
INFINITELY MANY NEW PROPERTIES OF THE

CONGRUENCE LATTICES OF SLIM SEMIMODULAR LATTICES

GÁBOR CZÉDLI
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Abstract. Slim planar semimodular lattices (SPS lattices or slim semimod-
ular lattices for short) were introduced by G. Grätzer and E. Knapp in 2007.

More than four dozen papers have been devoted to these (necessarily finite)
lattices and their congruence lattices since then. In addition to distributivity,

the congruence lattices of SPS lattices satisfy seven known properties. Out of
these seven properties, the first two were published by G. Grätzer in 2016 and

2020, the next four by the present author in 2021, and the seventh jointly by
G. Grätzer and the present author in 2022.

Here we give two infinite families of new properties of the congruence lat-
tices of SPS lattices. These properties are independent. We also present

stronger versions of these properties but not all of them are independent, and
improve three out of the seven previously known properties. The approach is

based on lamps, which we introduced in a 2021 paper. In addition to using
the 2021 results, we need to prove some easy new lemmas on lamps.

1. Introduction

By a slim semimodular lattice or, in another terminology, an SPS lattice we
mean a finite planar semimodular lattice that does not contain an M3-sublattice
(equivalently, does not contain a cover-preserving M3 sublattice); M3 stands for
the five element modular lattice of length 2. This is the original 2007 definition
from Grätzer and Knapp [10]. In 2011, Czédli and Schmidt [5] gave a related other
definition: a lattice L is slim if it is finite and the poset (= partially ordered set)
J(L) of the join-irreducible elements of L is the union of two chains. (Note that
0 /∈ J(L) by definition.) Slim lattices are automatically planar; this justifies our
terminology: slim semimodular (that is: slim and semimodular) lattices are the
same as Grätzer and Knapp’s SPS lattices.

Since 2007, more than four dozen papers have been devoted to these lattices.
The list of these papers was first given in the appendix of my arXiv paper

http://arxiv.org/abs/2107.10202 ;
this is a permanent list but out of date; the updated list is here:

http://www.math.u-szeged.hu/~czedli/m/listak/publ-psml.pdf .
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2 G. CZÉDLI

This list shows that slim semimodular lattices have useful connections with geome-
try, group theory, combinatorics, and finite model theory. Most of the motivations
to study these lattices are explained in the survey section of Czédli and Kurusa [4],
open access at the time of writing.

In 2016, Grätzer [7] and [8] asked what the congruence lattices of slim semimodu-
lar lattices are. These congruence lattices are finite distributive lattices, and seven
of their additional properties have been known from Grätzer [8] and [9], Czédli [2],
and Czédli and Grätzer [3]. The new properties we are going to prove here and
the seven old ones strengthen our feeling that Grätzer’s above-mentioned problem
is difficult.

Outline. In Section 2, we define two infinite sets of properties of the congruence
lattices of slim semimodular lattices. In fact, we define both sets in two versions,
and then we formulate the main result, Theorem 2.9. Section 2 also contains
a reformulation of the main result in Corollary 2.11 and a stronger form of an
earlier property in Proposition 2.12. Section 3 presents some easy lemmas on lamps
and proves the results presented in the previous section. Section 4 contains an
observation about the independence of an infinite set of properties. Moreover, it
excludes some variants as further properties, and points out which old properties
have been strengthened.

2. Results

Notation 2.1. The ring of residue classes modulo n will be denoted by Zn :=
{0, 1, 2, . . . , n − 1}. So for i, j ∈ Zn, i + j and i − j are understood modulo n; for
example, 2−3 = 4 in Z5. The (ring) ideal {0, 2, 4, . . . , 2n−2} of Z2n will be denoted
by 2Z2n. The subscripts we use later will belong to Zn or Z2n. (A part of the proof
of Observation 4.4, where SCDE(k) rather than SCDE(n) is considered, is a self-
explanatory exception.) Additions and subtractions in subscripts are understood
in Zn or Z2n.

Notation 2.2. For an element u in a poset P , let ↓u = ↓P u := {x ∈ P : x ≤ u},
⇓u = ⇓P u := {x ∈ P : x < u}, and ↓≺u = ↓≺P u := {x ∈ P : x ≺ u}. Note that ↓≺u
is the (possibly empty) set of lower covers of u in P .

Figure 1. CTF(2) and CTF(5)
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Definition 2.3. For posets P1 and P2, a function f : P1 → P2 is an order embedding
if for all x, y ∈ P1, x ≤ y in P1 if and only if f(x) ≤ f(y) in P2. Note that an
order embedding is necessarily an injective function. If f is an order embedding
and, for all x, y ∈ P1, x ≺ y in P1 implies that f(x) ≺ f(y) in P2, then f is a
cover-preserving embedding.

Definition 2.4. For an integer n ≥ 2, the Crown with Two Fences of order n is
the (6n − 2)-element poset

CTF(n) = {ai : i ∈ Zn} ∪ {bi : i ∈ Zn} ∪ {ci : i ∈ Zn} ∪ {di : i ∈ Zn}

∪ {xi : i ∈ Zn \ {n − 1}} ∪ {yi : i ∈ Zn \ {n− 1}}

such that the edges are exactly the following:

ci ≺ ai, ci ≺ bi, di ≺ bi, and di ≺ ai+1 for i ∈ Zn, and

xj ≺ cj , xj ≺ cj+1, yj ≺ dj, and yj ≺ dj+1 for j ∈ Zn \ {n − 1}

where the additions in the subscripts are understood in Zn. For CTF(2) and
CTF(5), see Figure 1.

