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Abstract. We prove that slim patch lattices are exactly the absolute re-
tracts with more than two elements for the category of slim semimodular
lattices with length-preserving lattice embeddings as morphisms. Also,
slim patch lattices are the same as themaximal objects L in this category
such that |L| > 2. Furthermore, slim patch lattices are characterized as
the algebraically closed lattices L in this category such that |L| > 2.
Finally, we prove that if we consider {0, 1}-preserving lattice homomor-
phisms rather than length-preserving ones, then the absolute retracts for
the class of slim semimodular lattices are the at most 4-element boolean
lattices.
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1. Introduction

1.1. Outline

A first look at our goal is presented in Subsection 1.2. In addition to a short
historical survey and our motivations, Subsection 1.3 gives most of the defi-
nitions that are needed to state our main result, Theorem 1.5, in Subsection
1.4. A related result and two corollaries are also formulated in Subsection
1.4. In Section 2, we prove the results.
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1.2. Goal

We intend to characterize slim patch lattices among slim semimodular lat-
tices as absolute retracts and also as maximal lattices. Theorem 1.5 in Subsec-
tion 1.4 indicates that this is possible, provided we turn the class of slim semi-
modular lattices into a category with appropriately chosen morphisms and we
disregard the singleton lattice and the two-element lattice. The present paper
continues the “slim semimodular lattices” part of Czédli and Molkhasi [15],
where all lattice homomorphisms among these lattices were allowed.

1.3. Definitions and a mini-survey

All lattices in the paper are assumed to be finite even where this is not
emphasized. For (a finite) lattice L, the set of non-zero join-irreducible el-
ements and that of non-unit meet-irreducible elements will be denoted by
J(L) and M(L), respectively. They are posets (that is, partially ordered sets)
with respect to the order inherited from L. Following Czédli and Schmidt
[16], we say that a lattice L is slim if it is finite and J(L) is the union of
two chains. If x ∧ y ≺ x ⇒ y ≺ x ∨ y for all x, y ∈ L, then L is semimodu-
lar. The intensive study of planar semimodular lattices began with Grätzer
and Knapp [21, 22]. For these lattices, our definition of slimness is equivalent
to their original one: a planar semimodular lattice is slim if and only if the
five-element modular lattice M3 with three atoms is not a cover-preserving
sublattice of L. Since each planar semimodular lattice is naturally reduced
to a slim semimodular lattice by Grätzer and Knapp [21], slim semimodular
lattices play a distinguished role among planar semimodular lattices.

By Lemma 2.2 of Czédli and Schmidt [16], slim lattices are planar. (Since
this is not so if the original definition of slimness from Grätzer and Knapp
[21] is used, the term “slim planar semimodular lattice” also occurs in the
literature.)

The original importance of slim semimodular lattices in lattice theory is
explained by their role in studying the congruence lattices of finite lattices;
see Grätzer and Knapp [21, 22] together with the book chapter of Czédli and
Grätzer [9] and its references. Also, see Czédli [5] for a connection between
these lattices and a variant of planarity of bounded posets. Finally, see Czédli
[6], Czédli and Grätzer [11], and their references for recent developments.

Notably, slim semimodular lattices have already found applications out-
side lattice theory. First, they played a crucial role in generalizing the classi-
cal Jordan–Hölder theorem for groups in Grätzer and Nation [23] and Czédli
and Schmidt [16]. Second, these lattices led to new results in (combinato-
rial and convex) geometry ; see Adaricheva and Bolat [1], Adaricheva and
Czédli [2], Czédli [3], Czédli and Kurusa [13], and the references given in
[13]. This connection is due to the canonical correspondence between slim
semimodular lattices and (combinatorial) convex geometries of convex di-
mension at most 2; see Propositions 2.1 and 7.3 and Lemma 7.4 in Czédli [4].
Third, these lattices gave rise to interesting enumerative combinatorial ques-
tions in several papers. For example, even the famous mathematical constant
e = limn→∞(1 + 1/n)n ≈ 2.718 2818 appeared in a lattice theoretical and
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combinatorial paper; see Czédli, Dékány, Gyenizse, and Kulin [8]. Fourth,
some connection between these lattices and finite model theory has recently
been found in Czédli [7]. Fifth (and least), a computer game was developed
based on these lattices; see Czédli and Makay [14].

