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Abstract. Ordered by set inclusion, the retracts of a lattice L together with
the empty set form a bounded poset Ret(L). By a grid we mean the direct

product of two non-singleton finite chains. We prove that if G is a grid, then

Ret(G) is a lattice. We determine the number of elements of Ret(G). Some
easy properties of retracts, retractions, and their kernels called retraction con-

gruences of (mainly distributive) lattices are found. Also, we present several
examples, including a 12-element modular lattice M such that Ret(M ) is not

a lattice.

1. Introduction

Idempotent endomorphisms are called retractions. So a retraction of a lattice
L is a lattice homomorphism f : L → L such that f(f(x)) = f(x) for all x ∈ L.
A sublattice of L is a retract of L if it is of the form f(L) := {f(x) : x ∈ L}
for some retraction f of L. Congruence kernels of retractions are called retraction
congruences. These concepts are meaningful for other algebras, not only for lattices.
For an algebra A, Ret(A) will stand for the set consisting of of all retracts of A and
the empty set; Ret(A) =

(

Ret(A),⊆
)

is a bounded poset (partially ordered set).
By a grid we mean the direct product of two finite non-singleton chains.

1.1. Outline. The rest of this section surveys some earlier results on retracts of
lattices and explains our motivation to study these retracts. Section 2 proves that,
in presence of a majority term, retraction kernels and quasiorders have the Fraser–
Horn property, that is, they cannot be “skew” on direct products. In Section 3, we
state and prove the main result, Theorem 3.1. This theorem states that, for any grid
G, Ret(G) is a lattice. Also, the theorem describes the retracts of G and gives their
number, |Ret(G)|. In Section 4, we prove some properties that retracts or retraction
congruences of some lattices, mainly distributive lattices, have. Section 5 presents
several examples. These examples indicate that neither the properties presented in
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2 G. CZÉDLI

Section 4, nor Theorem 3.1 can be extended to arbitrary lattices. In particular, we
give a 12-element modular lattice M such that Ret(M) is not a lattice.

1.2. A mini-survey and our motivation. We recall a concept: assume that L
belongs to a given category V of lattices and for every embedding g : L → K ∈ V
such that g is a morphism in V, g(L) is a retract of K witnessed by a retraction
that is a morphism in V; in this case we say that L is an absolute retract in V.

From time to time, retractions, retracts, and absolute retracts appeared in the
literature of lattice theory. In 1970, Fofanova [11] described the lattices L all
sublattices or ideals of which are retracts. In a recent paper, Czédli [4] presents
two properties of retracts of some (rather special) lattices. The lattices investigated
by Freese and Nation [13] and Ploščica [21, Theorem 1.4(i)] are the same as the
retracts of the free lattices in the appropriate varieties of lattices.

Absolute retracts in some categories of lattices were described by Czédli [5],
Czédli and Molkhasi [8], and Schmid [22]. Retracts of lattices play an important
role in Bezhanishvili, Harding, and Jibladze [2]. Some results on absolute retracts of
general algebras have corollaries for lattices; see Ouwehand [20] and Jenner, Jipsen,
Ouwehand, and Rose [17].

In spite of all these sources, we hardly know anything about the retracts of a
lattice L. With few exceptions occurring in Fofanova [11] and Czédli [4] (both are
mentioned above), we cannot describe or enumerate the retracts of L and we do
not know what properties these retracts have. Even if we are far from answering
these questions, the purpose of the present paper is to widen our knowledge related
to these questions.

In addition to the lattice theoretic preliminaries listed so far, our research is also
motivated by two papers; one of them is outside lattice theory while the other is not
about retracts. First, we have learned from Jakub́ıková–Studenovská and Pócs [16]
that the retracts of a monounary algebra A (together with ∅) form a lattice, and
this lattice is semimodular if A is connected; in fact, this result is where the lion’s
share of our motivation comes. The second one is Fraser and Horn [12], from which
we know that lattices have the Fraser–Horn property, that is, the direct product
of two lattices cannot have a skew congruence. Even if examples show that none
of the results just recalled from [16] and [12] extend to retracts of lattices, we are
going to present some sort of extensions in particular cases.

There are papers in which lattices are considered posets and their retracts are
understood in a different, order-theoretic sense; see, for example, Li [19]. Retracts
occur in algebras that are not far from lattices; see, for example, Wehrung [23].
Also, there are many papers devoted to the retracts of structures that have not
much to do with lattices. In fact, the concept of retracts seems to originate from
topology; see Borsuk [3].

Finally, there are motivations at elementary level. Subalgebras and homomor-
phic images have been of particular importance for long, at least since Birkhoff’s
HSP-theorem. Retracts are both, so it is natural to study them. When Θ is a con-
gruence of an algebra A and we make computations in the quotient algebra A/Θ,
then we can pick an element aX from each Θ-block X and use it as the representa-
tive of X. In view of Observation 3.2, the representatives can be chosen optimally
if Θ is a retraction congruence.
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2. Retraction congruences of algebras with a majority term

For lattices L1 and L2, every retraction congruence Θ of L1 × L2 is of the form
Θ1×Θ2 with Θi being a congruence of Li for i = 1, 2 since lattices satisfy the Fraser–
Horn property; see Lemma 2.1 later. This section addresses the question whether
Θi is a retraction congruence of Li, i ∈ {1, 2}. For convenience and to state slightly
more than what can be found in the literature, we present a short proof of the
following lemma. Its part (B) is due to Fraser and Horn [12, Corollary 1]. But first
we need some definitions. If ρ1 and ρ2 are relations of algebras A1 and A2, respec-
tively, then ρ1 × ρ2 denotes {((x1, x2), (y1, y2)) : (x1, y1) ∈ ρ1 and (x2, y2) ∈ ρ2}.
A majority term for a variety V of algebras is a ternary term m(x, y, z) such that
V satisfies the identities m(x, x, y) = m(x, y, x) = m(y, x, x) = x. The variety of
all lattices has majority terms since, say, m(x, y, z) := (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
is such a term. A quasiorder (in other words, a preorder) is a reflexive and tran-
sitive relation. The set (in fact, the lattice) of congruences and that of compatible
quasiorders of an algebra A are denoted by Con(A) and Quo(A), respectively.