As usual, J(D) stands for the poset of nonzero join-irreducible elements of D,
and we use Notations 2.1 and 2.2.

Definition 2.5. Let n ≥ 2 be an integer, and let D be a finite distributive lattice.
(A) We say that D satisfies the CTF(n)-property if there is no cover-preserving

embedding f : CTF(n) → J(D) such that the f-image of every maximal element
of CTF(n) is a maximal element of J(D). (The maximal elements of CTF(n) in
Figure 1 are grey-filled.)

(B) We say that D satisfies the SCTF(n)-property (in other words, the strong
CTF(n)-property) if the poset (J(D);≤) does not have (not necessarily distinct)
maximal elements a0, b0, a1, b1, . . . , an−1, bn−1 and (not necessarily distinct) ad-
ditional elements c0, d0, c1, d1, . . . , cn−1, dn−1 such that, for all i ∈ Zn and j ∈
Zn \ {n − 1},

ai 6= ai+1, bi 6= bi+1, ci 6= ci+1, di 6= di+1, (2.1)

ci ≺ ai, ci ≺ bi, di ≺ bi, di ≺ ai+1, (2.2)

↓≺cj ∩ ⇓cj+1 6= ∅, ⇓cj ∩ ↓≺cj+1 6= ∅, (2.3)

↓≺dj ∩ ⇓dj+1 6= ∅, and ⇓dj ∩ ↓≺dj+1 6= ∅; (2.4)

the additions in the subscripts are understood in Zn.

The maximal elements of CTF(n) and their lower covers together form a so-
called 2n-crown while both {ci : i ∈ Zn} ∪ {xi : i ∈ Zn \ {n − 1}} and {di : i ∈
Zn} ∪ {yi : i ∈ Zn \ {n − 1}} are called fences.

The poset occurring in the following definition is illustrated by Figures 2 and 3;
Figure 3 includes three pictures copied from www.clker.com.

Definition 2.6. For an integer n ≥ 3, the Crown with Diamonds and Emeralds of
order n is the 4n-element poset

CDE(n) = {ai : i ∈ 2Z2n} ∪ {bi+1 : i ∈ 2Z2n}

∪ {di : i ∈ 2Z2n} ∪ {ei : i ∈ 2Z2n}
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Figure 2. CDE(3) and CDE(6)

Figure 3. Motivating the terminology by a subposet of CDE(9)

such that the edges are

bi+1 ≺ ai, bi−1 ≺ ai, di ≺ ai, di ≺ bi+3, ei ≺ ai, and ei ≺ bi−3

for i ∈ 2Z2n; the operations in the subscripts are understood in Z2n.

Definition 2.7. Let D be a finite distributive lattice; Notations 2.1 and 2.2 still
apply and the operations in the subscripts are understood in Z2n.

(A) We say that D satisfies the CDE(n)-property if there is no order embedding
f : CDE(n) → J(D) such that for all i ∈ 2Z2n and x ∈ CDE(n), if x ≺ ai then
f(x) ≺ f(ai).

(B) We say that D satisfies the SCDE(n)-property if the poset (J(D);≤) does
not contain a system (ai, bi+1 : i ∈ 2Z2n) of not necessarily distinct elements such
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that for all i ∈ 2Z2n,

ai 6= ai+2, (2.5)

bi−1 ≺ ai, bi+1 ≺ ai, (2.6)

↓≺ai ∩ ⇓bi+3 6= ∅, and ↓≺ai ∩ ⇓bi−3 6= ∅. (2.7)

While Definitions 2.5(A) and 2.7(A) use order homomorphisms (in fact, order
embeddings), Definitions 2.5(B) and 2.7(B) do not. With the help of order ho-
momorphisms, Remark 2.8 below may shed more light on Definitions 2.5(B) and
2.7(B); however, note that the reader can safely skip the following remark.

Figure 4. X2(2) and X2(5)

Remark 2.8. It is possible to formulate Definitions 2.5(B) and 2.7(B) in terms of
forbidden order homomorphisms that have special properties. In fact, we could do
so in two ways; we only explain the two possibilities for Definition 2.5(B) since the
case of Definition 2.7(B) is analogous.

First, let X1(n) be the subposet of CTF(n) that consists of the non-minimal
elements of CTF(n). Then the SCTF(n) property means that there is no cover-
preserving order homomorphism f1 : X1(n) → J(D) such that f1 has the properties
that we obtain from (2.1), (2.3), and (2.4) by changing the elements ai, . . . , di to
their f1-images f1(ai), . . . , f1(di) for all meaningful subscripts i and, in addition,
the f1-images of the maximal elements of X1(n) are maximal in J(D).