Next, we recall the following concept from Czédli and Schmidt [18]; in
a slightly modified form that needs less preparation. (The original definition
will be given later in (2.3).) An element of a lattice x ∈ L is said to be doubly
irreducible if it has exactly one lower cover and exactly one (upper) cover. In
other words, if x ∈ J(L) ∩M(L).

Definition 1.1. A slim semimodular lattice is a slim patch lattice if it has
exactly two doubly irreducible elements, these two elements are coatoms,
and their meet is the smallest element of the lattice.

For example, each of the three lattices drawn in Figure 1 is a slim
patch lattice. (Their doubly irreducible elements are pentagon-shaped.) By
definition, a slim patch lattice consists of at least four elements. We proved
in Czédli and Schmidt [18] that every slim semimodular lattice can be ob-
tained from slim patch lattices by gluing them together. Furthermore, [18]
also proves that

slim patch lattices are characterized as slim
semimodular lattices that are indecomposable
with respect to (Hall–Dilworth) gluing.

 (1.1)

In this sense, slim patch lattices are the “small building stones” among
slim semimodular lattices. On the other hand, slim patch lattices are “large
enough” in the sense that each slim semimodular lattice L can be embedded
into a slim patch lattice K; for example, such a K is constructed in Czédli
and Molkhasi [15, Figure 2]. It will appear from our main result that patch
lattices are “maximally large” in some sense.

Next, assume that

C is a (concrete) category that consists of some
lattices as objects and each morphism of C is a
lattice homomorphism;

 (1.2)

we do not require that all lattice homomorphisms among the objects of C are
morphisms in C. Using that every singleton subset of a lattice is a sublattice,
it follows easily that

the monomorphisms of C given in (1.2) are lattice em-
beddings, that is, injective lattice homomorphisms.

}
(1.3)

For lattices L,K ∈ C, we say that L is a retract of K in the category C if
there is a morphism ι : L → K in C and a morphism ρ : K → L in C such
that ρ ◦ ι is the identity morphism idL of L. Here, by (1.2), ι and ρ are
lattice homomorphisms; note that we compose them from right to left, that
is, (ρ ◦ ι)(x) = ρ(ι(x)). Note also that ρ ◦ ι = idL and (1.3) imply that ι is a
lattice embedding and it is a monomorphism in C, and ρ is a surjective (in
other words, an onto) map. The morphism ρ above is called a retraction of ι.
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Definition 1.2. Let C be as in (1.2). A lattice L ∈ C is an absolute retract
for C if for every K ∈ C and every monomorphism ι : L → K, there exists
a morphism ρ : K → L in C such that ρ ◦ ι = idL. In other words, L ∈ C is
an absolute retract for C if every monomorphism of C with domain L has a
retraction in C.

Note that absolute retracts of any category of similar algebras (rather
than lattices) were defined in the same way by Reinhold [28] in 1946. Hence,
Definition 1.2 is a particular case of Reinhold’s well-known definition.

Definition 1.3. Let C be as in (1.2). We say that a lattice L ∈ C is a maximal
object of C if every monomorphism L → K of C is an isomorphism.

It is quite rare that C has a maximal object. For a lattice L, an equation
in L is a formal expression

p(a1, . . . , am, x1, . . . , xn) ≈ q(a1, . . . , am, x1, . . . , xn) (1.4)

where m ∈ N0 = {0, 1, 2, . . . }, n ∈ N+ = N0 \ {0}, p and q are (m + n)-
ary lattice terms, the parameters (also know as coefficients) a1, . . . , am are
in L, and x1, . . . , xn are the unknowns of (1.4). If µ : L → K is a lattice
homomorphism, then the µ-image of equation (1.4) is the equation

p(µ(a1), . . . , µ(am), x1, . . . , xn) ≈ q(µ(a1), . . . , µ(am), x1, . . . , xn)

in K. For a set Σ of equations in L, we let µ(Σ) := {µ(e) : e ∈ Σ}. The fol-
lowing definition is taken from Schmid [29], and it was used later in Molkhasi
[25, 26, 27].

Definition 1.4. Let C be as in (1.2). We say that a lattice L ∈ C is strongly
algebraically closed in C if for any set Σ of equations in L and any monomor-
phism ι : L → K in C, if ι(Σ) has a solution in K, then Σ has a solution in L.
If we replace “any set Σ” by “any finite set Σ”, then we obtain the concept
of an algebraically closed lattice L ∈ C.

