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Abstract. Let LatLatLat denote the variety of lattices. In 1982, the second author proved

that LatLatLat is strongly tolerance factorable, that is, the members of LatLatLat have quotients
in LatLatLat modulo tolerances, although LatLatLat has proper tolerances. We did not know any

other nontrivial example of a strongly tolerance factorable variety. Now we prove
that this property is preserved by forming independent joins (also called products) of

varieties. This enables us to present infinitely many strongly tolerance factorable va-
rieties with proper tolerances. Extending a recent result of G. Czédli and G. Grätzer,

we show that if VVV is a strongly tolerance factorable variety, then the tolerances of VVV
are exactly the homomorphic images of congruences of algebras in VVV. Our observation

that (strong) tolerance factorability is not necessarily preserved when passing from a
variety to an equivalent one leads to an open problem.

1. Introduction

Basic concepts. Given an algebra A = (A, F ), a binary reflexive, symmetric,
and compatible relation T ⊆ A×A = A2 is called a tolerance on A. The set of
tolerances of A is denoted by Tol(A). A tolerance which is not a congruence
is called proper. By a block of a tolerance T we mean a maximal subset B of
A such that B2 ⊆ T . Let Block(T ) denote the set of all blocks of T . It follows
from Zorn’s lemma that, for X ⊆ A, we have that

X2 ⊆ T iff X ⊆ U for some U ∈ Block(T ). (1.1)

Applying this observation to X = {a, b}, we obtain that Block(T ) determines
T . Furthermore, we also conclude that, for each n, each n-ary f ∈ F , and all
B1, . . . , Bn ∈ Block(T ), there exists a B ∈ Block(T ) such that

{f(b1, . . . , bn) : b1 ∈ B1, . . . , bn ∈ Bn} ⊆ B. (1.2)

We say that A is T -factorable if, for each n, each n-ary f ∈ F and all
B1, . . . , Bn ∈ Block(T ), the block B in (1.2) is uniquely determined. In this
case, we define f(B1, . . . , Bn) := B, and we call the algebra (Block(T ), F ) the
quotient algebra A/T of A modulo the tolerance T . If A is T -factorable for all
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T ∈ Tol(A), then we say that A is tolerance factorable. In what follows, we
focus on the following properties of varieties; VVV denotes a variety of algebras.
The tolerances of VVV are understood as the tolerances of algebras of VVV.

(P1) VVV is tolerance factorable if all of its members are tolerance
factorable.

(P2) VVV is strongly tolerance factorable if it is tolerance factorable
and, for all A ∈ VVV and all T ∈ Tol(A), A/T ∈ VVV .

(P3) The tolerances of VVV are the images of its congruences if for
each A ∈ VVV and every T ∈ Tol(A), there exist an algebra
B ∈ VVV , a congruence θ of B and a surjective homomorphism
ϕ : B → A such that T = {(ϕ(a), ϕ(b)) : (a, b) ∈ θ}.

(P4) VVV has proper tolerances if at least one of its members has a
proper tolerance.

Term equivalence, in short, equivalence, of varieties was introduced by
W.D. Neumann [9]. (He called it rational equivalence.) Instead of recall-
ing the technical definition, we mention that the variety of Boolean algebras
is equivalent to that of Boolean rings. The variety of sets (with no operations)
is denoted by SetSetSet. Although the present paper is self-contained, for more in-
formation on tolerances the reader is referred to the monograph I. Chajda [1]
.

Motivation and the target. Besides LatLatLat and SetSetSet, no other strongly toler-
ance factorable variety with proper tolerances has been known since 1982. Our
initial goal was to find some other ones. We prove that independent joins, see
later, preserve each of the properties (P1)–(P4). This enables us to construct
infinitely many, pairwise non-equivalent, strongly tolerance factorable varieties
with proper tolerances. Also, we show that if a variety is strongly tolerance
factorable, then its tolerances are the images of its congruences, but the con-
verse implication fails. Finally, we show that (strong) tolerance factorability
is not always preserved when passing from a variety to an equivalent one, and
we raise an open problem based on this fact.

Independent joins. Let n ∈ N = {1, 2, . . .}, and let VVV1, . . . ,VVVn be varieties
of the same type. These varieties are called independent if there exists an
n-ary term t in their common type such that, for i = 1, . . . , n, VVVi satisfies the
identity t(x1, . . . , xn) = xi. In this case, the join VVV of the varieties VVV1, . . . ,VVVn

is called an independent join (in the lattice of all varieties of a given type).
This concept was introduced by G. Grätzer, H. Lakser, and J. P lonka [6].
Independent joins of varieties are also called (direct) products.