Lemma 2.1. If A1 and A2 are algebras in a variety with a majority term, then
the following two assertions hold.

(A) Quo(A1 × A2) = {ρ1 × ρ2 : ρ1 ∈ Quo(A1) and ρ2 ∈ Quo(A2)}.
(B)(Fraser and Horn [12, Corollary 1] combined with Jónsson [18, Example 1])

Con(A1 × A2) = {Θ1 × Θ2 : Θ1 ∈ Con(A1) and Θ2 ∈ Con(A2)}.

Note that if an algebra A belongs to a variety with a majority term, in particular,
if A is a lattice, then Quo(A) is a distributive lattice by Czédli and Lenkehegyi [7,
Corollary 5.2]. There is also another way to see that Quo(L) for a lattice L is
distributive since Quo(L) was described by Czédli, Huhn, and Szabó [6]. Later, a
shorter proof of this description was given in Czédli and Szabó [9], and the history
of the topic was thoroughly surveyed by Davey [10].

Proof of Lemma 2.1. While reading the proof, observe that a symmetric ρ will
trivially yield symmetric ρ1 and ρ2. The “⊇” inclusion in place of the equality
“=” in part (A) is trivial. To prove the converse inclusion, let A := A1 × A2 and
ρ ∈ Quo(A). Define ρ1 := {(x, y) ∈ A2

1 : (∃z ∈ A2) ((x, z), (y, z)) ∈ ρ}. We claim
that

if (x, y) ∈ ρ1, then for all t ∈ A2, ((x, t), (y, t)) ∈ ρ. (2.1)

To see this, assume that (x, y) ∈ ρ1 is witnessed by ((x, z), (y, z)) ∈ ρ. Let t ∈ A2,
and let m be a majority term in the variety containing A1 and A2. Since ρ is
reflexive, ((x, t), (x, t)) ∈ ρ and ((y, t), (y, t)) ∈ ρ. Since ρ is closed with respect to
m, we obtain that ((x, t), (y, t)) = ((m(x, x, y), m(z, t, t)), (m(y, x, y), m(z, t, t))) =
m(((x, z), (y, z)), ((x, t), (x, t)), ((y, t), (y, t))) ∈ ρ, proving (2.1).

Clearly, ρ1 is reflexive. Its compatibility and transitivity follows trivially by
(2.1), which allows us to use the same element z ∈ A2 witnessing that several pairs
belong to ρ1. Hence, ρ1 ∈ Quo(A1). By symmetry, the analogously defined ρ2

belongs to Quo(A2). Next, we show that, for any x1, x2 ∈ A1 and y1, y2 ∈ A2,

((x1, x2), (y1, y2)) ∈ ρ ⇐⇒
(

(x1, y1) ∈ ρ1 and (x2, y2) ∈ ρ2

)

. (2.2)

Assume that ((x1, x2), (y1, y2)) ∈ ρ. By reflexivity, ((x1, y2), (x1, y2)) ∈ ρ and
((y1, y2), (y1, y2)) ∈ ρ. Hence,
(

(x1, y2), (y1, y2)
)
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=
(

(m(x1, x1, y1), m(x2, y2, y2)), (m(y1, x1, y1), m(y2, y2, y2))
)

= m
(

((x1, x2), (y1, y2)), ((x1, y2), (x1, y2)), ((y1, y2), (y1, y2))
)

∈ ρ,

implying that (x1, y1) ∈ ρ1. We obtain similarly that (x2, y2) ∈ ρ2. Thus, the
“⇒” part of (2.2) holds. Conversely, assume that (x1, y1) ∈ ρ1 and (x2, y2) ∈
ρ2. Using (2.1) and its counterpart for the other component, we obtain that
((x1, x2), (y1, x2)) ∈ ρ and ((y1, x2), (y1, y2)) ∈ ρ. Thus, the transitivity of ρ yields
that ((x1, x2), (y1, y2)) belongs to ρ, completing the argument for (2.2).

Since ρ = ρ1 × ρ2 by (2.2), we have proved part (A) of the lemma. Part (B)
follows from the argument above and the first sentence of the proof. �

For an algebra A, let RCon(A) denote the set of retraction congruences of A.
That is, RCon(A) consists of the kernels of retractions of A.

Proposition 2.2. If A1 and A2 are algebras in a variety V with a majority term
and each of A1 and A2 has a singleton subalgebra, then

RCon(A1 × A2) = {Ψ1 × Ψ2 : Ψ1 ∈ RCon(A1) and Ψ2 ∈ RCon(A2)}. (2.3)

The nontrivial part of Proposition 2.2 is “⊆” in place of “=” in (2.3); this “⊆”
means that algebras with a majority term have no skew retraction congruences.

Proof of Proposition 2.2. Let m be a majority term in V, and denote A1 × A2 by
A. For i ∈ {1, 2}, let {ci} be a one-element subalgebra of Ai. We need the following
maps

πi : A → Ai defined by (x1, x2) 7→ xi for i ∈ {1, 2},

ι1 : A1 → A defined by x1 7→ (x1, c2) and

ι2 : A2 → A defined by x2 7→ (c1, x2).

We claim that

if f : A → A is a retraction, then so are f1 := π1 ◦ f ◦ ι1 : A1 → A1

and f2 := π2 ◦ f ◦ ι2 : A2 → A2, and ker f = ker f1 × ker f2.