Second, we can extend CTF(n) to a larger poset X2(n) by “doubling” xi to an
antichain {xi, x

′

i} and yj to an antichain {yi, y
′

i} for all i, j ∈ Zn \ {n − 1} as it
is shown, at least for n ∈ {2, 5}, in Figure 4. (Compare Figures 1 and 4.) As it
is easy to see, the SCTF(n) property means that there is no order homomorphism
f2 : X2(n) → J(D) such that f2 preserves the solid thin edges as covers and the
“dot-dash-dot-dash” thick edges as “strictly less”, it satisfies the properties that we
obtain from (2.1) by changing the elements to their f2-images, and the f2-images
of the maximal elements of X2(n) are maximal in J(D).

Note, however, that the use of f1 would only be a trivial transcript making the
notation more complicated while the use of f2 would make the paper even more
complicated. Therefore, we are not going to use f1 and f2 in the rest of the paper.
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For n ∈ {3, 6}, the condition on the order embedding f in Definition 2.7(A)
means that f preserves the thin solid edges of Figure 2 but need not preserve the
bold “dot-dash-dot-dash” edges as covers.

As usual, the congruence lattice of a lattice L is denoted by ConL = (Con L;⊆).
Slim semimodular lattices are the same as SPS lattices. Now we are in the position
to formulate the main result of the paper.

Theorem 2.9. For every slim semimodular lattice L, the following two assertions
hold.

(A) For every integer n ≥ 2, Con L satisfies the SCTF(n)-property.
(B) For every integer n ≥ 3, Con L satisfies the SCDE(n)-property.

The following statement follows trivially from Theorem 2.9.

Corollary 2.10. For every integer n ≥ 2, the congruence lattice of a slim semi-
modular lattice satisfies the CTF(n)-property as well as the CDE(n + 1)-property.

Even though the congruence lattice of a lattice K (or another algebra) is known
to influence the structure of K, the following corollary is perhaps unexpected.

Corollary 2.11. Let K be a planar semimodular lattice. If there is an n ≥ 3 and
a system (ai, bi+1 : i ∈ 2Z2n) of join-irreducible congruences of K such that (2.5),
(2.6), and (2.7) hold in the poset (J(Con K);⊆), then K contains a cover-preserving
M3-sublattice.

Based on Grätzer and Knapp’s 2007 definition of SPS lattices, it is a trivial task
to derive Corollary 2.11 from Corollary 2.10, so no details will be given. In fact,
Corollary 2.11 is only a reformulation of Part (B) of Theorem 2.9. One could easily
formulate the analogous reformulations of Corollary 2.10 and Part (A) of Theorem
2.9.

The name of the following property will be explained in Remark 4.3(c). Note
that a useful technical part of the statement below is postponed to Remark 3.7.

Proposition 2.12 (Strong Bipartite Maximal Elements Property, SBMEP in short).
For a slim semimodular lattice K with at least three elements, Max(J(ConK)) is
the union of two disjoint nonempty sets M0 and M1 such that for each i ∈ {0, 1}
and for any two distinct elements x, y ∈ Mi, we have that at least one of ⇓x ∩ ↓≺y
and ↓≺x∩⇓y (equivalently, at least one of ↓x∩ ↓≺y and ↓≺x∩ ↓y) is the empty set.

3. Proving the results

To read this section, Czédli [2] and Czédli and Grätzer [3] should be kept near.
At the time of writing, each of these two papers has an open access view at
http://www.acta.hu/ (or https://doi.org/10.14232/actasm-021-865-y) and
https://cgasa.sbu.ac.ir/article 101508.html, respectively.

By Grätzer and Knapp [11], a slim semimodular lattice L is called a slim rect-
angular lattice if |L| ≥ 4, L has exactly two doubly irreducible elements, and these
two elements are complementary; see also [2, page 384]. For a slim rectangular
lattice L, the reader is referred to [2, Definition 2.1] for a fixed C1-diagram of L, to
[2, Definition 2.3] for lamps and their parts, to [2, Definitions 2.6 and 2.7] for line
segments and geometric shapes associated with lamps, to [2, Definitions 2.8] for il-
luminated sets, and to [2, Definitions 2.9] for the relation ρBody = ρinfoot defined on
Lamp(L); these definitions also contain the corresponding notations. Similarly, see
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Figure 5. Possible positions of two lamps in the plane

[3, Definition 4.1(ii)] for the coordinate quadruple (pI , qI, rI, sI) of I ∈ Lamp(L).
The following definition is illustrated by Figure 5, where the bodies of lamps are
grey-filled. (Note that, as opposed to the figure, the body of a lamp can also be a
precipitous line segment or a boundary line segment, but this causes no trouble.)

Definition 3.1. Extending Czédli and Grätzer [3, Definition 4.1.(iii)] and Czédli
[2, (4.1)], we define the following five relations for G, H ∈ Lamp(L); see Figure 5.

• G λ H , that is, G is to the left of H if qG ≤ pH and sG ≤ rH ;
• G δ H , that is, G is geometrically under H if qH ≤ pG and sG ≤ rH ;
• G βmid H if pH < pG < qG < qH and rH < rG < sG < sH ;
• G βleft H if pH ≤ pG < qG < qH , sG ≤ rH , and G is an internal lamp;
• G βright H if qH ≤ pG, rH < rG < sG ≤ sH , and G is an internal lamp.