Proposition 1.1 (W. Taylor [11], G. Grätzer, H. Lakser, and J. P lonka [6]).
Assume that a variety VVV is the independent join of its subvarieties VVV1, · · · ,VVVn.
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(1) Every algebra A ∈ VVV is (isomorphic to) a product A1 × · · · × An such
that A1 ∈ VVV1, . . . , An ∈ VVVn. These Ai are uniquely determined up to
isomorphism.

(2) If B is a subalgebra of A = A1 × · · · × An considered above, then there
exist subalgebras Bi of Ai (i = 1, . . . , n) such that B = B1 × · · · × Bn.

(3) Every tolerance T of A is of the form T1 × · · · × Tn such that Ti is a
tolerance of Ai for i = 1 . . . , n. If T is a congruence, then so are the Ti.

Although part (3) above is stated only for congruences in [11], the one-line
argument “regard T as a subalgebra of A2

1 × · · · × A2
n and apply part (2)” of

[11] also works if T is a tolerance rather than a congruence.

2. Results and examples

The properties (P1)–(P4) are not independent from each other and from
congruence permutability. We know from H. Werner [12], see also J. D. H.
Smith [10], that a variety is congruence permutable iff it has no proper toler-
ances. Obviously, a variety without proper tolerances is strongly tolerance
factorable and its tolerances are the images of its congruences. Also, we
present the following statement, which generalizes the result of G. Czédli and
G. Grätzer [5]. (The statements of this section will be proved in the next one.)

Proposition 2.1.

(1) Assume that A is a tolerance factorable algebra and T ∈ Tol(A). Then
there exist an algebra B (of the same type as A), a congruence θ of B,
and a surjective homomorphism ϕ : B → A such that T = ϕ(θ), where
ϕ(θ) = {(ϕ(x), ϕ(y)) : (x, y) ∈ θ}.

(2) If a variety is strongly tolerance factorable, then its tolerances are the
images of its congruences.

Tolerance factorability does not imply strong tolerance factorability. For
example, let VVV be a nontrivial proper subvariety of the variety LatLatLat of all
lattices. We know from G. Czédli [4] that LatLatLat is strongly tolerance factorable;
see also G. Grätzer and G.H. Wenzel [7] for an alternative proof. Consequently,
VVV is tolerance factorable. However, it is not strongly tolerance factorable by
G. Czédli [4, Theorem 3].

Our main achievement is the following statement.

Theorem 2.2. Assume that a variety VVV is the independent join of its subva-
rieties VVV1, . . . ,VVVn. Consider one of the properties

(1) strong tolerance factorability,
(2) tolerance factorability,
(3) the tolerances of the variety are the images of its congruences.

If this property holds for all the VVV i, then it also holds for VVV .
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Now we are ready to give several examples for strongly tolerance factorable
varieties with proper tolerances. It would be easy to give such examples by
taking varieties equivalent to LatLatLat. (For example, we could replace the binary
join by the n-ary operation f(x1, . . . , xn) := x1 ∨ x2.) Hence we will give
pairwise non-equivalent varieties even if Example 2.6 implies the surprising fact
that strong tolerance factorability is not necessarily preserved when passing
from a variety to an equivalent one.

For 2 ≤ n ∈ N and 1 ≤ i ≤ n, let SSS(n)
i be the variety consisting of all

algebras (X, fn) such that X is a nonempty set and fn is an n-ary operation
symbol inducing the i-th projection on X. That is, SSS(n)

i is of type {fn}, and
it is defined by the identity fn(x1, . . . , xn) = xi. Let SSS(n) = SSS(n)

1 ∨ · · · ∨ SSS(n)
n

and SSS(1) = SetSetSet.

Example 2.3. The varieties SSS(n), n ∈ N, are strongly tolerance factorable
and pairwise non-equivalent, and they have proper tolerances.

Notice that SSS(2) is the variety of rectangular bands, which are idempotent
semigroups satisfying the identity xyx = x. See A. H. Clifford [3], who intro-
duced this concept, and B. Jónsson and C. Tsinakis [8].

Next, consider lattices with an additional unary operation gn that induces
an automorphism of the lattice structure such that the identity gn

n(x) = x

(where gn
n(x) denotes the n-fold iteration gn

(
gn(. . . gn(x) . . . )

)
of gn) holds.

