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Abstract. A lattice L is slim if it is finite and the set of its join-irreducible

elements contains no three-element antichain. Slim, semimodular lattices were
previously characterized by G. Czédli and E. T. Schmidt [10] as the duals of

the lattices consisting of the intersections of the members of two composition
series in a group. Our main result determines the number of (isomorphism

classes of) these lattices of a given size in a recursive way. The corresponding
planar Hasse diagrams, up to similarity, are also enumerated. We prove that

the number of diagrams of slim, distributive lattices of a given length n is
the n-th Catalan number. Besides lattice theory, the paper includes some

combinatorial arguments on permutations and their inversions.

1. Introduction and target

The well-known concept of a composition series in a group goes back to Évariste
Galois (1831), see J. J. Rotman [25, Thm. 5.9]. The Jordan-Hölder theorem, stating
that any two composition series of a finite group have the same length, was also
proved in the nineteenth century, see C. Jordan [17] and O. Hölder [16]. Let

(1.1)
~H : G = H0 . H1 . · · · . Hh = {1} and

~K : G = K0 . K1 . · · · . Kh = {1}

be composition series of a group G. Consider the following structure:
({
Hi ∩Kj : i, j ∈ {0, . . . , h}

}
,⊆

)
.

It is a lattice, a so-called composition series lattice. The study of these lattices
led G. Grätzer and J.B. Nation [14] and G. Czédli and E. T. Schmidt [7] to re-
cent generalizations of the Jordan-Hölder theorem. In order to give an abstract
characterization of these lattices, G. Czédli and E.T. Schmidt [10] proved that
composition series lattices are exactly the duals of slim, semimodular lattices, to
be defined later. (See also [4] for a more direct approach to this result.)

Here we continue the investigations started by G. Czédli, L. Ozsvárt, and B.
Udvari [4]. Our main goal is to determine the number Nssl(n) of slim, semimodular
lattices (equivalently, composition series lattices) of a given size n. Isomorphic
lattices are, of course, counted only once. These lattices of a given length were
previously enumerated in [4]; however, the present task is subtler. Since slim lattices
are planar by G. Czédli and E.T. Schmidt [7, Lemma 2.2], we are also interested
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in the number of their planar diagrams. (By a diagram, we always mean a Hasse
diagram.) Due to the fact that we count specific lattices, we give a recursive
description for Nssl(n) that is far more efficient than the best known way to count
all finite lattices of a given size n; see J. Heitzig and J. Reinhold [15] and the
references therein. We also enumerate the planar diagrams of slim, semimodular
lattices of size n, up to similarity to be defined later.

Outline. Section 2 belongs to Lattice Theory. After presenting the necessary con-
cepts, it reduces the targeted problems to combinatorial problems on permutations.
Section 3 belongs to Combinatorics. Theorem 3.2 determines the number of slim,
semimodular lattices consisting of n elements. Proposition 3.3 gives the number of
the planar diagrams of slim, semimodular lattices of size n such that similar dia-
grams are counted only once. The number of planar diagrams of slim, distributive
lattices of a given length is proved to be a Catalan number in Proposition 3.4.

2. From slim, semimodular lattices to permutations

An overview of slim, semimodular lattices. All lattices occurring in this paper
are assumed to be finite. The notation is taken from G. Grätzer [13].

The set of non-zero join-irreducible elements of a lattice L is denoted by JiL.
If JiL is a union of two chains (equivalently, if JiL contains no three-element
antichain), then L is called a slim lattice. Slim lattices are planar by G. Czédli
and E.T. Schmidt [7, Lemma 2.2]. That is, they possess planar diagrams. Let D1

and D2 be planar lattice diagrams. A bijection ξ : D1 → D2 is a similarity map if
it is a lattice isomorphism and for all x, y, z ∈ D1 such that x ≺ y and x ≺ z, y
is to the left of z if and only if ξ(y) is to the left of ξ(z). Following D. Kelly and
I. Rival [18, p. 640], we say that D1 and D2 are similar lattice diagrams if there
exists a similarity map D1 → D2. We always consider and count planar diagrams
up to similarity. Also, we consider only planar diagrams. A diagram is slim if it
represents a slim lattice; other lattice properties apply for diagrams analogously.
For example, a diagram is semimodular if so is the corresponding lattice L; that is,
if for all x, y, z ∈ L such that x � y, the covering or equal relation x ∨ z � y ∨ z
holds.

Let D be a planar diagram of a slim lattice L of length h. Note that L may have
several non-similar diagrams since we can reflect D (or certain intervals of D) over
a vertical axis. The left boundary chain of D is denoted by BC`(D), while BCr(D)
stands for its right boundary chain. These chains are maximal chains in L, and
both are of length h by semimodularity. So we can write

(2.1)
BC`(D) = {0 = b0 ≺ b1 ≺ · · · ≺ bh} and

BCr(D) = {0 = c0 ≺ c1 ≺ · · · ≺ ch}.

