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Dedicated to the memory of Ivo G. Rosenberg

Abstract. A 2-uniform tolerance on a lattice is a compatible tolerance re-

lation such that all of its blocks are 2-element. We characterize permuting
pairs of 2-uniform tolerances on lattices of finite length. In particular, any two

2-uniform congruences on such a lattice permute.

1. Introduction and result

In addition to his famous theorem on functional completeness over finite sets,
the words “tolerance” and “lattice” also remind me of Ivo G. Rosenberg, since both
are common in the title of the present paper and that of our joint lattice theoretical
paper [5] (co-authored also by I. Chajda). A part of my motivation is to keep his
memory alive.

This short paper is structured as follows. First, after few necessary definitions,
we formulate our main result, Theorem 1.1. Then, still in this section, we present
the rest of our motivation and we point out how the present theorem supersedes
its precursor on 2-uniform congruences. Section 2 is devoted to the proof of Theo-
rem 1.1.

Definitions and the result. By a tolerance T on a lattice L we mean a reflexive,
symmetric, and compatible relation on L. Following the monograph Chajda [3],
several papers referenced in [3], and other papers like Bandelt [1], Chajda, Czédli
and Halaš [4, 5], Czédli [8, 11], Czédli and Grätzer [12], and Grygiel and Rad-
eleczki [14], the maximal subsets X of L such that X2 ⊆ T are called the blocks of
T . So a block of T is a maximal subset X of L with the property that (a, b) ∈ T for
all a, b ∈ X. Note that tolerance blocks occur in mathematics outside lattice theory
often under different names including cliques in graphs and simplexes in geometry.

If T is a tolerance such that each of its blocks consists of exactly two elements,
then we call it a 2-uniform tolerance on L. As usual, for tolerances T and S on L,
the product T ◦S is defined to be {(x, z) : there exists a y ∈ L such that (x, y) ∈ T
and (y, z) ∈ S}. We say that T and S permute if T ◦ S = S ◦ T . Note by Chajda
and Zelinka [7] that T and S permute if and only if T ◦ S is also a tolerance.

Tolerance blocks are known to be convex sublattices by, say, Czédli [8]. Hence,
each block of a 2-uniform tolerance is a two-element interval, which is represented
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by an edge in the diagram if the lattice happens to be finite. Let T be a 2-uniform
tolerance on a lattice L, and let u ∈ L. Since every T -block containing u is a
two-element interval and there exists such a block, at least one of the following two
possibilities holds:

(i) there exists a lower cover v of u (in notation, v ≺ u) such that {v, u} is a
T -block; then u is called a T -top (element) and v is the lower T -neighbour

of u; or
(ii) there exists an upper cover w of u such that {u, w} is a T -block; then u is

called a T -bottom (element) and w is the upper T -neighbour of u.

Observe that v in (i) is unique and so is w in (ii) (this explains the definite articles
preceding them). Indeed, if v1 and v2 were distinct lower covers of u with {v1, u}
and {v2, u} being T -blocks, then (v1, u) ∈ T and (v2, u) ∈ T would lead to (v1 ∧
v2, u∧u) = (v1 ∧ v2, u) ∈ T , we could extend {v1 ∧ v2, u} to a T -block, this T -block
would contain v1 ∧ v2, v1, v2, and u by its convexity, but this would contradict the
assumption that all T -blocks are two-element. This proves that v in (i) is unique,
and the uniqueness of w in (ii) follows by duality. We have mentioned that at least
one of (i) and (ii) holds. Note that they can simultaneously hold, that is, both v
and w can exist; see the atoms on the left of Figure 1 for examples.

Next, assume that T and S are 2-uniform tolerances on a lattice L, and let u ∈ L.
If u is both a T -bottom and an S-bottom, then we call it a two-fold (T, S)-bottom,
or a two-fold bottom if T and S are understood. Two-fold (T, S)-tops are defined
dually as elements that are simultaneously T -tops and S-tops. Finally, we say that
T and S are amicable if the following two conditions hold for every u in L.

(A1) If u is a two-fold (T, S)-top, u ≺ v and (u, v) ∈ T ∪S, then v is also a two-fold
(T, S)-top.

(A2) If u is a two-fold (T, S)-bottom, v ≺ u and (v, u) ∈ T ∪ S, then v is also a
two-fold (T, S)-bottom.