We can call them rotational lattices of order n. The variety of these lattices is
denoted by RLatRLatRLatn. Note that RLatRLatRLat1 is equivalent to LatLatLat while RLatRLatRLat2 consists
of lattices with involution, which were studied, for example, in I. Chajda and
G. Czédli [2]. Note also that RLatRLatRLatn ⊆ RLatRLatRLatm iff n | m.

Example 2.4. The varieties RLatRLatRLatn, n ∈ N, are strongly tolerance factorable
and pairwise non-equivalent, and they have proper tolerances. Moreover, none
of them is equivalent to a variety given in Example 2.3.

Armed with Theorem 2.2, one can give some more sophisticated examples.
For example, we present the following. Let h be a binary operation symbol,
and let m, n ∈ N. We consider the type τmn = {∨,∧, gm, fn, h}. Define the
action of fn and h on the algebras of RLatRLatRLatm as first projections. This way these
algebras become τmn-algebras and they form a variety n(RLatRLatRLatm). Similarly, on
the members of SSS(n), we define ∨, ∧, and gm as first projections and h as the
binary second projection. The algebras we obtain constitute a variety (SSS (n))m

of type τmn. Let CCCmn = n(RLatRLatRLatm) ∨ (SSS (n))m.

Example 2.5. The varieties CCCmn, m, n ∈ N, are strongly tolerance factorable
and they have proper tolerances. Furthermore, CCCmn is equivalent to CCCij iff
(i, j) = (m, n).

Note that the varieties in Example 2.4 are congruence distributive while
those in Examples 2.3 and 2.5 satisfy no nontrivial congruence lattice identity.
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Next, in the language of lattices, we consider the ternary lattice terms
t∨(x, y, z) = x ∨ (y ∧ z) and t∧(x, y, z) = x ∧ (y ∨ z). Clearly, the identities
x∨y = t∨(x, y, y) and x∧y = t∧(x, y, y) hold in all lattices. This motivates the
following definition of another variety in the language of {t∨, t∧} as follows.
In each of the six usual laws defining LatLatLat, we replace ∨ and ∧ by t∨(x, y, y)
and t∧(x, y, y). For example, the absorption law x = x ∨ (x ∧ y) turns into
the identity x = t∨

(
x, t∧(x, y, y), t∧(x, y, y)

)
. The six identities we obtain this

way together with the identities t∨(x, y, z) = t∨(x, t∧(y, z, z), t∧(y, z, z)) and
t∧(x, y, z) = t∧(x, t∨(y, z, z), t∨(y, z, z)) define a variety, which will be denoted
by TLatTLatTLat.

Example 2.6. TLatTLatTLat is equivalent to LatLatLat. Hence the tolerances of TLatTLatTLat are
the images of its congruences. However, TLatTLatTLat is not tolerance factorable.

Let A ∈ TLatTLatTLat and T ∈ Tol(A). Although TLatTLatTLat is not tolerance factorable,
the fact that it is equivalent to a tolerance factorable variety (which is LatLatLat)
yields a natural way of defining A/T . Namely, A ∈ TLatTLatTLat has an alter ego
A′ ∈ LatLatLat with the same tolerances, so we can take the quotient B′ := A′/T

defined in LatLatLat, and we can let A/T be the alter ego of B′ in TLatTLatTLat. Clearly,
the strong tolerance factorability of LatLatLat implies that A/T ∈ TLatTLatTLat.

Since TLatTLatTLat is only an “artificial” variety, we raise the following problem.

Problem 2.7. Is there a well-known variety VVV such that although VVV is not
tolerance factorable, it is equivalent to some tolerance factorable (possibly
”artificial”) variety?

3. Proofs

Proof of Proposition 2.1. We generalize the idea of G. Czédli and G. Grätzer
[5]. Assume that A = (A, F ) is a tolerance factorable algebra and T ∈ Tol(A).
If A belongs to a strongly tolerance factorable variety VVV , then all the algebras
we construct in the proof will clearly belong to VVV.

The quotient algebra A/T =
(
Block(T ), F

)
, defined according to formula

(1.2), makes sense. So does the direct product C = A × (A/T ). Denoting
{(x, Y ) ∈ A × Block(T ) : x ∈ Y } by D, the construction implies that D =
(D, F ) is a subalgebra of C. This D will play the role of B.