Note that, by G. Czédli and E.T. Schmidt [8, Lemma 6],

(2.2) JiL = JiD ⊆ BC`(D) ∪ BCr(D).

The permutation of a slim, semimodular lattice. The present paper is based
on the fundamental connection between planar, slim, semimodular diagrams and
permutations. In this and the next subsections, we recall and develop the details
of this connection in a way that fits [4], where the enumerative investigations of
slim, semimodular lattices start. The following statement is a straightforward con-
sequence of G. Czédli and E.T. Schmidt [9, Proof 4.7], combined with [8, Lemma
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Figure 1. A diagram D and the corresponding grid diagram G

7]. (For a more general statement without semimodularity, the interested reader
may want to see G. Czédli and G. Grätzer [3, Theorem 1-4.5].)

Lemma 2.1. Assume that D and E are planar diagrams of a slim, semimodular

lattice L. Then D is similar to E if and only if BC`(D) = BC`(E) if and only if

BCr(D) = BCr(E).

Next, with D as above, consider the diagram G of the (slim, distributive) lattice
BC`(D)×BCr(D) such that BC`(D)×{0} ⊆ BC`(G) and {0}×BCr(D) ⊆ BCr(G).
Then G is determined up to similarity by Lemma 2.1, and it is called the grid

diagram associated with D; see Figure 1. More generally, the diagram of the direct
product of a chain {b0 ≺ b1 ≺ · · · ≺ bm} (to be placed on the bottom left boundary)
and a chain {c0 ≺ c1 ≺ · · · ≺ cn} (to be placed at the bottom right boundary) is
also called a grid diagram of type m× n. For i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, let

cell(i, j) = {(bi−1, cj−1), (bi, cj−1), (bi−1, cj), (bi, cj)};

this sublattice (and subdiagram) is called a 4-cell. The smallest join-congruence
of G that collapses the top boundary {(bi, cj−1), (bi−1, cj), (bi, cj)} of this 4-cell is
denoted by con∨(cell(i, j)). We recall the following statement from G. Czédli [2,
Corollary 22]. For (i, j) = (2, 3), this statement is illustrated by Figure 1, where
the non-singleton blocks are indicated by thick edges.

Lemma 2.2. Let G be a grid diagram of type m × n, and let i ∈ {1, . . . , m} and

j ∈ {1, . . . , n}. Denote con∨(cell(i, j)) by α. Then

(i) the α-block (bi, cj)/α of (bi, cj) is {(bi, cj−1), (bi−1, cj), (bi, cj)};
(ii) {(bs, cj−1), (bs, cj)} for s > i and {(bi−1, ct), (bi, ct)} for t > j are the two-

element blocks of α;

(iii) the rest of α-blocks are singletons, and α is cover-preserving.

The following description of the join of join-congruences is borrowed from G. Czédli
and E.T. Schmidt [5, Lemma 11].

Lemma 2.3. Let βi, i ∈ I, be join-congruences of a join-semilattice F , and let

u, v ∈ F . Then (u, v) ∈
∨

i∈I βi if and only if there is a k ∈ N0 = {0, 1, 2, . . .} and

there are elements

u = z0 ≤ z1 ≤ · · · ≤ zk = wk ≥ wk−1 ≥ · · · ≥ w0 = v

such that {(zj−1, zj), (wj−1, wj)} ⊆
⋃

i∈I βi for j ∈ {1, . . . , k}.
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Figure 2. A grid

Combining Lemmas 2.2 and 2.3 we easily obtain the following corollary, which
is implicit in G. Czédli [2].

Corollary 2.4. Let G be a grid diagram of type m×n, and let k ∈ N = {1, 2, . . .}.
Assume that 1 ≤ i1 < · · · < ik ≤ m and that j1, . . . , jk are pairwise distinct

elements of {1, . . .n}. Consider the join-congruence β =
∨k

s=1 con∨(cell(is, js)).
Then β is cover-preserving, and it is described by the following rules.

(i)
(
(bi, cj), (bs, ct)

)
∈ β if and only if {(bi, cj), (bs, ct)} ⊆ (bi ∨ bs, cj ∨ ct)/β;

(ii) for 0 ≤ r < s,
(
(br, ct), (bs, ct)

)
∈ β if and only if for each x ∈ {r + 1, . . . , s}

there is a (unique) p ∈ {1, . . . , k} such that x = ip and jp ≤ t;
(iii) for 0 ≤ r < s,

(
(bt, cr), (bt, cs)

)
∈ β if and only if for each x ∈ {r + 1, . . . , s}

there is a (unique) p ∈ {1, . . . , k} such that x = jp and ip ≤ t.

