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Abstract. Given a countable set A, let Equ(A) denote the lattice of equivalences of A. We prove
the existence of a four-generated sublattice Q) of Equ(A) such that @ contains all atoms of Equ(A4).
Moreover, @@ can be generated by four equivalences such that two of them are comparable. Our
result is a reasonable generalization of Strietz [5, 6] from the finite case to the countable one; and
in spite of its essentially simpler proof it asserts more for the countable case than [2, 3].
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Given a set A, let Equ(A) denote the lattice of equivalences of A. For a finite A,
Equ(A) is generated by its atoms. Strietz [5, 6] has shown that Equ(A) is four-
generated, provided A is finite and has at least three elements. Moreover, Z4dori
[7] has shown that Equ(A) is (1 + 1 + 2)-generated if |A| > 7 (cf. also Strietz
[6] for |A] > 10); i.e., we can assume that exactly two of the four generators
are comparable. These results have recently been generalized for many infinite
sets A (for all A such that no inaccessible cardinal is < |A|) in [2, 3], but
in spite of the complicated construction and long proof, complete lattices with
infinitary lattice operations (even to produce the atoms when A is countable) were
necessary in this generalization. Analogous investigations for (involution) lattices
of quasiorders can be found in [1]. For an overview on equivalence lattices the
reader is referred to Rival and Stanford [4].

The purpose of this short note is, firstly, to extend Strietz and Zadori’s above-
mentioned result for the countable case such that only binary lattice operations
are allowed, and, secondly, to present a proof for the countable case that is
essentially simpler than [2, 3].

* This research was supported by the NFSR of Hungary (OTKA), grant no. T7442.
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THEOREM 1. Let Abea countable set. Then there is a four-generated sublattice
Q of Equ(A) such that Q contains all the atoms of Equ({A). Moreover, () can be

generated by a four-element subset of type 1 -+1+2, and also by a four-element
antichain.

Notice that three equivalences would be insufficient; this follows from Zadorl
(7, Lemma 2 and p. 580]. (@ in Theorem 1 cannot be the sublattice Equg,(A)
generated by the atoms of Equ(A), for Equg,(A) is not finitely senerated. Since

| A| = | Equg,(A4)] for any - finite A, Theorem 1 cannot hold for sets with more
than countably many elements.

Proof. Let Ng = {0,1,2,3,...}, A= {a’ k&€ Ny U< i < k+ 127U
(pF: ke Np, 0<i<k+ {1}. The subsets L* = o i< k+ 123U {b i<
k+ 11}, k € No, constitute a partition of A. For p and ¢ in A the smallest
equivalence collapsing p and g will be denoted by (p,q)- This is an atom in
Equ(A) if p # ¢. The letters = and v (and only these two) will always be used as
index variables that take all permitted values from Ny. This convention allows

us to use brief notations like (ay, b:fg_ly: y < 4), which denotes the sum of all

those atoms (a?,bﬁglj) that satisfy the explicit condition(s) (now j < 4) and
the implicit conditions (expressing that both elements belong to A, currently
j<i+12and 0 < 18 —j <i—1+11). (The explicit condition can be missing.)
The lattice operations will be denoted by + (join) and - (meet). We define four
equivalences:

o = {af,a%y)) + & 0pn), P (ay, by) + (b, ag "),

l 1 1 1
Y= (a;-l-l?b:;) + (bﬁ,a? )+ (bgaﬂ:?r )+ $+?wﬂ§ill> +{ i+3*ﬂ’iilz>
and

§ = {a¥,al12) + (b0, 2+1)-

Notice that «,  and 7y are represented by horizontal, vertical and oblique
(straight) edges, respectively, in Figure 1, while the dotted curves stand for 4. For
example, (p,q) € ¥y it P and g can be connected by a path consisting of oblique
edges of the graph depicted in Figure 1. We will show that the sublattice 9,
generated a, 3, ¥ and & contains all atoms. Now 5 < «. If we want a generating
antichain, we can replace d, by, say, 5 = & + {ad,bg); then {a,B,7,0'} 1s an
antichain, and (o, 3,7,8'] 2 & by 6§ =04 .

All the equivalences we define in the sequel will belong, either we emphasize
this or not, to . Given an equivalence ©, we say that a subset X € A 18
preserved by © if for all p € X the whole O-class of p is included in X. For
later use we formulate an casy fact, to be referred to as circle principle: let

P = UG, UL,---> Ui T D Wiy« Uidj—1> Bitj = P be a circle in the graph
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Figure 1.

depicted in Figure 1 such that [{ug, ui, ..., uiyj—1}} = i+ 7; if all the (ug_q,ug)
belong to Q, then so does (p, q).