The notations λ and δ come from “Left” and “unDer”, respectively. Clearly,

λ and δ are irreflexive and transitive relations. (3.1)

In the rest of the paper, unless otherwise stated explicitly,

L always denotes a slim rectangular lattice with a fixed C1-diagram. (3.2)

Lemma 3.2. For L in as (3.2), let J0 and J1 be two distinct members of Lamp(L).
Then exactly one of the following five alternatives holds for some i ∈ {0, 1}; note
that this i is uniquely determined.

(i) Ji λ J1−i,
(ii) Ji δ J1−i,
(iii) Ji βmid J1−i,



8 G. CZÉDLI

(iv) Ji βleft J1−i,
(v) Ji βright J1−i,

Furthermore, if J0 and J1 are incomparable in the poset (Lamp(L);≤), then the
first two options are only possible.

Proof. Those possible mutual geometric positions of J0 and J1 that are not listed
in the lemma are ruled out by Lemma 3.8 of [2]. Alternatively, take a multifork
extension sequence for L; see [2, (2.9) and Lemma 2.12]. Then each lamp originates
from a multifork extension; see [2, (2.10)]. When the “younger” lamp comes to
existence in this way, its body will be in the geometric area of a 4-cell. Since
the alternatives listed in Lemma 3.2 take all possible positions of this 4-cell into
account, it follows that there is a (unique) i such that one (and exactly one) of the
five alternatives holds. Each of the last three alternatives leads to (Ji, J1−i) ∈ ρBody,
implying that Ji < Ji−1; see [2, Lemma 2.11]. Thus, if Ji and Ji−1 are incomparable
in the poset Lamp(L) (in notation, if Ji ‖ Ji−1), then only one of the first two
alternatives can hold, completing the proof of Lemma 3.2. �

For L from (3.2) and U ∈ Lamp(L), Roof(U) is defined in [2, page 389]. Let
↓gRoof(U) denote the set of those geometric points of the full geometric rectangle
(of the C1-diagram of L) that are on or below Roof(U). More precisely, a geometric
point (x, y) (given in the usual coordinate system) of the full geometric rectangle
belongs to ↓gRoof(U) if and only if (x, y′) ∈ Roof(U) for some y′ such that y′ ≥ y.

Lemma 3.3. If L is as in (3.2) and I ≤ J holds in Lamp(L), then ↓gRoof(I) ⊆
↓gRoof(J).

Proof. The case I = J is trivial. If I ≺ J , then (I, J) ∈ ρBody by [2, Lemma 2.11],
whence Body(I) ⊆ Lit(J) ⊆ ↓gRoof(J) gives the required inclusion ↓gRoof(I) ⊆
↓gRoof(J). Otherwise, the inclusion follows from its just-mentioned particular case
by transitivity. �

Lemma 3.4. For L as in (3.2) and I, J, K ∈ Lamp(L), if I δ J and K ≤ I, then
K ⊀ J . That is, if I is geometrically under J , then ⇓I ∩ ↓≺J ⊆ ↓I ∩ ↓≺J = ∅.

Proof. If K is a boundary lamp, then it is a maximal element of (Lamp(L);≤) by
[2, Lemma 3.2] and so the required K ⊀ J follows trivially. Thus, we can assume
that K is an internal lamp. Since ⇓I ⊆ ↓I, the “⊆” is trivial. For a subset X of the
plane, let GInt(X) stand for the geometric (in other words, topological) interior of
X. Assume that I δ J and K ≤ I. Lemma 3.3 gives that ↓gRoof(K) ⊆ ↓gRoof(I).
Hence, Foot(K) ∈ ↓gRoof(I) and Body(K) ⊆ ↓gRoof(I). Actually, we have that
Foot(K) ∈ GInt(↓gRoof(I)) since there is at least one precipitous edge with bottom
at or above Foot(K) and this edge is included in Body(K) ⊆ ↓gRoof(I). Since
I δ J , GInt(↓gRoof(I)) ∩ GInt(Lit(J)) = ∅. Hence, Foot(K) /∈ GInt(Lit(J)), that
is, (K, J) /∈ ρinfoot. Therefore, the required K ⊀ J follows by [2, Lemma 2.11]. �

Lemma 3.5. If L is as in (3.2), I, J, K ∈ Lamp(L), J δ K, and I ≤ J , then
I δ K.

Proof. Apply Lemma 3.3. �

The following easy lemma is illustrated by Figure 8 in Czédli and Grätzer [3].

Lemma 3.6. Assume that L is as in (3.2), A0, A1, A2 and B1 are from Lamp(L),
A0 λ A1 λ A2, B1 ≺ A0, and B1 ≺ A2. Then B1 δ A1.
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Proof. By [2, Lemma 2.11], (B1, A0), (B1, A2) ∈ ρBody. Hence Body(B1) is a subset
of Lit(A0) ∩ Lit(A2), see [3, Figure 8], and we obtain that B1 δ A1. �

Armed with the lemmas verified so far, we are ready to prove the results stated
in Section 2.