In Figure 1, this statement is illustrated for m = n = 4 and k = 4 so that the
non-singleton blocks of β are indicated by dotted lines and the cell(is, js), 1 ≤ s ≤ 4,
are the grey cells, that is,

(2.3)

(
i1 . . . i4
j1 . . . j4

)
=

(
1 2 3 4
4 3 1 2

)
.

Corollary 2.4 is also illustrated by Figure 2 for m = n = 8 and k = 4 where

(2.4)

(
i1 . . . i4
j1 . . . j4

)
=

(
4 5 7 8
4 8 1 2

)

(only the dark grey 4-cells are considered, the light grey one should be disregarded).
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Now, we consider the grid diagram G (of type h × h) associated with D again.
It follows from (2.2) that the map ξ : G → D, (x, y) 7→ x ∨ y is a surjective join-
homomorphism. By G. Czédli and E. T. Schmidt [6, proof of Corollary 2], ξ is cover-

preserving, that is, if a, b ∈ G and a � b, then ξ(a) � ξ(b). Thus its kernel, α =
{(a, b) : ξ(a) = ξ(b)} is a so-called cover-preserving join-congruence by definition,
see [6]. If the α-block (bi, cj)/α includes {(bi, cj−1), (bi−1, cj)} but (bi−1, cj−1) /∈
(bi, cj)/α, then cell(i, j) is called a source cell of α. In Figure 1, the source cells of
α = Ker ξ are the grey ones. The set of these source cells is denoted by SCells(α).
With D, we associate a relation πD (which turns out to be a permutation, see (2.3)
for Figure 1) as follows:

(2.5) πD =
{
(i, j) ∈ {1, . . . , h}2 : cell(i, j) ∈ SCells(α)

}
.

Modulo notational changes, the following lemma is included in G. Czédli and
E. T. Schmidt [10]. Therefore, its “proof” below will only be a guide to [10]. Re-
member that similar diagrams are considered equal.

Lemma 2.5. Let D be a slim, semimodular, planar diagram of length h, and let

G, ξ : G→ D, α = Ker ξ, and π = πD be as above.

(i) π is a permutation on {1, . . . , h}.

(ii) α =
∨h

i=1 con∨(cell(i, π(i))).
(iii) The mapping D 7→ πD is a bijection from the set of slim, semimodular dia-

grams of length h to the set Sh of permutations acting on {1, . . . , h}.

Proof. Part (i) is the same as [10, Lemma 2.6]. Part (ii) follows from [10, Lemma

4.7], because
∨h

i=1 con∨(cell(i, π(i))) =
∨

cell(i,j)∈SCells(α) con∨(cell(i, j)) by (2.5).

Part (iii) is equivalent to the bijectivity of ψ0, see [10, Definition 3.2(ii)] together
with [10, Definition 2.5] and [10, Proposition 2.7], and ψ0 is a bijection by [10,
Theorem 3.3]. Note at this point that, by Lemma 2.1, similarity in our sense is
equivalent to “boundary similarity”, which is used in [10]. �

Permutations determine the size. For a permutation σ ∈ Sh, the number
|{(σ(i), σ(j)) : i < j and σ(i) > σ(j)}| of inversions of σ is denoted by inv(σ).
The same notation applies for partial permutations (that is, bijections between two
subsets of {1, . . . , h}), only we have to stipulate that both σ(i) and σ(j) should be
defined. For example, if σ is the partial permutation given in (2.4), then inv(σ) = 4.
The size |D| of a diagram D is the number of elements of the lattice it determines.
A crucial step of the paper is represented by the following statement.

Proposition 2.6. With the assumptions of Corollary 2.4, let K be the lattice

determined by G, and let τ denote the partial permutation

(
i1 . . . ik
j1 . . . jk

)
. Then

(2.6) |K/β| = (m+ 1)(n + 1) + inv(τ ) − k(m+ n+ 2) +

k∑

s=1

(is + js).

Proof. Corollary 2.4 gives a satisfactory understanding of β = βτ , which allows us
to prove (2.6) by induction on k. For a first impression of the proof, the induction
step will be preceded by an example.

The case k = 0 is obvious since then β = βτ is the least join-congruence,
inv(τ ) = 0, and K/β ∼= K. Hence we assume that k > 0 and the lemma holds for
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all smaller values. We let

σ =

(
i2 . . . ik
j2 . . . jk

)
.

Let {cell(i2, j2), . . . , cell(ik, jk)} be denoted by SCells(βσ). It follows easily from
Corollary 2.4 that SCells(βσ) is the set of source cells of βσ in the earlier meaning.
These source cells will also be called dark grey cells. Similarly, we have SCells(β) =
{cell(i1, j1), . . . , cell(ik, jk)}, and cell(i1, j1) is said to be the light grey cell.