}

(2.4)

As a composite of homomorphisms, f1 is a homomorphism, in fact, an endomor-
phism of A1. For x ∈ A1, let (u, v) := f(x, c2) and (u′, v′) := f(u, c2). Then
u := f1(x) and u′ = f1(u). Let Θ = ker f ∈ Con(A). Since A has the Fraser–Horn
property by Lemma 2.1, Θ = Θ1 × Θ2 with Θ1 ∈ Con(A1) and Θ2 ∈ Con(A2).
Using that f is idempotent, we have that f(x, c2) = (u, v) = f(u, v). This gives
that ((x, c2), (u, v)) ∈ Θ, whereby (c2, v) ∈ Θ2. Since (u, u) ∈ Θ1, we have that
((u, c2), (u, v)) ∈ Θ1 × Θ2 = Θ. Hence, (u′, v′) = f(u, c2) = f(u, v) = (u, v),
whereby u′ = u. Hence, f1(f1(x)) = u′ = u = f1(x), implying that f1 is a retrac-
tion of A1. By symmetry, f2 is a retraction of A2.

To complete the argument for (2.4), we need to show that

for i ∈ {1, 2}, ker fi = Θi. (2.5)

By symmetry, it suffices to deal with i = 1. Assume that (x, x′) ∈ ker f1. Then
u := f1(x) = f1(x

′), f(x, c2) = (u, v), and f(x′, c2) = (u, v′) for some v, v′ ∈ A2.
Since f is idempotent, f(u, v) = (u, v). This equality and f(x, c2) = (u, v) give that
((x, c2), (u, v)) ∈ Θ, whereby (x, u) ∈ Θ1. Similarly, (x′, u) ∈ Θ1. By transitivity
and symmetry, we obtain that (x, x′) ∈ Θ1. Thus, ker f1 ⊆ Θ1.

Conversely, assume that (x, x′) ∈ Θ1. Denote f(x, c2) and f(x′, c2) by (u, v) and
(u′, v′), respectively. Since ((x, c2), (x

′, c2)) ∈ Θ1 × Θ2 = Θ = ker f , we have that
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(u, v) = (u′, v′). Hence, f1(x) = u = u′ = f1(x
′), whence (x, x′) ∈ ker f1. Thus,

Θ1 ⊆ ker f1, and we have obtained the validity of (2.5) and that of (2.4).
Next, armed with (2.4), denote {Ψ1×Ψ2 : Ψ1 ∈ RCon(A1) and Ψ2 ∈ RCon(A2)}

occurring in (2.3) by H . If Ψ ∈ RCon(A), then we can pick a retraction f : A → A
with ker f = Ψ, and it follows from (2.4) that Ψ ∈ H . Therefore, RCon(A) ⊆ H .

Conversely, assume that Ψ = Ψ1 × Ψ2 ∈ H . For i ∈ {1, 2}, pick a retraction
gi : Ai → Ai with ker gi = Ψi. It is obvious that g1 × g2 : A → A, defined by
(x1, x2) 7→ (g1(x1), g2(x2)) is a retraction of A. Since

((x1, x2), (y1, y2)) ∈ ker (g1 × g2)

⇐⇒
(

(x1, y1) ∈ ker g1 and (x2, y2) ∈ ker g2

)

⇐⇒
(

(x1, y1) ∈ Ψ1 and (x2, y2) ∈ Ψ2

)

⇐⇒ ((x1, x2), (y1, y2)) ∈ Ψ1 × Ψ2 = Ψ,

we have that Ψ = ker (g1 × g2) ∈ RCon(A). Thus, H ⊆ RCon(A). Consequently,
RCon(A) = H , and the proof of Proposition 2.2 is complete. �

Remark 2.3. As opposed to retraction congruences, retracts and retractions of
direct products of two lattices are not factorizable in general. This is exemplified
by the direct square L of the two-element chain C2 = {0, 1}, its retraction map
f : L → L defined by (x, y) 7→ (x, x), and the retract f(L) = {(0, 0), (1, 1)}.

By this remark, the converse of the following observation does not hold.

Observation 2.4. Let A1 and A2 be algebras. For i ∈ {1, 2}, let Si be a retract of
Ai and let fi : Ai → Ai be a retraction. Then S1 × S2 is a retract of A := A1 ×A2,
and f1 × f2 : A → A defined by (x1, x2) 7→ (f1(x1), f2(x2)) is a retraction.

Proof. We can assume that Si = fi(Ai). Denote f1 × f2 by f ; it is clearly a
retraction and f(A) = S1 × S2. �

The following remark is trivial and does not assume the existence of a majority
term, but it will be useful later.

Remark 2.5. If A is an algebra and f : A → A is a retraction of A, then f(A) =
{x ∈ A : f(x) = x}.

Proof. If f(x) = x, then x = f(x) ∈ f(A) is clear. Conversely, if x ∈ f(A), then x
is of the form x = f(y), whereby f(x) = f(f(y)) = (f ◦ f)(y) = f(y) = x. �

3. The main result

In addition to the notations and concepts given in the first paragraph of the
Introduction, we need some additional ones. For n ∈ N

+ := {1, 2, 3, . . .}, the n-
element chain will be denoted by Cn. If G = Cm × Cn is a grid, then its subsets
of the form A1 × A2 with A1 ⊆ Cm and A2 ⊆ Cn are said to be straight while the
rest of the subsets are skew. The restriction of a map (= function) g to a set Y is
denoted by geY . The first projection G → Cm defined by (x1, x2) 7→ x1 is denoted
by π1 while π2 : G → Cn stands for the second projection. A subset X of G is left
injective if π1eX is injective. Similarly, if π2eX is injective then X is right injective.
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We say that X ⊆ G is an injective subset if it is left injective or right injective.
Subsets that are both left and right injective are doubly injective. We let

Sts(G) := {X : X is a stststraight sssubset of G}

Isc(G) := {X : X is an iiinjective ssskew ccchain in G}.