Proof of Proposition 2.12. Since no two maximal elements are comparable, it makes
no difference whether we deal with ⇓x∩ ↓≺y and ↓≺x∩ ⇓y or we consider ↓x∩ ↓≺y
and ↓≺x ∩ ↓y. We know from the main result of Grätzer and Knapp [11], which is
recalled in, say, Czédli and Grätzer [3, Lemma 3.7], that

for each slim semimodular lattice K with at least three elements
there exists a slim rectangular lattice L such that ConK ∼= Con L.

}

(3.3)

Hence, it suffices to deal with slim rectangular lattices rather than with slim semi-
modular lattices. By [2, Lemma 2.11(iii)], (J(ConL);≤) ∼= (Lamp(L);≤). Hence,
instead of Max(J(ConL)), it suffices to deal with Max(Lamp(L)). By [2, Lemma
3.2], Max(Lamp(L)) is the set of boundary lamps. Let M0 and M1 be the set of
left boundary lamps and that of right boundary lamps, respectively. By left–right
symmetry, it is sufficient to show that for any two distinct left boundary lamps
X and Y , at least one of ↓X ∩ ↓≺Y and ↓≺X ∩ ↓Y is empty. But this follows
immediately from Lemma 3.4 since X δ Y or Y δ X. �

Remark 3.7. The proof above implies that under the assumptions of Proposition
2.12, M0 and M1 can be chosen so that there is a slim rectangular lattice L and
isomorphisms f1 : Lamp(L) → Con L and f2 : Con L → Con K such that M0 =
f2(f1({left boundary lamps})) and M1 = f2(f1({right boundary lamps})).

Proof of Theorem 2.9. Clearly, we can assume that |L| ≥ 3. Hence, by (3.3), we
can assume that L is a slim rectangular lattice; see (3.2).

By way of contradiction, suppose that Part (A) of the theorem fails for some in-
teger n ≥ 2. By [2, Lemma 2.11(iii)], (J(ConL);≤) ∼= (Lamp(L);≤). Hence, there
are Ai, Bi, Ci, Di ∈ Lamp(L) for i ∈ Zn that satisfy (2.1)–(2.4) (after replacing
the under-case letters with the corresponding capital letters, of course) and the Ai

and Bi are maximal lamps. By [2, Lemma 3.2], Ai and Bi are boundary lamps for
all i ∈ Zn. Using (2.2) and Remark 3.7, left-right symmetry allows us to assume
that A0, . . . , An−1 are left boundary lamps while B0, . . . , Bn−1 are right bound-
ary lamps. (There can be other boundary lamps but they cause no trouble.) Let
Ai λbnd Aj mean that Ai is to the left of Aj on the left upper boundary of L. (Note
that Ai λbnd Aj implies that Ai 6= Aj.) Similarly, Bi λbnd Bj means that Bi is to
the left of Bj on the right upper boundary of L. Clearly, Ai λbnd Aj ⇐⇒ Ai δ Aj

for left boundary lamps while Bi λbnd Bj ⇐⇒ Bj δ Bi for right boundary lamps.
It follows from (2.1) that

for every i ∈ Zn, Ai λbnd Ai+1 or Ai+1 λbnd Ai and,
furthermore, Bi λbnd Bi+1 or Bi+1 λbnd Bi.

}

(3.4)

For x, y ∈ {ai : i ∈ Zn} ∪ {bi : i ∈ Zn} ∪ {ci : i ∈ Zn} ∪ {di : i ∈ Zn}, [2, Lemma
2.11] yields that

if x ≺ y occurs in (2.2), then (X, Y ) ∈ ρBody and so Body(X) ⊆ Lit(Y ). (3.5)

We claim that

for j ∈ Zn \ {n − 1}, Aj λbnd Aj+1 ⇐⇒ Bj λbnd Bj+1. (3.6)
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We prove this by way of contradiction. Suppose that (3.6) fails. There are two
cases. First, assume that Aj λbnd Aj+1 holds but Bj λbnd Bj+1 fails. Then (3.4)
gives that Bj+1 λbnd Bj . Since we know from (2.2) and (3.5) that Body(Cj) ∈
Lit(Aj) ∩ Lit(Bj) and Body(Cj+1) ∈ Lit(Aj+1) ∩ Lit(Bj+1), we obtain that Cj δ
Cj+1. Hence, Lemma 3.4 yields that ⇓Cj ∩ ↓≺Cj+1 = ∅, violating (2.3). Second,
assume that Aj λbnd Aj+1 fails but Bj λbnd Bj+1 holds. Then, similarly to the
first case, Aj+1 λbnd Aj by (3.4), it follows that Cj+1 δ Cj , and Lemma 3.4 yields
that ⇓Cj+1 ∩ ↓≺Cj = ∅, violating (2.3). We have proved (3.6).

Next, we claim that

for j ∈ Zn \ {n − 1}, Bj λbnd Bj+1 ⇐⇒ Aj+1 λbnd Aj+2. (3.7)

To prove this by way of contradiction, first we suppose that Bj λbnd Bj+1 holds
but Aj+1 λbnd Aj+2 fails. Then (3.4) gives that Aj+2 λbnd Aj+1. Similarly to the
argument given for (3.6), (2.2) and (3.5) yield that Dj+1 δ Dj . But then Lemma 3.4
yields that ⇓Dj+1 ∩ ↓≺Dj = ∅, violating (2.4). Second, suppose that Bj λbnd Bj+1

fails while Aj+1 λbnd Aj+2 holds. From (3.4), we have that Bj+1 λbnd Bj . Then
(2.2) and (3.5) yield that Dj δ Dj+1. Hence, Lemma 3.4 leads to ⇓Dj∩↓≺Dj+1 = ∅,
violating (2.4). This proves (3.7).

