A Note on Representation of Lattices by Tolerances

IVAN CHAJDA

Department of Algebra and Geometry, Palacký University, Olomouc, Czechoslovakia

AND

GÁBOR CZÉDLI*

Bolyai Institute, JATE, Szeged, Hungary

Communicated by Walter Feit

Received October 7, 1990

While the lattice T(A) of tolerance relations of a universal algebra A has been known to be algebraic for a long time (cf., e.g., [1]), the converse statement has been unsettled. The aim of the present note is to point out that a suitable modification of the construction in Grätzer and Lampe [2] leads to the following.

THEOREM. Let L be an algebraic lattice. Then there exists an algebra A such that

- (a) $L \cong T(A)$;
- (b) every subalgebra of A^2 is a tolerance on A.

Here a tolerance means a reflexive, symmetric, and compatible relation. The set T(A) of all tolerances of A constitutes a lattice under the set-theoretic inclusion.

Grätzer and Lampe [2] produce an algebra A such that the subalgebra lattice $S(A^2)$ of A^2 is isomorphic to L. This A is defined as a limit of a series of partial algebras $B'_0 = B$, B'_1 , B'_2 , B'_3 , ... such that $S(B'_i{}^2) \cong L$ for all i. Every B'_i , i > 0, is derived from B'_{i-1} in a canonical way. In what follows we modify the construction of B so that every subalgebra of B^2 is a tolerance on B. Then, as it will be straightforward by checking through [2], every subalgebra of A^2 will be a tolerance on A, proving our theorem.

^{*} Research partially supported by Hungarian National Foundation for Scientific Research Grant No. 1813.

Let L be an algebraic lattice with more than one element, and let C be the set of compact elements of L. Let B be an arbitrary set with $C \subset B$, and fix an element $b_0 \in B \setminus C$ and an element $c_0 \in C \setminus \{0\}$. We define a mapping ψ from C to the set of all subsets of B^2 as follows:

$$\begin{aligned} 0\psi &= \omega_B = \{\langle b, b \rangle : b \in B\}; \\ c\psi &= \omega_B \cup \{\langle b_0, c \rangle, \langle c, b_0 \rangle\} & \text{for } c \in C \setminus \{0, c_0\}; \\ c_0\psi &= \left(B^2 \setminus \bigcup_{c \in C \setminus \{c_0\}} c\psi\right) \cup \omega_B. \end{aligned}$$

Note that, for $c \in C$, $c\psi$ is a reflexive and symmetric relation on B, and $c\psi \cap d\psi = \omega_B$ holds when $c, d \in C$ are distinct. We define two kinds of partial operations on B:

- (A) Each $b \in B$ is a value of a nullary operation;
- (B) For any c_1 , c_2 , $c_3 \in C \setminus \{0\}$ with $c_1 \leq c_2 \vee c_3$, and for every $\langle a_i, b_i \rangle \in c_i \psi \setminus \omega_B$, i = 1, 2, 3, we define a binary partial operation f by $f(a_2, a_3) = a_1$, $f(b_2, b_3) = b_1$ and f is not defined elsewhere.

Now let F be the set of all partial operations defined in (A) and (B) and consider the partial algebra B = (B, F). Following the proof of Lemma 1 in [2], it is straightforward to check that, besides $S(B^2) \cong L$ (and other properties stated in [2, Lemma 1]), all subalgebras of B^2 are tolerances on B. Hence our theorem follows as indicated before.

REFERENCES

- I. CHAJDA, Recent results and trends in tolerances on algebras and varieties, in "Finite Algebra and Multiple-valued Logic, Szeged 1979," Colloq. Math. Soc. János Bolyai, Vol. 28, pp. 69-95, North-Holland, Amsterdam, 1981.
- G. GRÄTZER AND W. A. LAMPE, On subalgebra lattices of universal algebras, J. Algebra 7 (1967), 263-270.
- 3. A. A. ISKANDER, The lattice of correspondences of universal algebras, *Izv. Akad. Nauk SSSR Ser. Mat.* 29 (1965), 1357–1372. [Russian]