From now on,

let S denote the category of slim semimodular
lattices with all lattice homomorphisms.

}
(1.5)

In accordance with the general assumption for the paper, every lattice in S is
finite. Czédli and Molkhasi [15] proved that for a lattice L ∈ S, the following
four conditions are equivalent: (1) L is algebraically closed in S, (2) L is
strongly algebraically closed in S, (3) L is an absolute retract for S, and (4)
L is the singleton lattice. In addition to the importance of patch lattices, this
result is also one of our motivations here.

A semimodular lattice L is finite by definition, whence it has 0 = 0L
and 1 = 1L. For lattices L and K with 0 and 1, a lattice homomorphism
φ : L → K is a {0, 1}-preserving homomorphism if φ(0) = 0 and φ(1) = 1.
If, in addition, φ is injective, then φ is a {0, 1}-preserving embedding. If
φ : L → K is a lattice homomorphism with the property that φ(x) ≺ φ(y)
in K whenever x ≺ y in L, then φ is cover-preserving. Using that the kernel
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(congruence) of φ is determined by the covering pairs it collapses (and that
we only deal with finite lattices), it follows that a cover-preserving lattice
homomorphism is necessarily an embedding. This explains partly that

by a length-preserving embedding we mean a lattice homomor-
phism that is both {0, 1}-preserving and cover-preserving.

}
(1.6)

The length of a finite lattice L is length(L) := max{|C| − 1 : C is a chain in
L}. Using that a finite semimodular lattice satisfies the Jordan–Hölder chain
condition, it is easy to see that for finite semimodular lattices L and K,

if there is a length-preserving embedding L → K, then
length(L) = length(K), and

}
(1.7)

if φ : L → K is a lattice embedding and length(L) =
length(K), then φ is a length-preserving embedding.

}
(1.8)

The terminology “length-preserving embedding” is also explained by (1.7).
To formulate our results, we define two categories.

Let S01 denote the category of slim semimodular lat-
tices with {0, 1}-preserving homomorphisms.

}
(1.9)

Let Slen denote the category of slim semimodular
lattices with length-preserving embeddings; see (1.6).

}
(1.10)

With more details, (1.10) says that the objects of Slen are the slim semimod-
ular lattices and the morphisms of Slen are the length-preserving embeddings
among these lattices, and analogously for (1.9).

1.4. The results of the paper

Now, based on Definitions 1.1–1.3 and notation (1.10), we are in the position
to formulate the main result of the paper.

Theorem 1.5 (Main Theorem). For a slim semimodular lattice L, the follow-
ing three conditions are equivalent.

(M1) L is an absolute retract for Slen.
(M2) L is a maximal object of Slen.
(M3) L is a slim patch lattice or |L| ≤ 2.

This theorem clearly yields the following corollary, which explains the
title of the paper. Let S≥3

len denote the full subcategory of Slen consisting of at
least three-element slim semimodular lattices and all Slen-morphisms among
them.

Corollary 1.6. In S≥3
len, slim patch lattices are characterized as absolute re-

tracts. Also, slim patch lattices are characterized as the maximal objects of
S≥3
len.

It is not rare that a class of “important objects” in algebra (and in
some other fields of mathematics) has a category theoretical characteriza-
tion. Corollary 1.6 gives two such characterizations of the class of slim patch
lattices. Hence, in addition to (1.1) and the original motivation of introducing
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these lattices in Czédli and Schmidt [18], Corollary 1.6 is another sign that
slim patch lattices deserve attention. So is the following corollary, which is
based on Definitions 1.1 and 1.4; it will be proved in Section 2.

Corollary 1.7. For a slim semimodular lattice L, the following three conditions
are equivalent.

(i) L is a slim patch lattice or |L| ≤ 2.
(ii) L is algebraically closed in Slen.
(iii) L is strongly algebraically closed in Slen.

Next, we turn our attention to category S01; see (1.9). It is not hard to
see that there is no maximal object in S01. (For example, this will prompt
follow from (2.1).) The counterpart of the Main Theorem for this category is
the following.

Proposition 1.8. Let L be a slim semimodular lattice. Then L is an absolute
retract for S01 if and only if L is an at most 4-element boolean lattice.

Similarly to Corollary 1.7, we have the following statement.

