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While the lattice 7(A4) of tolerance relations of a universal algebra 4 has
been known to be algebraic for a long time (cf, e.g., [1]), the converse
statement has been unsettled. The aim of the present note is to point out
that a suitable modification of the construction in Grétzer and Lampe [2]
leads to the following.

THEOREM. Let L be an algebraic lattice. Then there exists an algebra A
such that

(a) L=T(4)
(b) every subalgebra of A? is a tolerance on A.

Here a tolerance means a reflexive, symmetric, and compatible relation.
The set 7(A) of all tolerances of A4 constitutes a lattice under the
set-theoretic inclusion.

Gratzer and Lampe [2] produce an algebra 4 such that the subalgebra
lattice S(A4?%) of A? is isomorphic to L. This 4 is defined as a limit of a
series of partial algebras By, = B, B}, B}, B}, ... such that S(B;%) L for all
i. Every B}, i>0, is derived from B;_, in a canonical way. In what follows
we modify the construction of B so that every subalgebra of B> is a
tolerance on B. Then, as it will be straightforward by checking through
[2], every subalgebra of 42 will be a tolerance on A, proving our theorem.
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Let L be an algebraic lattice with more than one element, and let C be
the set of compact elements of L. Let B be an arbitrary set with C = B, and
fix an element bye B\ C and an element c¢oe C\ {0}. We define a mapping
¥ from C to the set of all subsets of B as follows:

Of =wg={<b,b):beB};
Yy =wgu {{by, c), {c, by} for ceC\{0,co};

oY = (Bz\ U cn/z) Vg
ce C\{cp}
Note that, for ce C, ¢y is a reflexive and symmetric relation on B, and

cy ndy=wg holds when ¢, de C are distinct. We define two kinds of
partial operations on B:

. (A) Each be B is a value of a nullary operation;

(B) For any ¢, c¢;, c36 C\{0} with ¢,<c, v c;, and for every
{a;, b;ecy\wg, i=1,2,3, we define a binary partial operation f by
fla,, as)=ay, f(b,, b3)=b, and f is not defined elsewhere.

Now let F be the set of all partial operations defined in (A) and (B) and
consider the partial algebra B= (B, F). Following the proof of Lemma 1 in
[2], it is straightforward to check that, besides S(B?)=~L (and other
properties stated in [2, Lemma 17), all subalgebras of B? are tolerances on
B. Hence our theorem follows as indicated before.
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