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On congruence distributivity and modularity*

GÁBOR CZÉDLI and RALPH FREESE

Let E be a lattice equation. We say E implies congruence modularity if
whenever 'J{ is a variety of algebras all of whose congruence lattices satisfy E then
all of these lattices are modular. The detinition of E implies congruence dis-
tributivity is similar. In this note we prove that the class of lattice equations which
imply congruence modularity and the class of equations which imply congruence
distributivity are both recursive. Although the proof we give is short it depends on
results from [5J [6J and [91.

This subject began with J. B. Nation who showed that there are lattice
equations strictly weaker than the modular law, which nevertheless imply congru-
ence modularity. This theorem said that any B of a certain syntactical form
implied congruence modularity [13]. In a series of subsequent papers this theorem
was extended to show other (but still rather special) syntactical forms imply

congruence modularity [2, 3,4,8, 11]. Analogous results are known for congru-
ence distributivity [ll, 13]. In th~s light the results of this note are somewhat

surprising.
In an important development, Polio constructed a variety of algebras, here

denoted g'J which did not have modul ar congruences but did satisfy a nontrivial
l,attice identity. In [5] Alan Day and the second author showed that Con (g'J) was
the unique minimal nonmodular congruence variety. (A congruence variety is a
variety of lattices generated by the congruence lattices of a variety of algebras 'Je
and is denoted Con ('JC).) With this it was not hard to obtain a characterization of
lattice equations which imply congruence modularity. We will show here that this
characterization can be made effective.

In [5] the arithmetic of g'J and Con (g'J) was worked aut in detail. Let L" be the
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congruence lattice of the free, n-generated algebra in r;J. Then L" is a finite
subdirectly irreducible splitting lattice (Theorem 4.9 of [5]). L" is a splitting lattice
means there is alattice equation {;n such that every lattice variety ejtheT satisfies {;n
or contains L", but not both.

Since Con (r;J) is the unique minimal nonmodular congruence variety, B will. imply congruence modularity if and only if Con (r;J) fails B. The key to effectively

deciding if Con (r;J) fails B is that r;J has 4-permutable congruences (see Theorem
7.6 of [5]). For t a lattice term deftne t4 inductively: x4 = x if x is a variable,
(t1/\ tZ)4 = t1/\ ti, and (t1 v tZ)4 = t1° ti o t1° ti, where o is the symbol for relational

product. The above theorem says that for any congruences Zh"" Zk on an
algebra in r;J t(Zl, . . . , Zk) = t4(Zh . . . , Zk)'

Now we mayassume B has the form U(Xh"" Xk):5 V(Xh . . . , Xk)' Then
Con (r;J) satisfies B if and only if u4:5 V4 holds for congruences of members of r;J.
Thus if Con (r;J) fails B then for some AE r;J and congruences Zh . . . , Zk there are
elements ah az E A with (ah az) E U4(Zh . . . , Zk) but (ah az) rí- V4(Zh . . . , Zk)' Now
if U=U1/\UZ then (ahaz)Eu1 and Uz. If U=U1VUZ then u4=u1ouiou1ou1.
Hence there are elements a3, a4, as E A with (ah a3) and (a4, as) in ut and
(a3, a4) and (as, az) in ui. If we continue this process until we reach the Zi'S we
obtain a finite set {ah az, . . . , a".} of elements of A, and associated with each Zi is
a partition 'Pi of {ah' . . , a".} with 'Pi ~ Zi' It is not hard to show, using the natural
homomorphism from F(J>(a1, . . . , a".) into A, that U4:5v4 fails in Con (F(J>(m».
These arguments, which go back to Malcév, have been developed into an
algorithin (described below) by Wille [15]. A detailed description of this algorithm,
together with several examples is given in [9] (see Theorem 1 of [9]).

Notice that m is 2 more than the number of o symbols in U4. Also note that
the partition 'Pi on {ah' . . , a".} can be calculated formally from U and does not
depend on A. Thus from U(Xh . . . , Xk) alone we can effectively determine m and
the partitions 'Ph"" 'pk of {ah"" a".}. Let 8i be the congruence on

. F(J>(ah . . . , a".) generate by 'Pi and if B is U(Xh . . . , Xk):5 V(Xh . . , Xk) let m(B) be
two plus the number of o symbols in U4. Then we have the following theorem
(conditions (3) and (4) are equivalent by the definition of splitting lattices).

THEOREM. Let E be a lattice equation.
(1) E implies congruence modularity
(2) Con (@I) does not satisfy E
(3) for some n, E implies ?;n
(4) for some n, L" faUs E
(5) L",(e) faUs E
(6) (al' a2) rt. V(Ob . . . , Ok) in Fg>(ab . . . , a...(e»)

~~

Then the following are equivalent:



218

Since ~ is generated by a single four element algebra L,. can eflectively be

found. Thus we have the following corollary:

COROLLARY. One can recursively decide if a lattice equation B implies

congruence modularity.

The L,,'s grow too fast for (5) to be practical. However, since the arithmetic of
Con (~) is weU-developed, condition (6) is practical. A related, but slightly
different technique for verifying equations valid in Con (~), is given in §7 of [5].

For the distributive case we need the second author's list of the minimal
modular, nondistributive congruence varieties. For p a prime or O let Ifp be the
congruence variety associated with the variety of aU vector spaces over Fp, the
tieId with p elements (Fo = Q). Then if If is amodular, nondistributive congru-
ence variety, Ifp ~ If for some p ([6], [7]). Thus if B implies congruence modular-
ity, it will imply congruence distributivity if and only if it fails in every Ifp.

Now George Hutchinson and the first author have shown that associated with
any lattice equation B are two natural numbers me 2: O, ne 2: 1 (and these can be
effectively found from B) such that Ifp will satisfy B if and only if there is an x E Fp
such that mex = ne ([9], Theorems 2 and 3). If me 1= O and then clearly this
condition will be true in Q. If me = O and ne 1= 1 then this condition will be true in
Fp for any p dividing ne' Thus B will fail to hold in every Ifp if and only if me = O

and ne = 1. Thus to test if B implies congruence distributivity one first tests if it
implies congruence modularity. If it does then one evaluates me, ne' If me = O and

ne = 1, B implies congruence distributity; otherwise it does not.

COROLLARY. Once can recursively decide if a lattice equation e implies

congruence distributivity.
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