Corollary 1.9. For a slim semimodular lattice L, the following three conditions
are equivalent.

(i) L is algebraically closed in S01.
(ii) L is strongly algebraically closed in S01.
(iii) L is an at most 4-element boolean lattice.

2. Proofs

Whenever we deal with a slim semimodular lattice, we always assume that a
planar diagram of this lattice is fixed. Some of the concepts we are going to
use depend on how this diagram is chosen but this will not cause any trouble.
Below, for the sake of our proofs, we recall some concepts and statements from
earlier papers. These concepts are also given in the book chapter of Czédli
and Grätzer [9].

Figure 1. Three slim patch lattices
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A cover-preserving four-element boolean sublattice of a slim semimod-
ular lattice L is called a 4-cell. Given a 4-cell C of this L, we can obtain
a so-called fork extension of L by adding a fork to the 4-cell C of L as it
is shown in Figure 5 of Czédli and Schmidt [17]; this is also shown here in
Figure 1, where we add a fork to the grey-filled 4-cell of L to obtain K. (The
new elements, that is, the elements of K \ L, are black-filled.) Note that a
fork extension K of L is always a proper extension, that is, the original lattice
is a proper sublattice in it; proper means that L ̸= K. We know from Czédli
and Schmidt [17, Theorem 11] that

a fork extension of a slim semimodular lattice
is again a slim semimodular lattice.

}
(2.1)

For a slim semimodular lattice L, keeping in mind that it is planar
and a planar diagram of L is fixed, the left boundary chain and the right
boundary chain of L are denoted by Bleft(L) and Bright(L), respectively. The
union of these two chains is the boundary of L; it is denoted by Bnd(L). The
elements of Bnd(L) and the edges among these elements form a polygon in the
plane, the boundary polygon of (the fixed diagram of) L. Following Grätzer
and Knapp [22], a slim semimodular lattice L is a slim rectangular lattice
if Bleft(L) has exactly one doubly irreducible element, denoted by wleft(L),
Bright(L) has exactly one doubly irreducible element, denoted by wright(L),
and these two elements are complementary, that is,

wleft(L) ∧ wright(L) = 0 and wleft(L) ∨ wright(L) = 1. (2.2)

Note that the original definition of slim patch lattices in Czédli and Schmidt
[18] is the following:

a lattice L is a slim patch lattice if it is a slim rectangular
lattice such that wleft(L) and wright(L) are coatoms.

}
(2.3)

The doubly irreducible coatoms of each of the three slim patch lattices in
Figure 1 are the pentagon-shaped elements.

For u ∈ L, the ideal {x ∈ L : x ≤ u} and the filter {x ∈ L : x ≥ u}
are denoted by ↓u and ↑u, respectively. We know from Lemmas 3 and 4 of
Grätzer and Knapp [22] that for any rectangular lattice L,

↓wleft(L), ↓wright(L), ↑wleft(L), and ↑wright(L) are chains, (2.4)

↑wleft(L) \ {1} ⊆ M(L), ↑wright(L) \ {1} ⊆ M(L), (2.5)

↓wleft(L) \ {0} ⊆ J(L), and ↓wright(L) \ {0} ⊆ J(L). (2.6)

The direct product of two non-singleton chains is a grid. Clearly, grids
are distributive slim rectangular lattices. We know from (the last sentence
of) Theorem 11 and Lemma 22 in [17] that

L is a slim rectangular lattice if and only if it can be ob-
tained from a grid by adding forks, one by one, in a finite
(possibly zero) number of steps.

 (2.7)
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Without needing it later, we mention that grids and distributive slim rect-
angular lattices are the same. (To derive this from (2.7), observe that if we
add a fork to a 4-cell C, then C turns into S7 from Figure 1 and S7 is not
distributive.)

For x ∈ J(L) and y ∈ M(L), the unique lower cover of x and the unique
cover of y are denoted by x− and y+, respectively. Following Czédli and
Schmidt [17] again, a corner of a slim semimodular lattice L is a doubly
irreducible element u (necessarily on the boundary of L) such that u+ covers
exactly two elements and u− is covered by exactly two elements. Note that
wleft(L) and wright(L) in (2.2) and (2.3) are not corners in general and in
Figure 1; these two elements are weak corners in the sense of in Czédli and
Schmidt [17]. We know from Lemma 21 of [17] that

a lattice L is a slim semimodular lattice if and only if |L| ≤ 2
or L can be obtained from a slim rectangular lattice by
removing finitely many corners, one by one.