Let Ai ρbnd Aj and Bi ρbnd Bj mean that Ai is to the right of Aj and Bi is
to the right of Bj on the upper boundary, respectively. That is, Ai ρbnd Aj ⇐⇒
Aj λbnd Ai and Bi ρbnd Bj ⇐⇒ Bj λbnd Bi. It follows by (2.1) and (3.4) that
that (3.6) and (3.7) remain valid if we replace λbnd by ρbnd in them.

Next, since either A0 λbnd A1 or A0 ρbnd A1 by (2.1) and (3.4), left-right sym-
metry allows us to assume that A0 λbnd A1. Then we can argue as follows; when
referencing (3.6) or (3.7) over implication signs, the value of j will be indicated.

A0 λbnd A1
(3.6,j=0)

=⇒ B0 λbnd B1
(3.7,j=0)

=⇒ A1 λbnd A2

(3.6,j=1)
=⇒ B1 λbnd B2

(3.7,j=1)
=⇒ A2 λbnd A3

(3.6,j=2)
=⇒ B2 λbnd B3

(3.7,j=2)
=⇒ A3 λbnd A4 . . .

(3.6,j=3)
=⇒ . . .

(3.7,j=n−3)
=⇒ An−2 λbnd An−1

(3.6,j=n−2)
=⇒ Bn−2 λbnd Bn−1

(3.7,j=n−2)
=⇒ An−1 λbnd A0.















































(3.8)

By the first four lines of (3.8) and the transitivity of λbnd, we have that A0 λbnd

An−1. But this contradicts the last line of (3.8), where An−1 λbnd A0. We have
proved Part (A) of Theorem 2.9.

To prove Part (B) of the theorem by way of contradiction, suppose that it fails.
Note in advance that in many cases in the argument below, it suffices to verify
some of our statements only for one value of the subscript i or j since the SCTF(n)-
property is “rotationally symmetric”. As in case of Part (A), there is an L satisfying
(3.2) and there are Ai and Bj+1 in Lamp(L) for i, j ∈ 2Z2n such that (2.5), (2.6),
and (2.7) hold. For i ∈ 2Z2n, we now from (2.5) and (2.6) that Ai and Ai+2

are incomparable in Lamp(L), in notation, Ai ‖ Ai+2. Furthermore, by (2.6),
↓≺Ai ∩ ↓≺Ai+2 6= ∅. Hence, the last sentence of Lemma 3.2 and Lemma 3.4 yield
that

for each i ∈ 2Z2n, Ai λ Ai+2 or Ai+2 λ Ai. (3.9)
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We claim that

for every i ∈ 2Z2n, Ai and Ai+4 are incomparable in Lamp(L). (3.10)

To see this, we need to exclude both Ai ≤ Ai+4 and Ai+4 ≤ Ai. First, suppose
that Ai ≤ Ai+4. Then Bi+1 ≺ Ai ≤ Ai+4 by (2.6). So if X ∈ ⇓Bi+1 , that is,
X < Bi+1 for an X ∈ Lamp(L), then X ⊀ Ai+4, that is, X /∈ ↓≺Ai+4. Hence,
↓≺Ai+4 ∩ ⇓Bi+4−3 = ↓≺Ai+4 ∩ ⇓Bi+1 = ∅, violating (2.7). Second, suppose that
Ai+4 ≤ Ai. Then Bi+3 ≺ Ai+4 ≤ Ai by (2.6), whereby ↓≺Ai ∩⇓Bi+3 = ∅, violating
(2.7) again. We have shown the validity of (3.10). Observe that

for every i ∈ 2Z2n, Ai ‖ Bi+3 and Ai ‖ Bi−3. (3.11)

Indeed, if Ai ≤ Bi+3 or Ai ≤ Bi−3, then (2.6) gives that Ai < Ai+4 or Ai ≤ Ai−4,
contradicting (3.10). If Ai > Bi+3 or Ai > Bi−3, then ↓≺Ai ∩ ⇓Bi+3 = ∅ or
↓≺Ai ∩ ⇓Bi−3 = ∅ violates (2.7). We have shown (3.11). Next, we claim that

for every i ∈ 2Z2n, if Ai λ Ai+2, then Ai+2 λ Ai+4. (3.12)

To show this, suppose the contrary. Then, by (3.9), Ai λ Ai+2 and Ai+4 λ Ai+2.
For the geometric relation between Ai and Ai+4, (3.10) and the (last sentence of)
Lemma 3.2 only allow four possibilities; we are going the exclude each of these four
possibilities and then (3.12) will follow by way of contradiction.