Example. The situation for k = 5, (i1 , j1) = (2, 5),

τ =

(
2 4 5 7 8
5 4 8 1 2

)
, and, consequently, σ =

(
4 5 7 8
4 8 1 2

)

is given by Figure 2. The cells of SCells(βσ) are depicted in dark grey, while
cell(2, 5) is in light grey. The “action” of the light grey cell, that is con∨(cell(i1, j1)) =
con∨(cell(2, 5)), is indicated by thick lines. (Note that σ is the partial permutation
given in (2.4) but now the subscripts are shifted by 1.) At several places in the
proof, we will reference Figure 2 to enlighten the argument with this example.

Now, returning to the proof, let

β′ =

k∨

s=2

con∨(cell(is, js)) =

k∨

s=2

con∨(cell(is, σ(is)));

its blocks are indicated by dotted lines in Figure 2. By the induction hypothesis,
the number of β′-blocks is

(2.7) |K/β′| = (m+ 1)(n+ 1) + inv(σ) − (k − 1)(m+ n+ 2) +
k∑

s=2

(is + js).

Roughly saying, our job is to count how many β′-blocks are glued together by the
“action” of the light grey cell. Consider the following elements:

(2.8)
u = (bi1 , cj1−1), v = (bi1 , cj1), w = (bi1−1, cj1), z = (bi1 , c0),
u′ = (bm, cj1−1), v′ = (bm, cj1), v′′ = (bi1, cn), w′′ = (bi1−1, cn);

Note that these elements are marked by enlarged circles in Figure 2. The restriction
of β′ to an interval I will be denoted by β′eI , and ωI stands for the equality relation
on I. Since no dark grey 4-cell occurs in the interval [0, v′′], Corollary 2.4 gives that
β′e[0,v′′ ] = ω[0,v′′]. Similarly, there is no t such that

(
(bt, cj1−1), (bt, cj1)

)
∈ β′. Let

γu be the join-congruence of [z, u′] defined by

(2.9) γu =
∨{

con∨(cell(is, js)) : 1 < s ≤ k, js < j1
}
;

it is the smallest join-congruence of [z, u′] that collapses the top boundaries of the
dark grey 4-cells in [z, u′]. We conclude that δ = ω[0,v′′] ∪ ω[u,v′] ∪ γu ∪ [v, 1]2,

which is clearly a join-congruence of K, includes β′. Thus γu = β′e[z,u′ ]. If (2.9) is
understood in the interval [z, v′], then it defines a join-congruence γv of [z, v′], and
we similarly obtain that γv = β′e[z,v′]. The previous two equalities clearly yield

that β′e[u,u′] = γue[u,u′] and β′e[v,v′] = γve[v,v′]. Applying Corollary 2.4 to [z, u′]

and to [z, v′], we obtain that β′e[u,u′] partitions [u, u′] to m+ 1− i1 − q blocks and

that β′e[v,v′] partitions [v, v′] to m+ 1 − i1 − q blocks, where

q = |{s : 1 < s ≤ k, js < j1}|,
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which is the number of dark grey 4-cells in [z, u′] (and also in [z, v′]). We also obtain
from Corollary 2.4 that the above-mentioned blocks are “positioned in parallel”,
that is, for x, y ∈ [u, u′], we have (x, y) ∈ β′ if and only if (x ∨ v, y ∨ v) ∈ β′.

We know that β = β′ ∨ con∨(cell(i1, j1)) in the lattice of join-congruences of
K and also in the lattice of equivalences of K. The blocks of con∨(cell(i1, j1)) are
given by Lemma 2.2; they are indicated by thick lines in Figure 2. Since β′ ⊆ δ,
each element of [w,w′] belongs to a singleton β′-block. There are n + 1 − j1 such
(singleton) β′-blocks, and the northwest-southeast oriented thick edges merge them
into other (not necessarily singleton) β′-blocks. Similarly, the northeast-southwest
oriented thick edges merge q β′-blocks of [z, u′] to the respective blocks in [v, v′].
Therefore,

(2.10) |K/β| = |K/β′| − (m+ 1 − i1 − q) − (n+ 1 − j1).

Since q is the number of inversions with j1, we have that q = inv(τ ) − inv(σ).
Combining this equation with (2.7) and (2.10) we obtain the desired (2.6). �

Proposition 2.7. Let D be a slim, semimodular, planar diagram, and let π be the

permutation associated with D in (2.5). Then |D| = h+ 1 + inv(π).