Let I(k) denote the condition “(p,q) € Q for all p,q € L*”. We prove I(k)
for all k via induction.

Let g0 = B(y + 6) and H] = (8 + ). Using By = B8 = 6 = 0 it is easy
to see that gJ = (a¥,b8) and HY = (a2, ,,b%, ;). Let By := (o + ¢§)B and
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v = (a+ 98 ). Notice that the restriction of By (resp. o) and that of 3 (resp.
7) to any L* coincide. Define some further equivalences via induction:

Ry = ((g) + v0)a + ¢9)0, 9or1 = (R4 + Bo)a + h2\ 1) Bo,
and
G?+1 = ((HzQ + Bo)a + HY) Bo, Hz+1 ((G0+1 +Y0)a + GH—I)

Since « and g§ preserve every Lk, so do By, Yo, and the above-defined equiva-
lences. Note that, for a single L7 and (8p,v0) = (5,7), these expressions occur
in Zadori [6]. We omit the straightforward induction that shows

g = (ag,bf: y<i), i=0,1,2,...,

h‘o <yvy1 1<y<2>1 1=1,2,3,..., 1)
HY) = (a3 15y U511y ¥<4), ©=0,1,2,..., and
Gg:(agﬂz_y,bgﬂz_y: I<y<i), 1=1,2,3,....

Hence
@, = - GY,_, fori=0,1,...,11,
(@,0_ ) = hY-HY, . fori=1,2,...,12,
(@2,a2,)) = a((ad,89) + (al,,bD)) fori=0,1,...,11,
and
(69, 6241) = a((ad1,8)) + (ady1,b04,)) fori=0,1,...,10

all belong to Q. Therefore we obtain I1(0) by the circle principle.
Now let us assume that £ > 0 and I(k — 1) has already been proved. We
define the following members of Q). Let

= (69 +0) (v + (B, 85 ) a + g9) %0
Using a-y = 0 we can easily infer that
(v + (05,05 ))a = (a5 af ™) + (071057 +
+ (a‘g?aﬁ) (b bé:);
and
(92 +0)a = (af,af) + (af,a3) + (af,a5) +
+ (b5, bT) + (b7, b3).



This yields
(a,65) € hE C (ag,b5_;: 1<y <3). @)
Now define gf+1 = ((hi'c+1 +ﬁ0)a+hf+1),30 (i=2,3,...), hi‘c+1 = ((gf+fyo)a+

gF)yo for i =3,4,...; and let gk :g? for j = 0,1,2 and h¥ = hd for j = 1,2.
Using (2), an easy induction (similar to what yielded (1)) gives

(af,bf_l)ghfg(aﬁ,bz_lz 1<y<i) fori=3,4,..., and &
(af,bf)ggfg(a’;,b’;: y<i) fori=3,4,....

We use a similar technique “from the right to the left”. That is, let H(’f = HJ,
Gt =@, Hf = HY,
GE = ((HY + o) (v + (b4, biya)e + HY) o,
HE | = ((G¥ + v0)a + G )yo for i = 1,2,... and G¥, | = ((HE + Bo)a +
HF)Bp for i = 2,3,.... Then, similarly to (3), we conclude
(all§+12—z‘v bl’§+12—z‘)
CGYC oy bhyny 1<y<i) (6=23,...), and
<allg+l2—i’bllg+11—i> c sz
C (@ 11—y Uhi11y 0<y<i) (1=2,3,..0).

Using (1) for one of the factors on the righthand side and (3) or (4) for the other
factor, we easily obtain

(ak,bFy =gF - GE o, fori=0,1,...,k+11,

C))

and
(ak bF Y=hF.-HE , , fori=1,2,... k+12.

Armed with (a¥,b¥) € Q and (a;“,bf_l) € @ for all meaningful i and j, we
conclude I(k) the same way as we obtained I(0).
Now we know that I(k) holds for all k£ € Ny. It is easy to see that, for every

1>1,
(bé‘l,ag) =0- ((bé‘l,bffl) +4 4+ (aé,aé)) and
(" ab) = v (B ) + (6 af) + (o).

In virtue of I{k) for all k¥ € Ny and (5), the circle principle applies for the whole
A and we conclude (p,q) € Q for all p,q € A. O

5)
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