Define θ =
{(

(x1, Y1), (x2, Y2)
)
∈ D2 : Y1 = Y2

}
. As the kernel of the

second projection from D to A/T , it is a congruence on D. The first projection
ϕ : D → A, (x, Y ) 7→ x, is a surjective homomorphism since, for every x ∈ A,
(1.1) allows us to extend {x} to a block of T .

Clearly, if
(
(x1, Y1), (x2, Y2)

)
∈ θ, then {x1, x2} ⊆ Y1 = Y2 ∈ Block(T )

implies that
(
ϕ(x1, Y1), ϕ(x2, Y2)

)
= (x1, x2) ∈ T . Conversely, assume that

(x1, x2) ∈ T . Then, by (1.1), there is a Y ∈ Block(T ) with {x1, x2} ⊆ Y .
Hence, (x1, Y ), (x2, Y ) ∈ D,

(
(x1, Y ), (x2, Y )

)
∈ θ, and xi = ϕ(xi, Y ) yield

the desired equality T =
{(

ϕ(x1, Y1), ϕ(x2, Y2)
)

:
(
(x1, Y1), (x2, Y2)

)
∈ θ

}
. �



6 I. Chajda, G. Czédli, and R. Halaš Algebra univers.

Lemma 3.1. Assume that T is as in Proposition 1.1(3) and B ∈ Block(T ).
Then there exist Bi ∈ Block(Ti), for i ∈ {1, . . . , n}, with B = B1 × · · · × Bn,
and they are uniquely determined. Furthermore, Block(T ) = Block(T1)×· · ·×
Block(Tn).

Proof. Let πi denote the projection map A → Ai, (x1, . . . , xn) 7→ xi. Define
Bi := πi(B). First we show that B1 ∈ Block(T1). If a1, b1 ∈ B1, then
(a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ B for some aj, bj ∈ Aj , 2 ≤ j ≤ n. Henc,
B2 ⊆ T implies that (a1, b1) ∈ T1. This gives that B2

1 ⊆ T1, and we obtain
B2

i ⊆ Ti for all i ∈ {1, . . . , n} by symmetric arguments. Thus

(B1 × · · · × Bn)2 ⊆ T1 × · · · × Tn = T,

which, together with B ∈ Block(T ) and the obvious B ⊆ B1×· · ·×Bn, implies
that

B = B1 × · · · × Bn. (3.1)

The uniqueness of the Bi is trivial. If B1 ⊆ C1 ⊆ A1 such that C2
1 ⊆ T1, then

B2 = (B1 × · · · × Bn)2 ⊆ (C1 × B2 × · · · × Bn)2 ⊆ T1 × · · · × Tn = T .

Hence, B ∈ Block(T ) yields that the first inclusion above is an equality, which
implies that B1 = C1. Thus B1 ∈ Block(T1) and Bi ∈ Block(Ti) for all i.
This, together with (3.1), proves that Block(T ) ⊆ Block(T1)×· · ·×Block(Tn).

Finally, to prove the converse inclusion, assume that Ui ∈ Block(Ti) for
i = 1, . . . , n, and let U = U1 × · · · × Un. Clearly, U2 ⊆ T1 × · · · × Tn = T . By
Zorn’s lemma, there is a B ∈ Block(T ) such that U ⊆ B. We already know
that Bi ∈ Block(Ti) and (3.1) holds. This, together with U ⊆ B, yields that
Ui ⊆ Bi. Comparable blocks of Ti are equal, whence Ui = Bi, for all i. Hence,
U = B ∈ Block(T ), proving that Block(T1)× · · ·×Block(Tn) ⊆ Block(T ). �

Proof of Theorem 2.2. Assume first that the VVV i are tolerance factorable. Let
T be as in Proposition 1.1(3). Assume that s is a k-ary term in the language of
VVV and B1, . . . , Bk ∈ Block(T ). By Lemma 3.1, there are uniquely determined
Bij ∈ Block(Tj) such that

Bi = Bi1 × · · · × Bin for i = 1, . . . , k. (3.2)

Assume that C is in Block(T ) such that

{s(b1, . . . , bk) : b1 ∈ B1, . . . , bk ∈ Bk} ⊆ C. (3.3)

According to A = A1 × · · · ×An, we can write bi = (bi1, . . . , bin). Since s acts
componentwise,

{s(b1, . . . , bk) : b1 ∈ B1, . . . , bk ∈ Bk}

=
{(

s(b11, . . . , bk1), . . . , s(b1n, . . . , bkn)
)

: bij ∈ Bij

}

= {s(b11, . . . , bk1) : bi1 ∈ Bi1} × · · · × {s(b1n, . . . , bkn) : bin ∈ Bin}.