For integers m, n ≥ 2, we define the following two numbers:

t(m, n) = 1 + (2m − 1)(2n − 1) and (3.1)

w(m, n) =

max{m,n}
∑

s=2

(

(

m

s

)

·

(

n + s − 1

s

)

+

(

n

s

)

·

(

m + s − 1

s

)

−

(

m

s

)

·

(

n

s

)

− n ·

(

m

s

)

− m ·

(

n

s

)

)

. (3.2)

Now we are in the position to state the main result of the paper.

Theorem 3.1. For integers m, n ≥ 2 and G = Cm × Cn, the following assertions
hold.

(A) Ret(G) =
(

Ret(G),⊆
)

is a lattice in which the meet operation is the same
as forming intersection.

(B) Ret(G) = Sts(G) ∪ Isc(G) and Sts(G) ∩ Isc(G) = ∅.
(C) |Sts(G)| = t(m, n), |Isc(G)| = w(m, n), and so |Ret(G)| = t(m, n)+w(m, n).
(D) Ret(G) has maximal chains E1 and E2 such that |E1| = max{m, n}+2 and

|E2| = m + n.

For n ∈ {1, . . . , 10}, Table 1 gives |Ret(Cn × Cn)|, |Sts(Cn × Cn)| = t(n, n),
and |Isc(Cn × Cn)| = w(n, n); Cn × Cn is abbreviated to C2

n. It took less than
a millisecond to compute these numbers with computer algebra, namely, Maple V
Release 5 (of Nov. 27, 1997) on a desktop computer with Intel(R) Core(TM) i5-4440
CPU, 3.10 GHz was used. The computation for, say, n = 2021 took 73 seconds;
to save space, we only give the first 36 digits (the 37-th digit is less than 5 in each
cases):

|Sts(C2
2021)| ≈ 5.797 522 914 036 970 546 568 254 329 481 553 09 · 101216

|Isc(C2
2021)| ≈ 2.255 329 749 845 851 410 792 165 541 679 387 92 · 101545

|Ret(C2
2021)| ≈ 2.255 329 749 845 851 410 792 165 541 679 387 92 · 101545

As opposed to Ret(A) for a connected monounary algebra, see Jakub́ıková-
Studenovská and Pócs [16], part (D) indicates that the lattice Ret(G) in the theorem
is not semimodular in general. The rest of this section is devoted to the proof of
Theorem 3.1; however, some of the observations needed in the proof can be of sepa-
rate interest. In particular, the following observation is trivial, but it is important.
If Θ is a congruence of an algebra A and a ∈ A, then a/Θ stands for the Θ-block
{x ∈ A : (a, x) ∈ Θ} of a.

Observation 3.2. If A is an algebra, then the following two assertions hold.
(A) A subalgebra S of A is a retract of A if and only if there exists a congruence

Θ ∈ Con(A) such that

for each block X of Θ, we have that |X ∩ S| = 1. (3.3)
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n 1 2 3 4 5
|Sts(C2

n)| 2 10 50 226 962

|Isc(C2
n)| 0 1 22 209 1 466

|Ret(C2
n)| 2 11 72 435 2 428

n 6 7 8 9 10
|Sts(C2

n)| 3 970 16 130 65 026 261 122 1 046 530

|Isc(C2
n)| 9 027 52 466 297 481 1 670 554 9 354 899

|Ret(C2
n)| 12 997 68 596 362 507 1 931 676 10 401 429

Table 1. |Sts(C2
n)|, |Isc(C2

n)|, and |Ret(C2
n)| for n ∈ {1, . . . , 10}

(B) A congruence Θ ∈ Con(A) is a retraction congruence of A if and only if
there exists a subalgebra S of A such that (3.3) holds.

Proof. To prove (A), assume that S is a retract. Take a retraction f : A → A
with f(A) = S, and let Θ := ker f . For a Θ-block X, let uX := f(x0) for some
(equivalently, for any) x0 ∈ X. Since f(uX) = f(f(x0)) = f(x0) = uX gives
that (uX , x0) ∈ Θ, we have that uX ∈ X and X = {y ∈ A : f(y) = uX}. By
Remark 2.5, X ∩ S = {y ∈ A : f(y) = uX and f(y) = y} = {uX}. Hence, (3.3)
holds. Conversely, if (3.3) holds for a subalgebra S, then f : A → S, defined by the
rule {f(x)} = S ∩ (x/Θ) is a retraction and S = f(A) is a retract.

To prove (B), let Θ ∈ Con(A). Assuming that Θ ∈ RCon(A), pick a retraction
f : A → A with ker f = Θ, and let S := f(A). Then S is a retract of A and we are
in the same situation as after the second sentence of the proof of part (A), whereby
(3.3) holds. Conversely, assume that there is a subalgebra S of A such that (3.3)
holds. Then Θ is the kernel of f : A → S, defined by the rule {f(x)} = S ∩ (x/Θ).
Since f is a retraction, Θ ∈ RCon(A), as required. �

Observation 3.3. If C is a finite chain, then each of its nonempty subsets is a
retract of C. (The empty set is not a retract but it belongs to Ret(C) by definition.)
Furthermore, every congruence of C is a retraction congruence.

Proof. It is well known that the blocks of a congruence of a lattice are convex
sublattices. This implies easily that

an equivalence Θ of C is a congruence of the finite chain
C if and only if every Θ-block is an interval of C.

