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Abstract. We prove that the tolerance lattice TolA of an algebra A from a
congruence modular variety V' is 0-1 modular and satisfies the general disjointness
property. If V' is congruence distributive, then the lattice TolA is pseudocomple-
mented. If V' admits a majority term, then TolA is O-modular.
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1. Introduction

The tolerances and the congruences of an algebra A form algebraic
lattices denoted by TolA = (TolA, A,LJ) and ConA = (ConA, A, V),
respectively. The congrence lattice ConA of an algebra A is an algebraic
lattice but (according to the Grétzer—Schmidt theorem, cf. [9]) it has
no further special properties. The same is true for the tolerance lattice
TolA by [3] (for an alternative proof cf. also Theorem 2 with p being the
identical map plus checking the construction for reflexivity in Gratzer
and Lampe [8]). As a contrast to the general case, the tolarence lattice
TolL of an arbitrary lattice L has many nice properties by [10] and
Bandelt [1]. Bandelt [1] is also a good source to convince the reader
about the importance of tolerances of lattices.

The purpose of the present paper is to extend known results on
tolerance lattices of lattices to tolerance lattices of more general alge-
bras. Some results will be extended "only” for algebras with a ma-
jority term while some others for algebras in a congruence modular
variety. Surprisingly enough, the proof of our generalized statement
on O-modularity, to be stated in the last theorem here, is considerably
simpler than Bandelt’s original approach and seems to be the right way
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to reveal what is behind the scene in [1]. In spite of the present achiev-
ments, we are not able to generalize all properties of lattice tolerances,
for example, there is still no generalization of [7].

Now, for ¢ € TolA, the transitive closure of ¢ will be denoted by
p. Clearly, © is a congruence of A. For any ¢, € TolA the least
congruence containing both ¢ and 1 will be denoted by ¢ ¥ 1. Obvi-
ously, we have o Vi) = U = @V and (YO = ¢V for (,0 €
ConA. We say that TolA satisfies the inequality dist(tol,tol,tol) respec-
tively mod(tol,tol,tol), if a A (BY y) = (a A B) Y (a A7) respectively
alN(BY(any) = (aAB)Y (aAy)is valid for all a, 3,7 € TolA.
This is a right place for a warning: the satisfaction of dist(tol,tol,tol)
resp. mod(tol,tol,tol) by TolA does not mean that the lattice TolA =
(TolA, A, L) is distributive resp. modular; in virtue of Bandelt [1] and
6] this is exemplified by lattices in place of A.

In [6] the first two authors proved that if V is a congruence modular
resp. congruence distributive variety, then, for each algebra A € V,
Tol A satisfies mod(tol,tol,tol) resp. dist(tol,tol,tol). They also proved
aAB < (anp)forall a,8 € TolA and A € V, and pointed out that
it is essential to consider a whole variety, not just a single algebra.

Now it is known that the variety of all lattices is congruence dis-
tributive. The afore-mentioned results of Bandelt [1] state that for any
lattice L, TolL is a pseudocomplemented and O-modular lattice. The
pseudocomplement ¢* of any ¢ € TolL is a congruence by [10]. Now the
above-mentioned results of [6] provide us with the main tool to prove,
for instance, that if A belongs to a congruence modular variety then
ConA is a homomorphic image of TolA; if A belongs to a congruence
distributive variety then TolA is 0-1 modular and pseudocomplemented
lattice and for any ¢ € TolA ¢* is a congruence.

2. Preliminary notions

A lattice L with 0 is called 0-modular, cf. Stern [14], if there is no Nj
sublattice of L including 0. A bounded lattice L is called 0-1 modular
if no N5 of L includes both 0 and 1. Clearly, this is equivalent to the
condition that none of the elements of L has comparable complements.
A complete lattice L is called upper continuous, cf. Schmidt [13], if any
directed family of elements {as | é € D} £ L and any a € L satisfies
aN(V{as|d€ D}) =V{aNas]| o€ D}. It is well-known that any
algebraic lattice is upper continuous.

For a,b € L set SC(a/b) = {z € L | a ANz < b}. If L is an upper
continuous lattice, then the set SC(a/b) contains at least one maximal
element [5], which is called a weak pseudocomplement of a relative to b
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and it is denoted by a,b. It is easy to see that a,b is not necessarily
unique and for any x €SC(a/b) there exists at least one a,,b such that
x < ayb. If 0 € L, then a,,0 is called a weak pseudocomplement of a and
it is denoted by a®. If a” is unique, i.e. if a” is the greatest element
of SC(a/0), then it is called the pseudocomplement of a and usually it
is denoted by a*. L is called a pseudocomplemented lattice if for each
a € L there exists a* € L. In other words, L is pseudocomplemented
if for any a € L there exists an a* € L such that for any x € L,
xANa=0<% 2z < a It is well-known that any algebraic distributive
lattice is pseudocomplemented. If L is a pseudocomplemented lattice
then (L,A,V,*,0,1) is called a p-algebra. A and V stands for the
identity relation and the all relation on A, respectively. The algebra A
is called tolerance-simple, cf. e.g. Chajda [2], if TolA = {A, V}.
The following lemma will be useful in our proofs:

Lemma 2.1. Let A be an arbitrary algebra and @1, € TolA. Then
©1 U o = V implies 1 0 s = 01 = V.