 (2.8)

Let u be a corner of a slim rectangular lattice K, and denote by v the
unique cover of u− such that v ̸= u. Then u ∥ v. So if we extend {v} to a
maximal chain C of K, then u /∈ C and C is a maximal chain of K \L. Hence,
the lattices K and K \ {u} are of the same length, and we obtain from (1.8)
that

if L,K ∈ Slen and L is obtained from K by removing
a corner of K, then the embedding ι : L → K defined
by ι(x) = x for all x ∈ L is a monomorphism in Slen.

 (2.9)

The congruence lattice of a lattice L will be denoted by Con(L), and
∆L will stand for the equality relation {(x, x) : x ∈ L}, which is the least
element of Con(L). For Θ ∈ Con(L) and H ⊆ L, the restriction {(x, y) ∈
H2 : (x, y) ∈ Θ} of Θ to H will be denoted by Θ⌉H . For Θ ∈ Con(L) and
u ∈ L, we denote by u/Θ the Θ-block {x ∈ L : (u, x) ∈ Θ} of u. We often
write u Θ v instead of (u, v) ∈ Θ.

For a, b ∈ L, the least congruence of L containing the pair (a, b) will be
denoted by con(a, b). If [a, b] is a prime interval, which means that b covers
a, in notation a ≺ b, then the prime intervals collapsed by con(a, b) are
efficiently described by G. Grätzer’s Swing Lemma. Below, for the reader’s
convenience, we recall this lemma from Grätzer [19]; alternatively, see Czédli,
Grätzer, and Lakser [12] or Czédli and Makay [14] for secondary sources. To
state the lemma, we need some definitions and notations. For prime intervals
[p0, p1] and [q0, q1] of a slim semimodular lattice L, we say that [p0, p1] is up-
perspective to [q0, q1] or, equivalently, [q0, q1] is down-perspective to [p0, p1] if
p1 ∧ q0 = p0 and p1 ∨ q0 = q1. For these two prime intervals, we say that
[p0, p1] swings to [q0, q1] if q1 = p1, q1 has at least three lower covers in L,
and q0 is join-reducible in the interval [q1∗, q1] where q1∗ stands for the meet
of all lover covers of q1. For example, in the lattice K given in Figure 1, [u, i]
and [b, i] mutually swing to each other. However, [a, i] swings to [u, i] but
[u, i] does not swing to [a, i].
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Lemma 2.1 (Swing Lemma, Grätzer [19]). Let [a, b] and [x, y] be prime in-
tervals of a slim semimodular lattice L. Then (x, y) ∈ con(a, b) if and only
if there is a finite sequence [u0, v0], [u1, v1], . . . , [un, vn] of not necessarily
distinct prime intervals of L such that [un, vn] = [x, y], [a, b] is up-perspective
to [u0, v0], and for all i ∈ {1, . . . , n}, [ui−1, vi−1] is either down-perspective
or swings to [ui, vi].

Armed with the tools and notations listed so far in this section, we are
prepared for the proof of our main result.

Proof of Theorem 1.5. First, to show the implication (M2) ⇒ (M1), assume
that L is a maximal object for Slen. Now if ι : L → K is a monomorphism in
Slen, then ι is an isomorphism since L is a maximal object. Hence, we can
let ρ := ι−1 : K → L, and ρ ◦ ι = idL is clear. Thus, L is an absolute retract
for Slen, proving the implication (M2) ⇒ (M1).

We recall from Grätzer and Nation [23] that

if C is a maximal chain of a finite semimodular
lattice L, then every congruence Θ of L is deter-
mined by its restriction Θ⌉C to C.

 (2.10)

Note that Grätzer and Nation [23] proved a more general result by allowing
“finite length” instead of “finite”.

Next, to show the implication (M1) ⇒ (M2), assume that L ∈ Slen is an
absolute retract for Slen, and let ι : L → K be a monomorphism in Slen. By
(1.3), ι is injective. Take a maximal chain C in L. Then ι(C) := {ι(x) : x ∈ C}
is a maximal chain in K since ι is a length-preserving embedding. Since L
is an absolute retract for Slen, ι has a retraction ρ : K → L in Slen. For
later reference, let us mention that in the rest of our argument proving the
implication (M1) ⇒ (M2),

to prove that our length-preserving embedding ι
is an isomorphism, we only use that ρ is a lattice
homomorphism such that ρ ◦ ι = idL, but we do
not use that ρ is a morphism in Slen.