First, let Ai+4 δ Ai. Then Bi+3 < Ai+4 by (2.6), and so Lemma 3.5 yields that
Bi+3 δ Ai. We claim that Bi+3 δ Ai leads to contradiction. Indeed, Bi+3 δ Ai

together with Lemma 3.4 imply that ↓≺Ai ∩ ⇓Bi+3 = ∅, violating (2.7). Thus,
Ai+4 δ Ai is excluded.

Second, let Ai δ Ai+4. Then (2.6) gives that Bi+1 < Ai, whereby Lemma
3.5 gives that Bi+1 δ Ai+4. We claim that Bi+1 δ Ai+4 leads to contradiction.
Indeed, Bi+1 δ Ai+4 together with Lemma 3.4 give that ↓≺Ai+4 ∩ ⇓Bi+4−3 =
↓≺Ai+4 ∩ ⇓Bi+1 = ∅, violating (2.7). Hence, Ai δ Ai+4 is excluded.

Third, let Ai λ Ai+4. Then Ai λ Ai+4 λ Ai+2 and, by (2.6), Bi+1 ≺ Ai and
Bi+1 ≺ Ai+2. Hence, Lemma 3.6 implies that Bi+1 δ Ai+4. We have seen in the
previous case that this leads to contradiction. Thus, Ai λ Ai+4 is excluded.

Fourth, let Ai+4 λ Ai. Then Ai+4 λ Ai λ Ai+2, and we know from (2.6) that
Bi+3 ≺ Ai+4 and Bi+3 ≺ Ai+2. Using Lemma 3.6, we obtain that Bi+3 δ Ai. We
know from the first case that this leads to contradiction. Therefore, Ai+4 λ Ai is
excluded.

Now that each of the four possibilities have been excluded, we conclude (3.12).
Finally, using (3.9) and reflecting the diagram across a vertical axis if necessary,

we can assume that A0 λ A2. Then, using (3.12) repeatedly, we obtain that

A0 λ A2 λ A4 λ A6 λ . . . λ A2n−2 λ A0.

By the transitivity of λ, see (3.1), it follows that A0 λ A0, which is a contradiction
since λ is irreflexive by (3.1). This completes the proof of Theorem 2.9. �

4. Concluding remarks

We know from Grätzer [6, Corollary 108] that every finite poset is isomorphic
to (J(D);≤) for a finite distributive lattice D, which is unique up to isomorphism.
This allows us to define D simply by defining (J(D);≤); we will do so without
further explanation. Let Con(SPS≥3) denote the class of the congruence lattices of
at least 3-element slim semimodular lattices. Next, we compare the new properties.
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Remark 4.1. In general, the SCTF(n)-property is stronger then the CTF(n) prop-
erty. That is, if a finite distributive lattice D satisfies the SCTF(n)-property, then
it satisfies the CTF(n)-property, but not conversely in general. The reason is two-
fold. First, (2.3) is a weaker assumption than requiring that cj and cj+1 have a
common lower cover, and similarly for (2.4). Second, say, the CTF(28)-property
allows that a crown with two fences is four-fold “coiled up” by stipulating that
ai+7 = ai, bi+7 = bi, ci+7 = ci, and di+7 = di for all i ∈ Z28, and xj+7 = xj and
yj+7 = yj for all j ∈ Z28 \ {20, 21, . . . , 27}. As opposed to the CTF(28)-property,
the SCTF(28)-property excludes this situation.

Figure 6. CDE(6) is “coiled up spirally”

Remark 4.2. For n ≥ 3, the SCDE(n)-property is stronger than the CDE(n)-
property. In addition to other obvious reasons, some of which are mentioned in
Remark 4.1, we illustrate this by Figure 6. As opposed to the previous remark,
where maximal elements had to remain maximal, the figure shows how to coil up
CDE(6) “spirally”. Let D be the finite distributive lattice such that J(D) is the
poset drawn in Figure 6. Then CDE(6) holds but SCDE(6) fails in D. The same is
true if one or two out of the ai ≺ a6+i edges are omitted or changed to ai = a6+i,
or some of the grey-filled pentagon-shaped elements of Figure 6 are omitted. (The
elements x, y, and z play no role here but their presence allows us to say that the
seven old properties hold in D.)

Remark 4.3 (Old properties that are strengthened). This paper strengthens the
following three old properties of Con(SPS≥3).

(a) The Two-Pendant Four-crown Property from Czédli [2, Definition 4.1], 2P4C-
property in short, is the same as the CTF(2)-property; now the SCTF(2)-property
is clearly a stronger property.

(b) The Three-pendant Three-crown Property from Czédli and Grätzer [3, Page
2], 3P3C-property for short, is similar to the CDE(3)-property. Clearly, the SCDE(3)-
property is stronger than the 3P3C-property and the CDE(3)-property.
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(c) The SBMEP from Proposition 2.12 is stronger than its precursor, the Bipar-
tite Maximal Elements Property ; see Czédli [2, Corollary 3.4].

Observation 4.4. For 3 ≤ k < n such that k divides n, if a finite distributive lattice
D satisfies the SCDE(n)-property, then it also satisfies the SCDE(k)-property.