Proof. Since (p10¢2)N(pa0p7) is clearly a tolerance of A, cf. e.g. [11],
and it includes ¢ and @9, we obtain V = @1 Ups & (p1099)N(p20¢1).
Hence ¢1 0 9 = g0 = V. Q.E.D.

3. The proofs

Lemma 3.1. Let A be a congruence modular (congruence distributive)
algebra. Then the following statements are equivalent:

(i) For any 0 € ConA and any ¢ € TolA we have ¢,0 € ConA.

(i) AV = (o A1), for all p,1) € TolA.

(iii) The map h: TolA — ConA, ¢ — @, is a surjective lattice
homomorphism.

(iv) TolA satisfies mod(tol,tol,tol) (dist(tol,tol,tol)).

Proof. (i)=(ii). Let p,1 € TolA and consider 8 = (¢ A1) € ConA.
Then oA < 0. As TolA is an algebraic lattice, there exists a ¢,,0 such
that 1 < ¢,,0. Since by the assumption of (i) ¢,,0 € ConA, we obtain
¥ < 0, and this implies o A < (¢ A 1)). As this relation is valid for

any pair of tolerances, we obtain ZAY < (BAY) < (@ AY) = (p A).
Since (¢ A1p) < B A1, we obtain BAY = (p A).
(ii)=-(iii). Since for any § € ConA we have h(d) = 6, the map

h :TolA —ConA is onto. Take ¢, 1) €TolA. Then h(pUy) = (pUy) =
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PV = h(p)Vh(1), moreover (ii) implies h(@AY) = (@ A V) = GAY =
h(¢) A h(¢). Thus h is a homomorphism.

(iii)=(iv). Take «, 3,7 € TolA. Then we have a A (B Y (a A 7)) <
aA(BV(any) <an(BV(@A7). If Cond is a modular lattice,
then we obtain @A (BV (@V7)) < (@AB)V (@AF). Since h(p) =P is
a homomorphism, we have (a A 3) = @A B and (a Ay) =@ A75. Thus
we obtain a A (BY (aAY)) < (@AB)V (@AF) = (aAB)V(aAy) =
(a A B) Y (a A7), and so TolA satisfies mod(tol,tol,tol).

The case when ConA is distributive is similar: a A (8Yy) <aA(BV
) =@AB) V(@A) =(aAB)V(aAy)=(aAB)Y(aAy), and this
proves that TolA satisfies dist(tol,tol,tol).

(iv)=(i). Clearly, dist(tol,tol,tol) implies mod(tol,tol,tol) and mod(tol,
tol,tol), according to [6] or substituting 0 for the ”third tol”, implies
aAB < (aAp) for all a,3 € TolA. Take any @ € ConA and ¢ €
TolA. Then ¢ A 0 < 0 implies © A 0 < (P A ) < 0 =0, ie.
0wl €SC(p/0). As ©,0 is a maximal element of SC(¢/0) and since

0wl < @0, we obtain ¢,0 = ©,0 € ConA. Q.E.D.

Proposition 3.2. Let A be an algebra in a congruence modular variety
V. Then the following two statements hold:

(i) For any ¢ € TolA each ¢ € ConA.

(ii) If ¢ and ¥ are complements of each other in TolA, then they are
weak pseudocomplements of each other and form a factor congruence
pair of A.

Proof. (i) Since V is congruence modular, TolA satisfies mod(tol,tol,tol)
according to [6]. As " = ¢,,0, applying Lemma 3.1 we infer (i).

(ii) Let ¢ and ¢ be complements of each other in TolA. Then, by
Lemma 2.1, Iy = V implies po1) = Yop =V. As p Ay = A, there
is a " such that ¢ < ™. We have to prove ¢ = ¢%, i.e. ¥ <.