 (2.11)

Let Θ ∈ Con(K) denote the kernel of ρ. Since ρ ◦ ι = idL gives that, for
every ι(x) ∈ ι(C), ρ(ι(x)) = x, the restriction of ρ to ι(C) is injective.
Hence, Θ⌉ι(C) = ∆ι(C). Applying (2.10), we obtain that Θ = ∆K . Hence,
ρ is injective. But it is also surjective since ρ ◦ ι = idL. Thus, ρ is a lattice
isomorphism, whereby it has an inverse, ρ−1 : L → K, which is also a lattice
isomorphism. Using that ρ◦ι = idL, we obtain that ι = idK ◦ι = (ρ−1◦ρ)◦ι =
ρ−1 ◦ (ρ◦ ι) = ρ−1 ◦ idL = ρ−1, showing that ι is a lattice isomorphism. Thus,
L is a maximal object of Slen, and we have proved the implication (M1) ⇒
(M2).

Next, to prove the implication (M2) ⇒ (M3), assume that L is a max-
imal object of Slen such that |L| ≥ 3. It follows from (2.8) and (2.9) that L
is a slim rectangular lattice. Hence, wleft(L) and wright(L) make sense. We
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claim that

wleft(L) and wright(L) are coatoms. (2.12)

For the sake of contradiction, suppose that (2.12) fails and, say, wleft(L) is
not a coatom. Then ↑wleft(L), which is a chain by (2.4), has at least three
elements. Hence, there are unique elements u, v ∈ ↑wleft(L) such that u ≺
v ≺ 1. Extend L to a poset K := L∪{d} so that d /∈ L and u ≺ d ≺ 1. In the
diagram of K, we position d to the left of v. Since u ∈ M(L) by (2.5), we have
that u = d− has exactly two covers in K. Hence, it follows from Proposition
10(i) of Czédli and Schmidt [17] that K ∈ Slen. Since d is doubly irreducible
in K, L = K \ {d} is a sublattice of K. Clearly, length(L) = length(K)
since a maximal chain of K that extends {v} is also a maximal chain of L.
It follows from (2.9) that ι : L → K defined by ι(x) = x for all x ∈ L is a
length-preserving embedding, that is, a monomorphism of Slen. However, ι
is not an isomorphism since |K| = |L ∪ {d}| = |L|+ 1 > |L|. This contradict
the assumption that L is a maximal object of Slen and proves the implication
(M2) ⇒ (M3).

Finally, to prove the validity of (M3) ⇒ (M2), observe that the one-
element lattice and the two-element lattice are trivially maximal objects of
Slen. So we assume that L is a slim patch lattice, and we need to show that
it is a maximal object of Slen. In fact, it suffices to show that an isomorphic
copy of L is a maximal object in Slen; this is why we can take the map x 7→ x
instead of a more involved embedding below.

For the sake of contradiction, suppose that L is not a maximal object
and take a slim semimodular lattice K such that L is a proper sublattice of
K and the map L → K defined by x 7→ x is a length-preserving embedding.
In particular, we know from (1.6) and (1.7) that length(L) = length(K),
0 := 0K = 0L, 1 := 1K = 1L, and L is a cover-preserving sublattice of K;
that is, for all x, y ∈ L, if x ≺L y in L, then x ≺K y in K. Since φ is injective,
we also know that

for x, y ∈ L, x ≺L y ⇐⇒ x ≺K y. (2.13)

Fix a planar diagram of K, and pick an element p ∈ K \ L. It follows from
the Jordan–Hölder chain condition and length(L) = length(K) that p is not
on any edge of L, and similarly for any other element of K \L. By (2.13), the
edges of L in the fixed diagram of K are among the edges of K. Therefore,
if we remove the elements of K \ L with all edges adjacent to them, then we
get a planar diagram of L; let this diagram be what we fix for L. We know
that L ⊂ K. (As opposed to some other branches of mathematics, “⊂” is the
conjunction of “⊆” and “̸=”.)