(3.4)
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By Lemma 3.1, C = C1 × · · · ×Cn with Cj ∈ Block(Tj). Combining this with
(3.3) and (3.4), we obtain that, for j ∈ {1, . . . , n},

{s(b1j, . . . , bkj) : bij ∈ Bij for i = 1, . . . , k} ⊆ Cj. (3.5)

This implies the uniqueness of Cj since VVVj is tolerance factorable. Therefore,
C in (3.3) is uniquely determined, and we obtain that VVV is tolerance factorable.

Next, assume that the VVV i are strongly tolerance factorable. Observe that
(3.5) also yields that Cj = s(B1j , . . . , Bkj) in the quotient algebra Aj/Tj . This,
together with (3.2) and C = C1×· · ·×Cn, implies that A/T is (isomorphic to)
A1/T1 × · · · × An/Tn. Since VVVj is strongly tolerance factorable, we conclude
that Aj/Tj ∈ VVVj ⊆ VVV . Therefore A/T ∈ VVV , proving that VVV is strongly tolerance
factorable.

Finally, if the tolerances of VVV i are the images of its congruences for i =
1, . . . , n, then Proposition 1.1 easily implies the same property of VVV . �

Proof of Example 2.3. Each of the SSS(n)
i is equivalent to SetSetSet, whence it is easy

to see that the SSS(n)
i are strongly tolerance factorable. The operation fn wit-

nesses that SSS(n) = SSS(n)
1 ∨ · · · ∨ SSS(n)

n is an independent join. Hence, SSS(n)

is strongly tolerance factorable by Theorem 2.2. The three-element algebra
A =

(
{a, b, c}, fn), where fn acts as the first projection, belongs toSSS(n)

1 ⊆ SSS (n).
Consider T ∈ Tol(A) determined by Block(T ) =

{
{ab}, {bc}

}
. This T wit-

nesses that SSS(n) has proper tolerances.
Next, consider an arbitrary A ∈ SSS(n). It is of the form A = A1 × · · · × An,

where Ai ∈ SSS(n)
i for i = 1, . . . , n. Let s be an arbitrary term in the language

of SSS (n). Since SSS(n)
i is equivalent to SetSetSet, s induces a projection on Ai for

i = 1, . . . , n. It follows that s induces an operation on A that depends on
at most n variables. On the other hand, if none of the Ai is one-element,
then fn defines a term function on A that depends exactly on n variables.
Thus n is the largest integer k such that all term functions on algebras in SSS(n)

depend on at most k variables and there exists an algebra in SSS(n) with a term
function depending exactly on k variables. This proves that SSS(n) and SSS (m) are
non-equivalent if n 6= m. �

Proof of Example 2.4. Let A = (A,∨,∧, gn) ∈ RLatRLatRLatn and T ∈ Tol(A). Then
T is also a tolerance of the lattice reduct (A,∨,∧), and Block(T ) for the lattice
reduct is the same as it is for A. We claim that, for every B ∈ Block(T ),

gn(B) := {gn(b) : b ∈ B} ∈ Block(T ). (3.6)

By Zorn’s lemma, there is a C ∈ Block(T ) such that {gn(b) : b ∈ B} ⊆ C.
Since g−1

n = gn−1
n preserves T , {g−1

n (c) : c ∈ C}2 ⊆ T . This, together with
B ⊆ {g−1

n (c) : c ∈ C} and B ∈ Block(T ), yields that B = {g−1
n (c) : c ∈ C}.

Therefore, gn(B) = C ∈ Block(T ), proving (3.6).
For the lattice operations, B in (1.2) is uniquely determined since LatLatLat is

(strongly) tolerance factorable by G. Czédli [4]. By (3.6), the same holds for gn.
Thus A/T makes sense. (A/T,∨,∧) is a lattice since LatLatLat is strongly tolerance
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factorable. We conclude from (3.6) that gn is a permutation on A/T , whose
n-th power is the identity map. Finally, assume that B ∨ C = D in A/T ; the
case of the meet is similar. Then, by (3.6) and {b ∨ c : b ∈ B, c ∈ C} ⊆ D,

{x ∨ y : x ∈ gn(B), y ∈ gn(C)} = {gn(b) ∨ gn(c) : b ∈ B, c ∈ C}
= {gn(b ∨ c) : b ∈ B, c ∈ C} ⊆ {gn(d) : d ∈ D} = gn(D).