Take any (z,y) € ¢™. Since (z,y) € p o1, there exists a z € A such
that (z,z) € v and (z,y) € ¥. However ¢ < ¥ implies (z,y) € ™. As
" € ConA, we obtain (z,z) € ¢* Ap = A, i.e. x = z. Therefore we
obtain (z,y) € ¢ proving ¢* < 1. Thus, we conclude that ¢ = ¢ €
ConA. Interchanging the role of ¢ and ¢ we obtain ¢ = 9" € ConA.
Aspo ANy =Aand potp =1pop =V, pand ¥ are factor congruences
of A. Q.E.D.

Definition 3.3. The lattice L with 0 satisfies the general disjointness
property (GD) if a Ab=0 and (aVb) Ac=0imply a A (bVc)=0.
(See [12] or [14].)
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It is easy to check that any pseudocomplemented lattice has the (GD)
property. It was proved in [12] that any O-modular lattice satisfies the
(GD) property, too.

Theorem 3.4. Let A be an algebra in a congruence modular variety
V. Then the following statements hold:
(i) The map h: TolA — ConA, ¢ — P, is a surjective lattice homo-
morphism and TolA is a 0-1 modular lattice having the (GD) property.
(i) TolA is pseudocomplemented if and only if ConA is pseudocom-
plemented.

Proof. (i) Since V is a congruence modular variety and A € V, by [6]
TolA satisfies mod(tol,tol,tol). Therefore by applying Lemma 3.1 we
obtain the required homomorphism.

Now, by way of contradiction, suppose that TolA is not 0-1 modular.
Then an N5 sublattice of TolA includes A and V. Hence each element
of this Ny has a complement in TolA. Since complements are weak
pseudocomplements as well, we conclude from Proposition 3.2(ii) that
Ns C ConA. Hence the homorphism h acts identically on N5 and
we infer that N5, as a homomorphic image, is a sublattice of ConA,
contradicting congruence modularity.

Finally, take a, 3,7 € TolA and assume that a A § = A and (a L
B) Ay = A. Applying the homomorphism A to these two equations we
obtain h(a) A h(B) = h(A) = A and (h(a) V h(B)) A h(y) = A. Since
ConA is a modular lattice, it has the (GD) property as well, and this
gives a A (BL1y) < h(aA(BUY)) = h(a) A (h(B) VA(y)) = A. Thus
TolA has the (GD) property.

(ii) Assume that TolA is a pseudocomplemented lattice. Since now
for any 6 € ConA, 6* is its (unique) weak pseudocomplement in TolA,
Proposition 3.2(i) gives 0* € ConA. As any ¢ €ConA is also a tolerance,
we have 0 AN ( = A < ( < 0*. Hence 0" is the pseudocomplement of
in the lattice ConA as well. Thus ConA is pseudocomplemented.

Conversely, assume that ConA is pseudocomplemented and denote
by 6* the pseudocomplement of a 8 € ConA. We prove that for each
¢ € TolA the congruence (@)* is the pseudocomplement of ¢ in TolA.

Let ¢ € TolA, ¢ = (®)*. Then o Ay < P A ()" = A. Take
a 1 € TolA with o A = A. Then, in view of Lemma 3.1(ii), we
have A Y = (pAf) = A. Thus we obtain ¢ < (@)*and so ¥ <
(®)*. Hence p A = 0 & ¢ < ()" and this proves that TolA is
pseudocomplemented and the pseudocomplement ¢* of ¢ in TolA is
the same as ()" Q.E.D.
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Remark 3.5. Observe that it is implicit in the proof of Theorem
3.5(ii) the following: The pseudocomplement in ConA of a # € ConA
is the same as its pseudocomplement in TolA. As a consequence, the
pseudocomplementation operation will be denoted by the same symbol
”*” in both of the lattices ConA and TolA. It is also clear that in this
case (ConA,A,*) is a subalgebra of (TolA, A,*). Notice that in the

=\ *

proof of the Theorem 3.5(ii) it was also deduced that ¢* = ().

Proposition 3.6. Let V be a congruence distributive variety and let
A e V. Then the following hold:

(i) TolA is a pseudocomplemented 0-1 modular lattice and for any
¢ € TolA we have ¢* €ConA.

(ii) The map h: TolA— ConA, ¢ +— @, is a homomorphism of the
p-algebra (TolA, A, LU* ) A, V) onto the p-algebra (ConA, A, V,* A, V).

Proof. Now ConA, as an algebraic distributive lattice, is pseudocom-
plemented as well. Therefore (i) is an obvious consequence of Theorem
3.4 and Proposition 3.2(i).

(ii) In view of Theorem 3.4(i) h is a lattice homomorphism and h
is onto. We have also h(A) = A and h(V) = V. Since ¢* € ConA,
h(¢*) = ¢*. On the other hand, we have (h(y))* = (¥)* = ¢*, accord-
ing to Remark 3.5. Thus we obtain h(¢*) = (h(y))*, and hence h is a
homomorphism of p-algebras. Q.E.D.