Proof. Let L be the lattice determined by D. It follows from Lemma 2.5 and the
Homomorphism Theorem that |D| = |L| = |G/α|. Hence Proposition 2.6 applies,
and the substitution (m, n, k, σ) := (h, h, h, π) clearly turns the right side of (2.6)
into h+ 1 + inv(π). �

Permutations corresponding to slim, distributive lattices. For a planar
diagram D of a slim, semimodular lattice L, let PrInt(D) denote the set of prime
intervals of L, that is, the set of edges of D. Let [a, b], [c, d] ∈ PrInt(D). These two
prime intervals are consecutive if they are opposite sides of a 4-cell. We say that
we go from [a, b] to [c, d] upwards if d is the top element of this 4-cell. Otherwise,
if c is the bottom element of the 4-cell, we go downwards. The transitive reflexive
closure of the relation

{(
[a, b], [c, d]

)
: [a, b] and [c, d] are consecutive

}

is called prime projectivity. It is an equivalence relation on PrInt(D), and its blocks
are called trajectories. If there are no [a, b], [c1, d1], [c2, d2] ∈ PrInt(D) such that
[c1, d1] 6= [c2, d2], [a, b] and [ci, di] are consecutive for i ∈ {1, 2}, and either the
trajectory T containing [a, b] goes upwards from [a, b] to [c1, d1] and [c2, d2], or it
goes downwards to [c1, d1] and [c2, d2], then we say that the trajectories of D do

not branch out. A trajectory that does not branch out can be visualized by its
strip, which is the set of 4-cells determined by consecutive edges of the trajectory.
For example, the strip from [gB, g

′
B] to [hB, h

′
B] in Figure 3 is depicted in grey. If

only some consecutive edges of a trajectory are taken, then they determine a strip

section. We recall the following statement from G. Czédli and E. T. Schmidt [7,
Lemma 2.8].

Lemma 2.8. The trajectories of D do not branch out. Each trajectory starts at

a unique prime interval of BC`(D), and it goes to the right. First it goes upwards

(possibly in zero steps), then it goes downwards (possibly in zero steps), and finally

it reaches a unique prime interval of BCr(D). In particular, once it is going down,

there is no further turn.
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Figure 3. N7 and a trajectory

Assume that D is a slim, semimodular diagram with boundary chains (2.1).
By Lemma 2.8, for each i ∈ {1, . . . , h} there is a unique j ∈ {1, . . . , h} such
that the trajectory starting at [bi−1, bi] arrives at [cj−1, cj]. This defines a map
π̂D : {1, . . . , h} → {1, . . . , h}, i 7→ j. For example, π̂D for Figure 3 is

(2.11) π̂D =

(
1 2 3 4 5 6 7 8
2 7 6 4 1 8 3 5

)
.

This gives an alternative way to associate a permutation with D using the following
statement from G. Czédli and E. T. Schmidt [10, Proposition 2.7].

Lemma 2.9. For any planar, slim, semimodular diagram D, π̂D equals πD defined

in (2.5).

Let π ∈ Sh. We say that the permutation π contains the 321 pattern if there are
i < j < k ∈ {1, . . . , h} such that π(i) > π(j) > π(k). For general background on
permutation patterns, which we do not need here, see M. Bóna [1, Theorem 2.3].
The distributivity of D is characterized by the following statement.

Proposition 2.10. Let D be a slim, semimodular diagram, and let π = πD denote

the permutation associated with it. Then D is distributive if and only if π does not

contain the 321 pattern.

Proof. The idea of the proof is simple: the distributivity of a slim, semimodular
lattice is characterized by the lack of cover-preserving N7 sublattices, and

πN7
=

(
1 2 3
3 2 1

)
.

Furthermore, a trajectory can change its direction from going upwards to going
downwards only at a cover-preserving N7 sublattice. Below, we turn this pictorial
idea into a rigorous proof.
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In virtue of Lemma 2.9, we work with π = π̂D. In order to prove the necessity
part of Proposition 2.10, we assume that D is not distributive. We obtain from
G. Czédli and E. T. Schmidt [8, Lemma 15] that D contains, as a cover-preserving
sublattice, a copy of N7, given in Figure 3. Let {d0 ≺ d1 ≺ d2 ≺ d3} and {e0 ≺
e1 ≺ e2 ≺ e3} be the left and right boundary chains, respectively, of a subdiagram
of D representing N7, see Figure 3. Let A,B, C denote the trajectories containing
[e0, e1], [e1, e2], and [e2, e3], respectively. The corresponding strip sections, starting
at these edges and going to the right, are denoted by A∗, B∗, and C∗, respectively.
Let us denote the last members of these trajectories by [hA, h

′
A], [hB, h

′
B], [hC, h

′
C] ∈

PrInt(BCr(D)), respectively. We claim that

(2.12) hA ≺ h′A ≤ hB ≺ h′B ≤ hC ≺ h′C .