}

(3.4)

Now if S is a nonempty subset of C, then (3.4) makes it is easy to find a congruence
Θ of C such that (3.3) holds. If Θ is a congruence of C, then there is a sublat-
tice S satisfying (3.3) since every nonempty subset is a sublattice. In both cases,
Observation 3.2 applies, and we conclude Observation 3.3. �

Corollary 3.4. If a lattice L is the direct product of finitely many finite chains,
then RCon(L) = Con(L), whence RCon(L) = (RCon(L),⊆) is a boolean lattice.

Proof. Combine Proposition 2.2, Observation 3.3, and the fact that the congruence
lattice of a chain (and that of any finite modular lattice) is boolean; see, for example,
Grätzer [14, Theorem 357]. �
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Figure 1. Illustration of a left injective chain and also for Case 1

Proof of Theorem 3.1. Even if m = n, Cm denotes the first direct factor while Cn

stands for the second direct factor of the direct product G = Cm × Cn.
To prove the “⊇” inclusion for part (B), assume that S ∈ Sts(G) ∪ Isc(G); we

need to show that S is a retract. We can assume that |S| ≥ 2 since otherwise S
is trivially a retract. If S ∈ Sts(G), then S is a retract by Observations 2.4 and
3.3. Thus, we can assume that S ∈ Isc(G). Let, say, S be a left injective skew
chain; see Figure 1 where m = 7, n = 6, and S consists of the black-filled elements
of G. Then π1(S) is a retract of Cm by Observation 3.3, whereby Observation 3.2
allows us to pick a retraction congruence Θ1 ∈ Con(Cm) such that for each block
X of Θ1, we have that |X ∩ π1(S)| = 1. Let Θ2 = ∇Cn

, the largest congruence of
Cn, and define Θ = Θ1 × Θ2 ∈ Con(G). Since π1 is injective, each block of Θ has
exactly one element of S. Hence S is a retract of G by Observation 3.2, and we
have verified the ‘⊇” inclusion for part (B).

To prove the converse inclusion, let S ∈ Ret(G) \ Sts(G); we have to show
that S ∈ Isc(G). Since S /∈ Sts(G), we know that |S| ≥ 2. Observation 3.2(A)
allows us to pick a congruence Θ ∈ Con(G) such that for each Θ-block X, we
have that |S ∩ X| = 1. By the Fraser–Horn property, see Lemma 2.1(B), there are
Θ1 ∈ Con(Cm) and Θ2 ∈ Con(Cn) such that Θ = Θ1 ×Θ2. Clearly, Θ1 and Θ2 are
uniquely determined by Θ. There are two cases.

Case 1. We assume that Θ1 = ∇Cm
or Θ2 = ∇Cn

. Both equalities cannot simul-
taneously hold since otherwise Θ = ∇G would contradict that |S| > 1. Hence,
we can assume that Θ1 6= ∇Cm

but Θ2 = ∇Cn
; see Figure 1 where S consists

of the black-filled elements of G. If x, y ∈ S such that π1(x) = π1(y), then
(π1(x), π1(y)) ∈ Θ1 and (π2(x), π2(y)) ∈ ∇Cn

= Θ2 gives that (x, y) ∈ Θ1×Θ2 = Θ,
that is, y ∈ x/Θ, whence x, y ∈ S ∩x/Θ yields that x = y. Therefore, π1eS is injec-
tive, that is, S is a left injective subset of G. If we had that |π2(S)| = 1, then S =
π1(S)×π2(S) ∈ Sts(G) would contradict our assumption that S ∈ Ret(G)\Sts(G).
Hence, |π2(S)| > 1. (In the figure, π2(S) consists of the two black-filled elements of
π2(G) = Cn = C6.) By way of contradiction, we are going to prove that S is a chain.
Suppose to the contrary that this is not so, and pick two incomparable elements
x = (x1, x2) and y = (y1, y2) from S. The components of x and y belong to chains,
whereby x ‖ y is only possible if either x1 > y1 and x2 < y2, or x1 < y1 and x2 > y2.
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By symmetry, we can assume the first alternative, that is, x1 > y1 and x2 < y2.
Let z := x ∨ y = (x1, y2). Since S is a sublattice, z ∈ S. Since π1(x) = x1 = π1(z),
we have that (π1(x), π1(z)) ∈ Θ1. We also have that (π2(x), π2(z)) ∈ ∇Cm

= Θ2.
Thus, (x, z) ∈ Θ1 × Θ2 = Θ, which gives that f(x) = f(z). Hence, using that f
is order-preserving and y ≤ z, we have that y = f(y) ≤ f(z) = f(x) = x, contra-
dicting that x ‖ y. Therefore, S is a chain, so it is an injective chain belonging to
Isc(G), as required. This completes Case 1.

Case 2. We assume that Θ1 6= ∇Cm
and Θ2 6= ∇Cn

; see Figure 2, where m = 7,
n = 6, and S consists of the black-filled elements. Then

C1/Θ1 is a non-singleton chain {U0 ≺ U1 ≺ · · · ≺ Us−1}, (3.5)

where U0, . . . , Us−1 are the Θ1-blocks. Similarly, C2/Θ2 = {V0 ≺ V1 ≺ · · · ≺ Vt−1}
where the Vj ’s are the Θ2-blocks. Since Θ = Θ1×Θ2, the Θ-blocks are the Ui×Vj ’s,
i ∈ {0, 1, . . . , s− 1} and j ∈ {0, 1, . . . , t − 1}. In the figure, the Θ-blocks are grey-
filled. Let wi,j denote the unique element of S ∩ (Ui × Vj). We claim that, for
i, i′ ∈ {0, 1, . . . , s− 1} and j, j′ ∈ {0, 1, . . . , t − 1},

wi,j ∧ wi′,j′ = wmin{i,i′},min{j,j′} and wi,j ∨ wi′,j′ = wmax{i,i′},max{j,j′}. (3.6)

To verify (3.6), observe that (Ui × Vj) ∧ (Ui′ × Vj′), computed in L/Θ, contains
wi,j ∧wi′,j′ ∈ S and equals Umin{i,i′} × Vmin{j,j′}. Since this Θ-block only contains
one element from S, we obtain the first half of (3.6). Hence, (3.6) follows by duality.