Note that (A1) is the dual of (A2). The conjunction of (A1) and (A2) is easy to
imagine as follows: in every component of the graph (L; T ∪ S), covers of two-fold
tops are two-fold tops and lower covers of two-fold bottoms are two-fold bottoms.
Note that for permuting 2-uniform tolerances T and S of a finite lattice L, the graph
(L; T ∪ S) can have several components; this is exemplified by Figure 1. Now, we
are in the position to formulate our result.

Theorem 1.1. Let T and S be 2-uniform tolerances on a lattice L that contains

no infinite chain. Then T and S permute if and only if they are amicable.

History and further motivation. Beginning with Chajda and Zelinka [6], sev-
eral papers deal with tolerances on lattices and lattice-like structures. Without
seeking completeness, this is exemplified by Bandelt [1, 2], Chajda [3], Chajda,
Czédli, and Rosenberg [4], Czédli [8], Czédli and Grätzer [12], Grygiel and Rad-
eleczki [14], and Kindermann [16]. However, the history of the research leading to
the present paper began with a problem raised by Grätzer, Quackenbush, and E.
T. Schmidt [13]. They asked whether a finite lattice L is necessarily congruence
permutable if any two blocks of each congruence are isomorphic (sub)lattices. Soon
thereafter, Kaarli [15] gave an affirmative answer; in fact, he proved even more:
if any two blocks of each congruence are of the same size, then the finite lattice
in question is congruence permutable. This result was followed by Czédli [9] and
[10], which state that in certain finite algebras (including finite lattices), any two
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2-uniform congruences permute; a 2-uniform congruence is, of course, a 2-uniform
tolerance that happens to be a congruence. Recently, Czédli [11] has applied 2-
uniform (and even more general) tolerances in a new construction of modular lat-
tices.

Clearly, any two 2-uniform congruences are amicable. Hence, Theorem 1.1 im-
mediately implies the following corollary.

Corollary 1.2. If all chains of a lattice L are finite, then any two 2-uniform

congruences of L permute.

Although this statement is formulated only for lattices, it supersedes [9] and
[10] in the sense that the lattice in Corollary 1.2 need not be finite. For n ∈
N := {1, 2, 3, . . .}, let Cn denote the n-element chain. In order to show an infinite
example that belongs to the scope of Corollary 1.2, let K be an arbitrary infinite
lattice without infinite chains. (For example, we can take all the Cn, 3 ≤ n ∈ N, and
glue their bottoms into a common bottom and glue their tops into a common top.)
Define L := C2×C2×K, and let α and β be the kernel of the first projection and that
of the second projection, respectively; then α and β are 2-uniform congruences and
L has no infinite chain. Two examples of amicable pairs of 2-uniform tolerances are
shown if Figure 1, where the T -blocks are given by solid grey ovals while the S blocks
by dotted black ones. Finally, note that neither Theorem 1.1, nor Corollary 1.2 can
be extended to an arbitrary lattice. This is exemplified by the lattice of all integer
numbers with the usual ordering; this lattice has exactly two 2-uniform congruences
but they do not permute.

Figure 1. Two examples

2. The proof of the result

Lemma 2.1. Let L be a lattice without infinite chains, and let R, T , and S be 2-
uniform tolerances on L. Then, for any x, y, z, a, b, u ∈ L, the following assertions

hold.

(i) If x and y are lower R-neighbours of z, then x = y.
(ii) If (x, y) ∈ R, then x = y, or x ≺ y, or y ≺ x.

(iii) If a 6= b, a is the lower T -neighbour of u, and b is the lower S-neighbour of

u, then a ∧ b is the lower S-neighbour of a and the lower T -neighbour of b.
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Although this lemma is a trivial folkloric consequence of definitions, we give a
short proof for convenience.