Suppose for a contradiction that h′A 6≤ hB . Then h′B ≤ hA since [hA, h
′
A] 6= [hB, h

′
B]

by Lemma 2.8, and h′B and hA belong to the chain BCr(D). Thus A∗ must cross B∗

at a 4-cells such that A∗ crosses this 4-cell upwards (that is, to the northeast). But
this is impossible by Lemma 2.8 since A and thus A∗ went downwards previously at
[e0, e1]. A similar contradiction is obtained from h′B 6≤ hC since B∗ goes downwards
through [e1, e2], and thus it cannot cross a square upwards later. This proves (2.12).

Next, let [gA, g
′
A], [gB, g

′
B], [gC, g

′
C] ∈ PrInt(BC`(D)) denote the first edges of

A,B, C, respectively. Since [d0, d1] ∈ C, [d1, d2] ∈ B, and [d2, d3] ∈ A, the left-
right dual of the argument leading to (2.12) yields that

(2.13) gC ≺ g′C ≤ gB ≺ g′B ≤ gA ≺ g′A.

Therefore, in virtue of Lemma 2.9, (2.12) together with (2.13) yields a 321 pattern
in π.

Now, to prove the sufficiency part, assume that D is distributive. Then it is
dually slim by G. Czédli and E. T. Schmidt [8, Lemma 16]. Hence, by the dual
of [8, Lemma 16], no element of D has more than two lower covers. Thus each
trajectory goes (entirely) either upwards, or downwards; that is, a trajectory cannot
make a turn. Suppose for a contradiction that π contains a 321 pattern. Then, like
previously, we have trajectories A,B, C such that (2.12) and (2.13) hold. Any two
of the corresponding strips must cross at a 4-cell since their starting edges are in
the opposite order as their ending edges are. Therefore any two of the three strips
go to different directions, which is impossible since there are only two directions:
upwards and downwards. This contradiction completes the proof. �

Permutations with the same lattice. To accomplish our goal, we have to know
when two permutations determine the same slim, semimodular lattice. Below, we
recall the necessary information and notation from G. Czédli and E. T. Schmidt [10]
and G. Czédli, L. Ozsvárt, and B. Udvari [4]. (The interested reader may also want
to see the overview on slim semimodular lattices in G. Grätzer [3].) Assume that
1 ≤ u ≤ v ≤ h and π ∈ Sh. If I = [u, v] = {i ∈ N : u ≤ i ≤ v} is nonempty and
[1, u− 1], I, and [v+ 1, h] are closed with respect to π, then I is called a section of
π. Sections minimal with respect to set inclusion are called segments. Let Seg(π)
denote the set of all segments of π. For example, if π = π̂D from (2.11), then π has
only one segment, {1, . . . , 8}. Another example is

(2.14)
π =

(
1 2 3 4 5 6 7 8 9 10
3 4 1 2 6 5 7 9 10 8

)

with Seg(π) =
{
{1, 2, 3, 4}, {5, 6}, {7}, {8, 9, 10}

}
.
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For a subset A of {1, . . . , h}, let πeA denote the restriction of π to A. The set of
A → A permutations is denoted by SA. Notice that Seg(τ ) also makes sense for
τ ∈ SA since the natural order of {1, . . . , h} is automatically restricted to A. If
A ∈ Seg(π), then πeA ∈ SA and πe{1,...,h}−A ∈ S{1,...,h}−A. The unique I1 ∈ Seg(π)
with 1 ∈ I1 is the initial segment of π. We adopt the following terminology:

(2.15)
head(π) = πeI1

∈ SI1
is the head of π,

body(π) = πe{1,...,h}−I1
∈ S{1,...,h}−I1

is the body of π.

Note that body(π) can be the empty permutation acting on ∅. Clearly, the
pair (head(π), body(π)) determines π; however, the two components of the pair
(head(π), body(π)) are not arbitrary. We say that π ∈ Sh is irreducible, if its ini-
tial segment is {1, . . . , h}. Note that π is irreducible if and only if head(π) = π
or, equivalently, if and only if body(π) = ∅. Note also that the largest element
in the initial segment of π need not belong to the π-orbit of 1. In particular, as
it is exemplified by the restriction of π in (2.14) to {1, 2, 3, 4}, if σ ∈ Sh is an
involution, then its irreducibility does not imply σ(1) = h. Clearly, if I = [1, u]
is a nonempty initial interval of {1, . . . , h}, that is, if 1 ≤ u ≤ h, and, in addi-
tion, σ ∈ SI , and τ ∈ S{1,...,h}−I , then (σ, τ ) coincides with (head(π), body(π))
for some π ∈ Sh if and only if σ ∈ SI is irreducible. For π ∈ Sh, the de-

gree of π is h. We define the block [π]∼ of π by induction on the degree of
π as follows. If π is irreducible, then we let [π]∼ = {π, π−1}. Otherwise, let
[π]∼ =

{
σ : head(σ) ∈ {head(π), head(π)−1} and body(σ) ∈ [body(π)]∼

}
. For ex-

ample, if π is taken from (2.14), then [π]∼ consists of four permutations. Note
that