Since Cm and Cn are chains, it follows from (3.5), its counterpart for the Vj ’s,
wi,j ∈ Ui × Vj , wi′,j′ ∈ Ui′ × Vj′ , and (3.6) that

if i ≤ i′ and j ≤ j′, then π1(wi,j) ≤ π1(wi′,j′) and π2(wi,j) ≤ π2(wi′,j′) (3.7)

for i, i′ ∈ {0, 1, . . . , s− 1} and j, j′ ∈ {0, 1, . . . , t − 1}.
Next, let xs−1 := π1(ws−1,0), y0 := π2(ws−1,0), x0 := π1(w0,t−1), and yt−1 :=

π2(w0,t−1). Then ws−1,0 = (xs−1, y0) and w0,t−1 = (x0, yt−1). We know from (3.7)
that x0 ≤ xs−1 and y0 ≤ yt−1. These inequalities and (3.6) give that w0,0 = ws−1,0∧
w0,t−1 = (xs−1, y0) ∧ (x0, yt−1) = (x0, y0). Hence, π1(w0,0) = x0 = π1(w0,t−1) and
π2(w0,0) = y0 = π2(ws−1,0). Thus, (3.7) gives that π2(wi,0) = y0 and π1(w0,j) = x0

for all meaningful i and j. Therefore, letting xi = π1(wi,0) and yj := π2(w0,j),

wi,0 = (xi, y0) and w0,j = (x0, yj) (3.8)

for i ∈ {0, . . . , s− 1} and j ∈ {0, . . . , t − 1}. We obtain from (3.7) that x0 ≤ x1 ≤
· · · ≤ xs−1 and y0 ≤ y1 ≤ · · · ≤ yt−1. Since w0,0,, w1,0, . . . , ws−1,0 belong to
different Θ-blocks, we have that

x0 < x1 < · · · < xs−1 and, similarly, y0 < · · · < yt−1. (3.9)

Let X := {x0, . . . , xs−1} and Y := {y0, . . . , ys−1}. Combining (3.6), (3.8), and
(3.9), we obtain that, for all i ∈ {0, . . . , s− 1} and j ∈ {0, . . . , t − 1},

wi,j = wi,0 ∨ w0,j = (xi, y0) ∨ (x0, yj) = (xi, yj).

Hence, S = {wi,j : 0 ≤ i < s and 0 ≤ j < t} = X × Y . This contradicts the
assumption that S /∈ Sts(G), whereby Case 2 cannot occur.

Now that we have excluded Case 2, Case 1 can only hold. Therefore, we conclude
the converse inclusion for part (B). Thus, Ret(G) = Sts(G) ∪ Isc(G), as required.
Since Sts(G)∩ Isc(G) = ∅ is trivial by definition, part (B) of the theorem has been
proved.
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Figure 2. Illustration for Case 2

Next, we deal with part (A). The rule (X1×X2)∩(Y1×Y2) = (X1∩Y1)×(X2∩Y2)
shows that Sts(G) is closed with respect to intersection. So if X, Y ∈ Sts(G), then
X∩Y ∈ Sts(G), whence part (B) gives that X∩Y ∈ Ret(G). Now let X, Y ∈ Ret(G)
but, say, X /∈ Sts(G). Then X is an injective skew chain; say, it is left injective.
Since X ∩ Y is a subset of X, we obtain that X ∩ Y is a left injective chain. If
it is not a straight subset, then X ∩ Y ∈ Isc(G) ⊆ Ret(G) by part (B). If X ∩ Y
is a straight subset, then X ∩ Y ∈ Sts(G) ⊆ Ret(G) again. Therefore, Ret(G) is
closed with respect to the binary intersection. By finiteness and since Ret(G) has
a largest member, G, we conclude part (A).

The argument for part (D) relies on part (B) again. We use the notation Cm =
{0 = c0 ≺ c1 ≺ · · · ≺ cm−1 = 1} and Cn = {0 = d0 ≺ d1 ≺ · · · ≺ dn−1 = 1}. The
principal ideals ↓ci and ↓dj are understood in Cm and Cn, respectively. Without
loss of generality, we can assume that m ≤ n. Take the following two chains in
Ret(G):

H1 :=
{

∅, {(c0, d0)}, {(c0, d0), (c1, d1)}, . . . , {(c0, d0), . . . , (cm−1, dm−1)},

Cm × ↓dm−1, Cm × ↓dm, . . . , Cm × ↓dn−1

}

and

H2 :=
{

∅, ↓c0 × ↓d0, c1 × ↓d0, . . . , ↓cm−1 × ↓d0 = Cm × {d0},

Cm × ↓d1, . . . , Cm × ↓dn−1 = Cm × Cn

}

.

Based on part (B), it is straightforward to see that both H1 and H2 are maximal
chains in Ret(G). Since |H1| = n+2 = max{m, n}+2 and |H2| = m+n, we obtain
the validity of part (D).