Proof. By Zorn’s Lemma, any X ⊆ L with X2 ⊆ R extends to a block of R,
whereby X2 ⊆ R implies that |X| ≤ 2. We know from, say, Czédli [8] that the
blocks of R are convex sublattices. If x and y were distinct lower R-neighbours
of z, then we would have (u, z) := (x ∧ y, z ∧ z) ∈ R, we could pick a block B
of R such that {u, z} ⊆ B, so [u, z] ⊆ B, contradicting {u, z, x, y} ⊆ [u, v] and
|B| = 2. This shows (i). Part (ii) follows from the trivial fact that it describes the
only possibilities where x and y belong to an interval of size at most 2. Finally,
to prove (iii), assume its premise. Then a and b are incomparable (in notation,
a ‖ b), since both are lower covers of u by (ii). Hence, {a, b} ∩ {a ∧ b} = ∅. Since
(a ∧ b, a) = (a ∧ b, a ∧ u) ∈ S, we have that {a ∧ b, a}2 ⊆ S. Hence, {a ∧ b, a} is a
block of S, and a ∧ b is the lower S-neighbour of a. Since (a, S) and (b, T ) play a
symmetric role, (iii) follows. �

If u is a two-fold (T, S)-bottom, then there are two possibilities. Namely, either
the upper T -neighbour and the upper S-neighbour of u are different and we say
that u is a split (T, S)-bottom, or these two upper neighbours are the same and we
call u an adherent (T, S)-bottom. Dually, if u is a two-fold (T, S)-top, then it is
either a split (T, S)-top, or an adherent (T, S)-top, depending on whether its lower
neighbours are distinct or equal, respectively. Armed with these concepts, we are
going to prove the following lemma, which is a bit more than what the necessity
part of Theorem 1.1 would require.

Lemma 2.2. If T and S are permuting 2-uniform tolerances on a lattice L without

infinite chains, then the following four conditions are satisfied for every u ∈ L.

(i) If u is a split (T, S)-top, u ≺ v, and (u, v) ∈ T ∪ S, then v is a split

(T, S)-top.
(ii) If u is an adherent (T, S)-top, u ≺ v, and (u, v) ∈ T ∪ S, then v is an

adherent (T, S)-top.
(iii) If u is a split (T, S)-bottom, v ≺ u, and (v, u) ∈ T ∪ S, then v is a split

(T, S)-bottom.

(iv) If u is an adherent (T, S)-bottom, v ≺ u, and (v, u) ∈ T ∪ S, then v is an

adherent (T, S)-bottom.

Proof. With the assumptions of the lemma, in order to prove (i), let u be a split
(T, S)-top, u ≺ v and (u, v) ∈ T ∪ S. Since T and S play a symmetric role, we can
assume that (u, v) ∈ T . The lower T -neighbour and the lower S-neighbour of u
will be denoted by a and b, respectively; note that a ‖ b, since a and b are distinct
lower covers of u by Lemma 2.1(ii). Since (b, v) ∈ S ◦ T and S ◦ T = T ◦ S, there
exists an element c such that (b, c) ∈ T and (c, v) ∈ S. Observe that v 6≤ c, because
otherwise b < u < v ≤ c together with (b, c) ∈ T would violate Lemma 2.1(ii).
Hence, again by 2.1(ii), c ≺ v and c is a lower S-neighbour of v. If c 6= u, then v
is a split (T, S)-top, as required. Hence, it suffices to exclude that c = u. For the
sake of contradiction, suppose that c = u. Then (b, u) = (b, c) ∈ T indicates that
a and b are distinct lower T -neighbours of u, contradicting Lemma 2.1(i). This
contradiction completes the argument proving (i). By duality, we conclude the
validity of (iii).

Next, to prove (ii), let u be an adherent (T, S)-top, u ≺ v and (u, v) ∈ T ∪ S.
Again, we can assume that (u, v) ∈ T . Denote the common lower T -neighbour and
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S-neighbour of u by a. Since (a, v) ∈ S ◦T = T ◦S, there is an element c such that
(a, c) ∈ T and (c, v) ∈ S. Since both c ≤ a < u < v and a < u < v ≤ c are excluded
by Lemma 2.1(ii), we obtain from Lemma 2.1(ii) that a ≺ c ≺ v. As two upper
T -neighbours of a, the elements u and c are the same by the dual of Lemma 2.1(i).
Hence, (u, v) = (c, v) ∈ S shows that v is an adherent (T, S)-top, as required. This
shows the validity of (ii), and (iv) follows also by duality. �

Proof of Theorem 1.1. The necessity part follows from Lemma 2.2. In order to
prove the sufficiency part, assume that T and S are amicable. Since T and S play
a symmetric role, it suffices to show that T ◦ S ⊆ S ◦ T . So let (a, b) ∈ T ◦ S; we
need to show that (a, b) ∈ S ◦T . We can assume that (a, b) /∈ T ∪S, since otherwise
the task is trivial. By the definition of T ◦ S, there exists an element u such that
(a, u) ∈ T and (u, b) ∈ S. Apart from duality, Lemma 2.1(ii) allows only two cases:
either a ≺ u � b, or a ≺ u ≺ b. Since Lemma 2.1(iii) implies immediately that
(a, b) ∈ S ◦T in the first case, it suffices to deal only with the second case. That is,
a ≺ u ≺ b. Let x0 := a, x1 := u, x2 := b, and define a sequence x3, x4, . . . of further
elements as follows. If i is even and xi is a T -bottom, then let xi+1 be the unique
upper T -neighbour of xi. If i is odd and xi is an S-bottom, then let xi+1 be the
unique upper S-neighbour of xi. Note that, in addition to the elements xi, i > 2,
the elements x1 = u and x2 = b also obey these rules. Since x2 ≺ x3 ≺ x4 ≺ . . .
but L has no infinite chain, there is a unique 2 ≤ n ∈ N such that x2, x3, . . . , xn

are defined but xn+1 is not. There are two (similar) cases depending on the parity
of n. First, assume that n is even. Since the sequence has terminated with xn, the
element xn+1 does not exists, that is, xn is not a T -bottom. Hence, xn is a T -top.
But xn is also an S-top, whereby xn is a two-fold (T, S)-top. The same argument,
with the roles of T and S interchanged, shows that xn is a two-fold (T, S)-top also
in the second case where n is odd. So, xn is a two-fold (T, S)-top no matter what
the parity of n is. We claim that

xn−2 is a two-fold (T, S)-bottom. (2.1)

If xn is an adherent (T, S)-top, then we obtain from Lemma 2.1(i) that xn−1 is
an adherent (T, S)-bottom, whence xn−2 is a two-fold (T, S)-bottom by (A2), as
required. If the two-fold (T, S)-top xn is not an adherent one, then it is a split
(T, S)-top, and there are two cases. If n is even, then xn−1 is a lower S-neighbour
of xn, and xn has a unique lower T -neighbour c, which is distinct from xn−1. By
Lemma 2.1(iii), xn−1 ∧ c is a lower T -neighbour of xn−1 and a lower S-neighbour
of c. But xn−2 is also a lower T -neighbour of xn−1, whence Lemma 2.1(i) gives
that xn−1 ∧ c = xn−2, and so xn−2 is a two-fold (split) (T, S)-bottom, as required.
The same argument works, with T and S interchanged, if n is odd. Thus, (2.1) has
been verified.

Next, we obtain from (A2) and (2.1) that a = x0 is also a two-fold (T, S)-bottom.
There are two cases to consider. First, assume that a is a split (T, S)-bottom. Then,
in addition that u is an upper T -neighbour of a, the element a has an upper S-
neighbour d such that d 6= u. By the dual of Lemma 2.1(iii), u ∨ d is an upper
S-neighbour of u and an upper T -neighbour of d. Since b is also an upper S-
neighbour of u, the dual of Lemma 2.1(i) gives that u ∨ d = b. Hence, (a, d) ∈ S
and (d, b) = (d, u∨ d) ∈ T yield that (a, b) ∈ S ◦ T , as required.

Second, assume that a is an adherent (T, S)-bottom. Then u = x1 is an (ad-
herent) two-fold (T, S)-top. Applying (A1), we have that b = x2 is also a two-fold
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(T, S)-top. Hence, b has a unique lower T -neighbour e. We claim that e = u; for
the sake of contradiction, suppose that u 6= e. Applying Lemma 2.1(iii), it follows
that u ∧ e is a lower T -neighbour of u. But a is also a lower T -neighbour of u,
whereby Lemma 2.1(i) give that u∧ e = a. On the other hand, Lemma 2.1(iii) also
gives that u ∧ e = a is a lower S-neighbour of e. Hence, a has two distinct upper
S-neighbours, u and e, which contradicts the dual of Lemma 2.1(i). This contradic-
tion shows that e = u. Armed with this equality, (a, u) ∈ S and (u, b) = (e, b) ∈ T ,
and the required (a, b) ∈ S ◦T follows. We have shown that T ◦S ⊆ S ◦T , and the
proof of Theorem 1.1 is complete. �
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