Sh/∼ = {[π]∼ : π ∈ Sh} and, for every π ∈ Sh,

[π]∼ = {σ : [head(σ)]∼ = [head(π)]∼ and [body(σ)]∼ = [body(π)]∼}.(2.16)

is the partition on Sh associated with the so-called “sectionally inverse or equal”
relation introduced in G. Czédli and E.T. Schmidt [10]. It is well-known from
H.A. Rothe [24], see also D.E. Knuth [19] or one can prove it easily, that inv(σ) =
inv(σ−1). This implies that inv(σ) = inv(π) for every σ ∈ [π]∼. Hence we can
define inv([π]∼) by the equation inv([π]∼) = inv(π). While part (iii) of Lemma 2.5
deals with diagrams, now we recall its lattice version from [10].

Lemma 2.11 (G. Czédli and E. T. Schmidt [10, Theorem 3.3]). Let D and E be

slim, semimodular, planar diagrams. Then D and E determine isomorphic lattices

if and only if [πD]∼ = [πE]∼.

3. Counting

Slim, semimodular lattices. We introduce the following notation.

P (h, k) = {π ∈ Sh : inv(π) = k},

I(h, k) = {π ∈ P (h, k) : π2 = id},

P̂ (h, k) = {π ∈ P (h, k) : π is irreducible},

P∼(h, k) = {[π]∼ : π ∈ P (h, k)},

P∼
s,t(h, k) = {[π]∼ : π ∈ P (h, k), head(π) ∈ Ss, and inv(head(π)) = t},

Î(h, k) = {π ∈ I(h, k) : π is irreducible}.

Here P and I comes from “permutation” and “involution”. Their parameters denote
the length of permutations and the number of inversions, while ∼ and ̂ stand for
blocks and irreducibility, respectively. The sizes of these sets are denoted by the
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corresponding lower case letters; for example, p∼(h, k) = |P∼(h, k)|. (Note that, as
opposed to us, the literature denotes |P (h, k)| usually by Ih(k) rather than p(h, k).)
The binary function p is well-studied. Let

(3.1) Gh(x) =

(h

2)∑

j=0

p(h, j)xj

denote its generating function. We recall the following result of O. Rodriguez [23]
and Muir [20], see also D.E. Knuth [19, p. 15], or M. Bóna [1, Theorem 2.3].

Lemma 3.1. Gh(x) =

h∏

j=1

j−1∑

t=0

xt =

h∏

j=1

1 − xj

1 − x
.

We mention that for the generating function Ginv
h (x) =

∑(h

2)
j=0 i(h, j)x

j of i,

W.M.B. Dukes [11, Proposition 2.8] gives the following recursive description:

(3.2) Ginv
0 (x) = Ginv

1 (x) = 1, Ginv
h (x) = Ginv

h−1(x) +
x(1 − x2(h−1))

1 − x2
·Ginv

h−2(x).

We will not use (3.2) since it is easier to compute i(h, k) by (3.6), see later. We are
now in the position to formulate the following theorem.

Theorem 3.2. The number Nssl(n) of slim, semimodular lattices of size n is de-

termined by Lemma 3.1 together with the following (recursive) formulas

Nssl(n) =

n−1∑

h=0

p∼(h, n− h− 1),(3.3)

p∼(h, k) =
1

2
·

h∑

s=1

k∑

t=0

(
p̂(s, t) + î(s, t)

)
· p∼(h− s, k − t),(3.4)

p̂(h, k) = p(h, k) −

h−1∑

s=1

k∑

t=0

p̂(s, t) · p(h− s, k − t),(3.5)

i(h, k) = i(h− 1, k) +

h∑

s=2

i(h− 2, k− 2s+ 3),(3.6)

î(h, k) = i(h, k) −

h−1∑

s=1

k∑

t=0

î(s, t) · i(h− s, k − t)(3.7)

for n, h ∈ N and k ∈ N0, and with the initial values

p∼(h, 0) = p(h, 0) = i(h, 0) = 1 = p̂(1, 0) = î(1, 0) for h ∈ N0,

p∼(h, k) = p(h, k) = p̂(h, k) = i(h, k) = î(h, k) = 0 if k >

(
h

2

)
or {h, k} 6⊆ N0,

p̂(h, 0) = î(h, 0) = 0, if h > 1.

Notice that
(
h
k

)
= 0 if k > h. Clearly, together with the initial values, (3.6)

determines the function i, (3.7) gives the function î, we can evaluate the function
p based on Lemma 3.1 and (3.1), then (3.5) determines the function p̂, (3.4) yields
p∼, and, finally, (3.3) yields Nssl(n).
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Proof of Theorem 3.2. By Lemma 2.11, we have to count the blocks [π]∼ that give
rise to n-element lattices. The initial values are obvious.