To prove part (C), it suffices to show that |Isc(G)| = w(m, n)| since it is triv-
ial that |Sts(G)| = t(m, n). To obtain an s-element left injective chain X =
{(x1, y1), . . . , (xs, ys)}, we need to select (x1, . . . , xs) and (y1, . . . , ys) independently
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so that x1 < x2 < · · · < xs and y1 ≤ y2 ≤ · · · ≤ ys. We can do this in
(

m
s

)

·
(

n+s−1

s

)

ways. This explains the first summand after the big
∑

sign in (3.1). Note that
(

m
s

)

is 0 if s > m. Similarly, the next summand is the number of right injective chains.
The sum of the first two summands has to be corrected; first with the number of
doubly (that is, both left and right) injective skew chains, then with the number of
left injective straight chains, and finally with the number of right injective straight
chains; this is where the three subtrahends in (3.1) come from. (For chains, since
s ≥ 2, the properties “doubly injective”, “left injective and straight”, and “right in-
jective and straight” mutually exclude each other.) Therefore, |Isc(G)| = w(m, n),
completing the proof of the theorem. �

4. Some easily provable facts

This section collects some easily provable facts about retracts and related con-
cepts. Some other facts are presented in Czédli [4] and in other sections of the
present paper. Recall that an algebra P in a variety V is projective in V if for any
algebras A, B ∈ V, any homomorphism p : P → B and any surjective homomor-
phism g : A → B, there is a homomorphism h : P → A such that p = g ◦ h. This is
visualized by the commutativity of the triangle below.

The standard category theoretic approach would be to only require that g is an
epimorphism. Although there are varieties in which epimorphism need not be
surjective, we go after, say, Freese an Nation [13] and require g to be surjective
rather than just stipulating that g is an epimorphism. There is a well-known
connection between retracts and projective algebras; see Freese and Nation [13]
or Ploščica [21]. Below, we present another connection.

Observation 4.1. If Θ is a congruence of an algebra A such that A/Θ is projective
in the variety generated by A, then Θ is a retraction congruence.

Proof. Let g : A → A/Θ be the natural homomorphism defined by u 7→ u/Θ; it is
surjective. Let p be the identity map idA/Θ : A/Θ → A/Θ. Since A/Θ is projective,
there is a homomorphism h : A/Θ → A such that idA/Θ = g ◦ h. Now if X is a
Θ-block, that is, X ∈ A/Θ, then h(X) ∈ X since X = idA/Θ(X) = g(h(X)) =
h(X)/Θ. Furthermore, the homomorphic image {h(X) : X ∈ A/Θ} is a subalgebra
of A. Hence, Θ ∈ RCon(A) by Observation 3.2(B). �

Figure 3. RC and Gsap
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Definition 4.2. Assume that A• and X? are subsets of a lattice K and Γ is a
property of possible lattice embeddings with domain K. We say that a retract S of
a lattice L satisfies the absorption property AP(K, A•, X?, Γ) if for every embedding
g : K → L such that g satisfies Γ and g(A•) ⊆ S, we have that g(X?) ⊆ S. If Γ
automatically holds for any embedding, then we omit it from the notation. If all
retracts of L satisfy an absorption property, then we say that the retracts of L
satisfy the absorption property in question. In Figures 3 and 4, each of the Hasse-
diagrams defines an absorption property so that the diagram determines K while
A• and X? are the sets of the black-filled elements and that of the star-shaped
elements, respectively. The property Γ, if relevant, is written in the figure. If an
absorption property AP(K, A•, X?) is denoted by a string ~σ, then K(~σ), A•(~σ),
and X?(~σ) stand for its ingredients, K, A•, and X?, respectively.

The concept of absorption properties (without Γ) was introduced in Czédli [4].
Among the reasonable absorption properties, the simplest one is probably RC,
which is given on the left of Figure 3. Another way of saying that a sublattice S
of a lattice L satisfies RC is to say that S is closed with respect to taking relative
complements.

Observation 4.3. The retracts of a distributive lattice are closed with respect to
taking relative complements, that is, they satisfy RC.

Proof. Let S be a retract of a distributive lattice L and let f : L → L be a retraction
with f(L) = S. Assume that a, b, c, d ∈ L form a sublattice isomorphic to the four-
element boolean lattice with bottom a and top b, and a, b, c ∈ S. Then f(d) ∧ c =
f(d) ∧ f(c) = f(d ∧ c) = f(a) = a, and we similarly obtain that f(d) ∨ c = b.
Hence, both d and f(d) are complements of c in the interval [a, b]L, which is a
distributive lattice. The uniqueness of complements in a distributive lattice yields
that f(d) = d, implying that d ∈ S, as required. �

If x is an element of a lattice L, x 6= 0L, x 6= 1L, and x is comparable with
every element of L, then x is called a narrows (of L). If we form the glued sum of
two squares (i.e., four-element boolean lattices) to obtain a seven-element lattice
K, then the middle element y of K is a narrows of K. However, y need not remain
a narrows if we embed K into another lattice. The condition Γ on the embedding
g we consider in Gsap := AP+(K, A•, X?, Γ) given by Figure 3 is that g(y) should
be a narrows. (The acronym comes from GGGlued sssquares aaabsorption ppproperty.)

Observation 4.4. The retracts of every lattice satisfy the absorption property
Gsap.

Proof. Let K := K(Gsap), A• := A•(Gsap), and X? := X?(Gsap). Assume that K
is a sublattice and S is a retract of a lattice L, y is a narrows of L, and {a, b, c, d} =
A• ⊆ S. Pick a retraction f : L → L such that S = f(L). In fact, by Remark 2.5,
S = {u ∈ L : f(u) = u}. If we had that f(x) ≥ b, then a = f(a) = f(x ∧ b) =
f(x) ∧ f(b) = f(x) ∧ b = b would be a contradiction. Hence, f(x) 6≥ b, implying
that f(x) 6≥ y. But f(x) and y are comparable since y is a narrows, whence we
obtain that f(x) ≤ y. Thus, f(y) = f(x ∨ b) = f(x) ∨ f(b) = f(x) ∨ b ≤ y. A dual
argument that uses z instead of x yields that f(y) ≤ y. Therefore, f(y) = y implies
that X? = {y} ⊆ S, as required. �

The absorption properties P (8, 3) and P (9, 4) are given by Figure 4. While
P (8, 3) is a selfdual property, the dual of P (9, 4) will be denoted by P (9, 4)dual.
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Figure 4. The absorption properties occurring in Observation 4.5

Observation 4.5. The retracts of planar distributive lattices satisfy each of the
absorption properties P (8, 3), P (9, 4), and P (9, 4)dual.