Proof. We use the “coiling up” technique mentioned in Remark 4.1. Assume that
the SCDE(k)-property fails in D. Then we can pick elements ai, bi+1 ∈ J(D),
i ∈ 2Z2k, satisfying (2.5)–(2.7). For j = 2k, 2k + 2, . . . , 2n − 2 ∈ Z2n, we define
aj ∈ J(D) by the rule

aj = ai ⇐⇒
(

i ∈ Z2k and i ≡ j (mod 2k)
)

,

and we define bj+1 ∈ J(D) analogously. Now the elements aj , bj+1 ∈ J(D), j ∈
2Z2n, witness that the SCDE(n)-property fails in D. Therefore, Observation 4.4
holds. �

Next, as a counterpart of Observation 4.4, we present the following observation.

Observation 4.5. If 3 ≤ k < n, then the SCDE(k)-property does not imply the
SCDE(n)-property. Similarly, for 2 ≤ k < n, the SCTF(k)-property does not imply
the SCTF(n)-property.

Proof. Since crowns of different sizes cannot be embedded into each other, the poset
CTF(n) satisfies the SCTF(k)-property but not the SCTF(n)-property. Using the
same reasoning, (3.10), and (3.11), we obtain that the poset CDE(n) satisfies the
SCDE(k)-property but not the SCDE(n)-property. �

In spite of Observation 4.5, we can easily present an independent infinite set of
properties of Con(SPS≥3). To do so, the two properties proved in Grätzer [7] and
[8] and recalled in Theorem 1.3(i) and Theorem 1.3(ii) of Czédli and Grätzer [3]
will be denoted by P3i and P3ii, respectively. Similarly, two properties given by
Czédli [2] and recalled in [3, Theorem 1.4 (iii) and (iv)] will be denoted by P4iii and
P4iv, respectively. For the rest of previously known properties, see Remark 4.3. As
usual, N+ = {1, 2, 3, . . .} is the set of positive integers.

Observation 4.6. Let

Γold := {P3i, P3ii, P4iii, P4iv, SBMEP, 2P4C-property, 3P3C-property} and

Γ := Γold ∪ {CTF(n)-property : 3 ≤ n ∈ N+} ∪ {CDE(n)-property : 4 ≤ n ∈ N+}.

Then Γ is an independent set of properties of finite distributive lattices. That is, for
each property π ∈ Γ, there is a finite distributive lattice Dπ such that Dπ satisfies
all properties belonging to Γ \ {π} but π fails in Dπ.

Figure 7. Posets for the proof of Observation 4.6

From Observation 4.6, the following statement follows trivially.
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Corollary 4.7. The set Γold of the previously known seven properties, see Obser-
vation 4.6 and the paragraph before it, is an independent set.

Proof of Observation 4.6. First, let π be a CDE(n)-property for some n ≥ 4 or let
π be the 3P3C-property and n = 3. Denote by V the three-element poset that
has a least element and two maximal elements. (Its diagram is V-shaped.) Let Pπ

be the ordinal sum CDE(n) +ord V ; see on the right of Figure 7 for n = 3. (For
the current purpose, the three grey-filled pentagon-shaped elements can be omitted
but only if π is the 3P3C-property.) Using that no crown can be embedded into a
crown of another size, it is easy to see that Dπ defined by J(Dπ) ∼= Pπ does the job.
Similarly, if π is a CTF(m)-property for some m ≥ 3 or π is the 4P4C-property
and m = 2, then we let Pπ = CTF(m) +ord V and we define Dπ by J(Dπ) ∼= Pπ .
We define Dπ analogously when π is one of the first five properties listed in Γold

but then Pπ is the corresponding poset in Figure 7. �

Figure 8. When the edge y1 ≺ d2 of CTF(3) is removed

One may try to alter CTF(n) or CDE(n) by adding or removing an edge in order
to find new (but less elegant) properties of Con(SPS≥3). Even though we have not
investigated all possibilities of this kind, we have some comments. First, if we add
a new edge, then the property we obtain is often a consequence Grätzer’s “at most
two covers” property; see [3, Theorem 1.3(ii)] where this property is cited. On the
other hand, if we omit an edge, then the property we obtain is likely to fail in
Con(SPS≥3); this is exemplified by the following two remarks.
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Note in advance that Figures 8 and 9 follow the convention of Czédli [2]: the neon
tubes are the thick edges, and lamps are labelled at their feet, which are black-filled.
Furthermore, if a lamp has more than one neon tube, then its body is grey-filled.
Based on [2, Lemma 2.12] (originally Czédli [1, Theorem 3.7]) and [2, Lemma 2.11],
it is easy to see that each of Figures 8 and 9 presents a slim rectangular lattice L
and J(ConL) is correctly drawn in the figure. (Note that Czédli [1] offers another
but less convenient way to determine J(ConL) in Figures 8 and 9.)

Figure 9. When the edge b5 ≺ a0 of CDE(3) is removed

Remark 4.8. If we remove the edge y1 ≺ d2 from CTF(3), then the poset Q we
obtain, see at the top left of Figure 8, is (isomorphic to) J(Con L) for the slim
rectangular lattice L drawn in the same figure.

Remark 4.9. If we remove the edge b5 ≺ a0 from CDE(3), then the poset Q′

we obtain, see at the top left of Figure 9, has a cover-preserving embedding into
J(Con L) where L is the slim rectangular lattice at the bottom of the figure.
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