Corollary 3.7. Let A be an algebra of a variety V.

(i) If V is congruence modular and TolA is a simple or complemented
lattice then TolA =ConA.

(ii) If V is congruence distributive and the lattice TolA is simple,
then the algebra A itself is tolerance-simple.

Proof. We may assume that |A| > 2.

(i) If TolA is complemented, then Proposition 3.2(ii) gives TolA =
ConA. If TolA is simple, then the congruence © STolAxTolA defined
by (1, ¢2) € © & 1 = @y is either the identity relation or the total
relation on TolA. The latter case can be excluded, as A = A # V = V.
Since we have (¢, @) € O, we obtain ¢ = P for all ¢ €TolA, i.e.
TolA =ConA.

(ii) We have TolA =ConA, according to the above (i). As now ConA
is a simple distributive lattice, it is a two-element chain. Hence TolA
is also a two-element chain, i.e. A is tolerance-simple. &

A term function m(z,y, z) of an algebra A is called a majority term
if m(z,z,y) = m(z,y,x) = m(y,z,z) = x holds for all z,y € A. For
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instance, any lattice (L, A, V) admits a majority term. It is well-known
that the variety V(A) generated by an algebra A with a majority term
is congruence distributive.

Now let A be an arbitrary algebra and «, 5 € TolA. By an (a,3)-
circle we mean a 4-tuple (a,b, c,d) € A* such that (a,b), (c,d) € a and

(b,c),(d,a) € 5.

Lemma 3.8. Let A be an algebra with a majority term m, and let
a, 3 € TolA with a N\ 5= A.
(i) If (a,b,c,d) € A* is an (a, 8)-circle, then

m(a,b,c) =0b, m(b,c,d) =c, m(c,d,a)=d, m(d,a,b) =a. (1)
(ii) We have allfB = (ao )N (Lo a).

Proof. (i) Because of symmetry, it suffices to prove the first equality.
Since we have (m(a, b, c),m(b,b,c)) € a, (m(a,b,c),m(a.b,b)) € §and
m(b,b,c) = m(a,b,b) = b, the first equality comes from a A § = A.

(ii) As it was pointed out in the argument of Lemma 2.1, we have
(aof)N(Boa) € TolAdand all < (aoB)N(Boa). Now let § be
a tolerance with v < ¢ and § < ¢ and take any a,c € A with (a,c) €
(aofB)N(Boa). Then there exist b,d € A such that (a,bd) € a, (b,c) €
and (a,d) € 3, (d,c) € a. Then (a,b,c,d) is an («, 3)-circle. Therefore
(1) gives m(d,a,b) = a. On the other hand, (d,c), (b,c) € § implies
(m(d,a,b),m(c,a,c)) € 5. As m(c,a,c) = ¢, we obtain (a,c) € §. Thus
we conclude (ao 3) N (G oa) < § and this proves (ao )N (Boa) =
allps. Q.E.D.

Theorem 3.9. Let A be an algebra. If A has a majority term then:
(i) TolA is a 0-modular pseudocomplemented lattice.
(ii) The tolerances a, 3 are complements of each other in TolA if
and only if they form a factor congruence pair of A.

Proof. (i) Since the variety V(A) is congruence distributive, in view of
Proposition 3.6, TolA is pseudocomplemented.

In order to prove that TolA is O-modular, by the way of contradiction
let us assume that {A,«,3,v,v} is an Ny sublattice in TolA with
A<a<y<rv, A<f<vandalUf=~yUpf=v, aN[ =
YA B =A. Take any a,c € A with (a,c) € 7. As by Lemma 3.8(ii)
we have v = alU f = (a0 8) N (B o a) and since 7y < v, we obtain
(a,c) € (a0 B)N(LBoa). Then there exist ¢,d € A such that (a,b) € «,
(b,c) € B and (a,d) € 3, (d,c) € a, i.e. such that (a,b,c,d) is an
(o, B)-circle.



From (a,c) € v and (1) we obtain b = m(a,b,c) v m(c,b,¢c) = c.
Thus we obtain (b,c) € vy A B = A, i.e. b = c. Hence we conclude
(a,c) = (a,b) € a. We have shown v < «, a contradiction. Therefore
TolA is 0O-modular.

(ii) If @ and [ are complements of each other then they form a factor
congruence pair in virtue of Proposition 3.2(ii). Conversely, suppose
that a, 8 € ConA form a factor congruence pair. Then aof = foa =V
and a A f = A, whence we conclude from Lemma 3.8(ii) that a U3 =
(o fB)N(Boa)=V. Thus a and § are complements of each other in
TolA. Q.E.D.
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