Hence, gn(B)∨gn(C) = gn(D), that is, gn is an automorphism of (A/T,∨,∧).
Therefore, RLatRLatRLatn is strongly tolerance factorable. It has proper tolerances
since so has LatLatLat, which is equivalent to the subvariety RLatRLatRLat1 of RLatRLatRLatn.

The boolean lattice with n atoms allows an automorphism ϕ of order n

such that the subgroup generated by ϕ acts transitively on the set of atoms,
but no such automorphism of smaller order is possible. This implies easily
that RLatRLatRLatm is not equivalent to RLatRLatRLatk if m 6= k. Since RLatRLatRLatn is congruence
distributive, it is not equivalent to SSS (m). �

Proof of Example 2.5. Since h takes care of independence, Examples 2.3 and
2.4 together with Theorem 2.2 yield that CCCmn is strongly tolerance factorable
and it has proper tolerances. Suppose, for a contradiction, that (m, n) 6= (u, v)
but CCCmn is equivalent to CCCuv.

Suppose first that m = u and n 6= v. Let, say, v < n. Take the 2n-
element A ∈ (SSS (n))m ⊆ CCCmn for which all the Ai in Proposition 1.1(1) are 2-
element. Let s be a binary term in the language of CCCmn. Since all terms induce
projections on Ai, the identity s(x, s(y, x)) = x holds in Ai for i = 1, . . . , n.
Therefore, A satisfies the same identity for every binary term s. Observe that,
up to now, we did not use the assumption on the size of Ai, whence

s(x, s(y, x)) = x holds in SSS (n), for all binary terms s. (3.7)

By the assumption, there is a CCCmv-structure B on the set A such that B
and A have the same term functions. By the definition of CCCmv= CCCuv, B is
(isomorphic to) C × D, where C ∈ v(RLatRLatRLatm) and D ∈ (SSS (v))m. Since C is a
homomorphic image of B and B has the same term functions as A, the identity
s(x, s(y, x)) = x holds in C for all binary terms s. Thus C is one-element since
otherwise s(x, y) = x∨ y would fail this identity. Hence, the term functions of
B are the same as those of its SSS(v)-reduct. Now, we can obtain a contradiction
the same way as in the last paragraph of the proof of Example 2.3: A has an
n-ary term function that depends on all of its variables while all term functions
of B depend on at most v variables. This proves that n = v.

Secondly, we suppose that m 6= u. Let, say, m > u. Consider the algebra
A ∈ n(RLatRLatRLatm) ⊆ CCCmn such that the RLatRLatRLatm-reduct of A is the 2m-element
boolean lattice and gm is a lattice automorphism of order m that acts transi-
tively on the set of atoms. (That is, the restriction of gm to the set of atoms
is a cyclic permutation of order m.) Since CCCmn is equivalent to CCCun = CCCuv,
there exist algebras C ∈ n(RLatRLatRLatu) and D ∈ (SSS (n))u such that B := C×D ∈ CCCun

is equivalent to A. Observe that D, which is a homomorphic image of B, has
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Figure 1. L and the blocks of T

a lattice reduct. Hence, as in the firts part of the proof, (3.7) easily implies
that D is a one-element algebra. Therefore, A is equivalent to C, that is, to a
member of n(RLatRLatRLatu). Hence, the RLatRLatRLatm-reduct of A is equivalent to a member
of RLatRLatRLatu. This leads to a contradiction the same way as in the last paragraph
of the proof of Example 2.4. �

Proof of Example 2.6. Consider the lattice L in Figure 1 as an algebra of TLatTLatTLat.
A tolerance T ∈ Tol(L) is given by its blocks A = [a0, a1], . . . , E = [e0, e1]. (It
is easy to check, and it follows even more easily from G. Czédli [4, Theorem
2], that T is a tolerance.) Since

{t∨(x, y, z) : x ∈ A, y ∈ B, z ∈ C} = [c0, a1],

this set is a subset of two distinct blocks, A and C. Hence TLatTLatTLat is not tolerance
factorable. The rest is trivial. �

Acknowledgment. The authors thank Paolo Lipparini for helpful comments
and for calling their attention to H. Werner [12].

References

[1] Chajda, I.: Algebraic Theory of Tolerance Relations, Palacký University Olomouc,
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