If π ∈ Sh, then inv([π]∼) = inv(π) equals n − h − 1 by Proposition 2.7. This
implies (3.3).

Next, [head(π)]∼ is a singleton if head(π)2 = id, and it is two-element otherwise.
Thus, by (2.16), the number of blocks [π]∼ ∈ P∼(h, k) with head(π)2 = id is

(3.8)

h∑

s=1

k∑

t=0

î(s, t) · p∼(h− s, k − t).

Similarly, the number of blocks [π]∼ ∈ P∼(h, k) with head(π)2 6= id is

(3.9)

h∑

s=1

k∑

t=0

1

2
·
(
p̂(s, t) − î(s, t)

)
· p∼(h − s, k − t).

Forming the sum of (3.8) and (3.9), we obtain (3.4).
The subtrahend on the right of (3.5) is the number of the reducible members of

P (h, k). This implies (3.5).
For π ∈ I(h, k), let s = π(1). There are exactly i(h − 1, k) many such π with

s = 1; this gives the first summand in (3.6). Next, assume that s > 1, and note
that π(s) = 1 since π2 = id. Then, in the second row of the matrix

(
1 2 . . . s− 1 s s+ 1 . . . h
s π(2) . . . π(s− 1) 1 π(s+ 1) . . . π(h)

)
,

there are s− 1 inversions of the form (x, 1), s− 2 inversions of the form (s, y) with
y 6= 1, and we also have the inversions of σ = πe{1,...,h}−{1,s}. Therefore, σ has
k− (s− 1 + s− 2) inversions, whence σ can be selected in i(h− 2, k− 2s+3) ways.
This explains the second part of (3.6), completing the proof of equation (3.6).

Finally, the argument for (3.7) is essentially the same as that for (3.5) since the
subtrahend in (3.7) is the number of reducible members of I(h, k). �

Slim, semimodular diagrams. Due to Lemma 2.5(iii), the first part of the pre-
vious proof for (3.3) clearly yields the following statement. Based on Lemma 3.1,
it gives an effective way to count the diagrams in question.

Proposition 3.3. Up to similarity, the number Nssd(n) of planar, slim, semimod-

ular lattice diagrams with n elements is

Nssd(n) =

n−1∑

h=0

p(h, n− h− 1).

Proof. If π ∈ Sh determines an n-element diagram, then inv(π) equals n−h− 1 by
Proposition 2.7. This together with Lemma 2.5(iii) implies our statement. �

Slim distributive diagrams. As opposed to the previous statement, we are going
to enumerate these diagrams of a given length rather than a given size. Let Ch =

(h+ 1)−1 ·

(
2h

h

)
denote the h-th Catalan number, see, for example, M. Bóna [1].

Proposition 3.4. Up to similarity, the number of planar, slim, distributive lattice

diagrams of length h is Ch.
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Proof. By Lemma 2.5(iii) and Proposition 2.10, we need the number of permuta-
tions in Sh that do not contain the pattern 321. This number is Ch by M. Bóna [1,
Corollary 4.7]. �

3.1. Calculations with Computer Algebra. It follows easily from Theorem 3.2
that Nssl(1) = 1, Nssl(2) = 1, Nssl(3) = 1,Nssl(4) = 2, Nssl(5) = 3, Nssl(6) = 5,
Nssl(7) = 9, Nssl(8) = 16, Nssl(9) = 29, and these values can easily be checked
by listing the corresponding lattices. One can use computer algebra to obtain,
say, Nssl(20) = 33 701, Nssl(30) = 25 051 415, and Nssl(40) = 19 057 278 911. In a
desktop computer with 3GHz Intel R© CoreTM2 Duo Processor E8400 and 3.25 GB
of RAM from 2008, one can compute

Nssl(50) = 14 546 017 036 127

in about three hours.
To indicate that semimodularity together with slimness is a strong assump-

tion, we conclude the paper with the following comparison. While we computed
Nssl(18) = 9070 with our computer described above in four seconds, it took about
six days and a parallel algorithm using fifty 450 MHz processors of a Cray T3e
computer to count all 18-element lattices, see J. Heitzig and J. Reinhold [15].
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[4] G. Czédli, L. Ozsvárt, B. Udvari, How many ways can two composition series intersect?

Discrete Mathematics, 312 (2012), 3523–3536.
[5] G. Czédli, E. T. Schmidt, Some results on semimodular lattices, Contributions to General

Algebra 19 (Proc. Olomouc Conf. 2010), Johannes Hein verlag, Klagenfurt (2010), pp. 45–56.

[6] G. Czédli, E.T. Schmidt, How to derive finite semimodular lattices from distributive lattices?,
Acta Mathematica Hungarica, 121 (2008), 277–282.
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