively.

(a) There exists a non-empty relationship B suchthat D = Dp, F+ = Fhand F = Fg
if and only if & = F(D) and (i) of Theorem 6.4 holds;

(by There exists o non-emply relationship R such that W+ = Wk, D = Dp and
Ft — Fhiff D= DW) and F+ = FHWT) hold;

fc) There exists a non-empty relationship B such that D = Dy, F*t = FE, & = Fn
and W+ = WhHiff D = DW), F+ = FHW) and & = F (D).

This corollary follows easily from Theorem 6.4 and Claim 6.1. Some cases which
are excluded from this corollary can be handled similarly. [J
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Kurzfassung

Die vorliegende Arbeit schlieBt an die von Armstrong gegebenen Charakterisierungen des
Coddschen Konzepts der funktionalen Abhéngigkeiten in relationalen Datenmodellen an,
Es werden drei weitere Typen von Abhiingigkeiten untersucht und abstrakt charakterisiert.
Auch simultane Charakterisierungen fiir diese Abhiingigkeiten sind angegeben.

Pearome

3. ¢, Hodd BBesa MOHATHES (YHHKIIMOHAIABHON 3aBUCHMOCTH B PeJANHMOHHBIX MOOEIAX
Gaa manHeiX. B. B. Apmcemponez nall aGCTPAKTHYW XapaHTeDHCTHUHY 3TOT0 NOHATHA.
B macroameil paGore aHANOrMYHO XADAKTEPH3YIOTCH NPYTHE THIH 3aBUCHMOCTEI.
Hcenenyorea Takke HX CHMYJIBTAHHEE XAPAKTePHACTHEM.
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