Proof. Since the class of planar distributive lattices is selfdual, we need not deal
with P (9, 4)dual. Let P ′(8, 3) and P ′(9, 4) denote the absorption properties that we
obtain from P (8, 3) and P (9, 4) by changing X?(P (8, 3)) and X?(P (9, 4)) to {y} and
{x, y}, respectively. It is proved in Czédli [4] that the retracts of lattices belonging
to a particular class satisfy P ′(8, 3) and P ′(9, 4). The class considered there contains
all planar distributive lattices, whereby the retracts of planar distributive lattices
satisfy P ′(8, 3) and P ′(9, 4). Applying Observation 4.3, we obtain that they satisfy
P (8, 3) and P (9, 4). �

Figure 5. L8 and L12

5. Examples

Example 5.1. For the modular lattice L12 given in Figure 3, the poset Ret(L12) =
(Ret(L12),⊆) is not a lattice.

Proof. With M3 = [e, s], L12 is a Hall–Dilworth gluing of M3×C2 and C2×C2. This
implies the modularity of L12 since we know from Hall and Dilworth [15, Lemma
4.1] that gluing preserves modularity.

Observe that [t, 1] = {t, 1} /∈ Ret(L12). Suppose the contrary and take a re-
traction f : L12 → L12 such that f(L12) = {t, 1}. Then ker f collapses two distinct
elements of the ”diamond” [e, s]. Since the diamond is a simple lattice, (e, s) ∈ ker f .
Hence, t = f(t) = f(t ∨ e) = f(t) ∨ f(e) = f(t) ∨ f(s) = f(t ∨ s) = f(1) = 1, which
is a contradiction. Thus, {t, 1} /∈ Ret(L12).

Let S1 := [e, 1] and S2 := [t, 1]∪ [0, d]. Both are retracts with the same retraction
congruence, the non-singleton blocks of which are given by grey ovals in the diagram
of L12. We claim that {S1, S2} has no greatest lower bound in Ret(L12). Since any
of their lower bounds is a subset of S1 ∩S2 = {t, 1} but {t, 1} /∈ Ret(L12), there are
at most three lower bounds, ∅, {t}, and {1}. They are retracts, whence there are
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exactly three lower bounds, ∅, {t} and {1}. Since none of these three sets is larger
than the other two, S1 ∧ S2 does not exist in Ret(L12). Therefore, Ret(L12) is not
a lattice. �

Remark 5.2. RCon(L12) = Con(L12), and it is the eight-element boolean lattice.

Proof. Since the congruence lattice of a finite modular lattice is boolean by Grätzer
[14, Theorem 357], Con(L12) is a boolean lattice. The atoms in Con(L12) are the
principal congruences con(p, t), con(t, 1), and con(0, e), whereby |Con(L12)| = 8
and it is easy to list the congruences of L12. For each congruence Ψ 6= ∇L12

, there
are two easy ways to conclude that Ψ ∈ RCon(L12). First, we can easily give a
retraction with kernel Ψ. Second, we can use the criterion given by Balbes [1]
to see that L12/Ψ is projective in the variety of distributive lattices, and then
Ψ ∈ RCon(L12) follows from Observation 4.1. �

Although we do not know whether, for a lattice L, RCon(L) is always a lattice
or when it is a lattice, the following example points out that the situation is usually
different from what Corollary 3.4 and Remark 5.2 may suggest.

Example 5.3. For L8 given in Figure 5, RCon(L8) 6= Con(L8), and RCon(L8) is
a non-distributive lattice.

Proof. Let Θ = con(c, d) be the principal congruence indicated in the figure. Except
for {c, d}, its blocks are singletons. Hence, L8 \ {c} and L8 \ {d} are the only
candidates for S in Observation 3.2(B) but none of them is a sublattice. Thus,
Θ /∈ RCon(L8), witnessing that RCon(L8) 6= Con(L8).

Applying Grätzer [14, Theorem 357], it is easy to see that Con(L8) is a boolean
lattice consisting of 32 elements. Using Observation 4.1 and the criterion of Balbes
[1], it is not hard to see that all other congruences are retraction congruences. That
is, RCon(L8) = Con(L8) \ {con(c, d)}. Hence, RCon(L8) is obtained from a finite
boolean lattice by omitting an atom. By the Duality Principle, it suffices to show
that

if d is a coatom of a boolean lattice K with |K| ≥ 8, then
the subposet (K \ {d},≤) is a non-distributive lattice.

(5.1)

Indeed, the join-irreducible elements (that is, the elements with exactly one lower
cover) are the same in K and K \ {d}, and these elements are antichains in both
cases. If K \ {d} was a distributive lattice, then the structure theorem of finite
distributive lattices, see Grätzer [14, Theorem 107], would give that K and K \ {d}
are isomorphic, contradicting that |K \ {d}| < |K|. Since d is meet-irreducible,
K \ {d} is meet-closed. Also, K \ {d} contains 1 = 1K , whereby it is a lattice. �

Figure 6. Where P (8, 3) and P (9, 4) fail
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Example 5.4. The distributive lattice L = C3×C3×C2 has a retract S that satisfies
none of P (8, 3), nor P (9, 4). Moreover, no matter how we reduce X? to some of
its nonempty subsets, the weaker absorption property we obtain from P (8, 3) or
P (9, 4) in this way is not satisfied by S. In Figure 6, L is diagrammed twice; S
consists of the black-filled elements.

Proof. Using Θ given by the grey-filled ovals in Figure 6, Observation 3.2(A) shows
that S is indeed a retract of L. The embedding is defined by the labeling. �
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