By the classical Jordan curve theorem, the boundary polygon of L di-
vides the plane into three pairwise disjoint subsets: an interior region, an
exterior region, and the (set of geometrical points on the) boundary polygon.
The first two subsets are topologically open while the third one is closed.
Since p is not on any edge of L, it is not on the boundary polygon. Therefore,
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p is either in the interior region of the boundary polygon, or it is in the ex-
terior region of the boundary polygon; these two possibilities need separate
treatments.

First, assume that p is in the interior region of the boundary polygon.
Since this region is divided into 4-cells by Lemma 4 of Grätzer and Knapp [21]
and p is not on any edge of L, the element p is inside the topologically open
region determined by a 4-cell H = {b = u ∧ v, u, v, t = u ∨ v} of L. By Kelly
and Rival [24, Proposition 1.4], we obtain that b < p < t. Using the Jordan–
Hölder chain condition and b ≺ u ≺ t, it follows that b ≺ p ≺ t. Thus, u, v,
and p are three different covers of b, which contradicts Lemma 8 of Grätzer
and Knapp [21].

Second, assume that p is in the exterior region of the boundary polygon.
Note that 0 < p < 1. Take a maximal chain C in K that contains p. Since
p is in the (topologically open) exterior region of the boundary polygon but
0 ∈ C is not, there are consecutive elements r ≺ s of C such that s is in the
exterior region of the boundary polygon but r is not. Using planarity or, to be
more precise, Kelly and Rival [24, Lemma 1.2], we obtain that r ∈ Bnd(L). In
particular, r ∈ L. By left–right symmetry, we can assume that r ∈ Bleft(L).
By the already mentioned Lemma 8 of Grätzer and Knapp [21], r has at most
two covers in K. Since s ∈ K is a cover of r and r ̸= 1 yields that r also has
at least one cover in L, we obtain that r has exactly one cover in L. That
is, r ∈ M(L). Since L is a slim patch lattice, Bleft(L) is the disjoint union of
↓wleft(L) \ {wleft(L)}, {wleft(L)}, and {1}.

If we had that r ∈ ↓wleft(L) \ {wleft(L)}, then r ∈ M(L) would belong
to J(L) by (2.6), so r would be doubly irreducible, we would have that r =
wright(L) by Definition 1.1, and wright(L) = r = wleft(L) ∧ r = wleft(L) ∧
wright(L) = 0 would be a contradiction. Hence, taking also r ̸= 1 into account,
we have that r = wleft(L). Thus, wleft(L) ≺K s ≤ p < 1, which gives that
1 does not cover wleft(L) in K. This contradicts the facts that wleft(L) is a
coatom in L and L is a cover-preserving sublattice of K.

Regardless the position of p, we have obtained a contradiction. This
yields the implication (M3) ⇒ (M2) and completes the proof of Theorem 1.5.

□

Proof of Proposition 1.8. To prove the “only if” part, assume that L ∈ S01 is
an absolute retract for S01. We are going to show that L is a maximal object
of Slen. Let ι : L → K be a monomorphism in Slen. By (1.3) and (1.6), ι is
also a monomorphism in S01. Since we have assumed that L is an absolute
retract for S01, there exists a {0, 1}-preserving homomorphism ρ : K → L
such that ρ ◦ ι = idL. Applying (2.11), it follows that ι is an isomorphism.
This shows that L is a maximal object of Slen, as required. Thus, we obtain
from Theorem 1.5 that |L| ≤ 2 or L is a slim patch lattice. We can assume
that L is a slim patch lattice since lattices with at most two elements are
boolean. Then |L| ≥ 4.

For the sake of contradiction, suppose that |L| ≥ 5. We know from (2.7)
that L can be obtained from a grid G by adding forks. When we add a fork
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to a slim rectangular lattice R, then wleft(R) and wright(R) remain doubly
irreducible and the lengths of the intervals [wleft(R), 1] and |wright(R), 1] do
not change. Since L is not only rectangular but it is a patch lattice, wleft(G)
and wright(G) are coatoms of G. This means that G is the 4-element boolean
lattice. Then, since |G| = 4 < 5 ≤ |R|, it follows that at least one fork
has been added to G to obtain L. Thus, thinking of the last fork added, we
obtain that the lattice S7 given in the middle of Figure 1 is a cover-preserving
sublattice of L.

The elements of this S7 will be denoted as in Figure 1. Take the upper
left 4-cell of this S7; it is grey-filled on the left of Figure 1. Add a fork to L
to obtain a new lattice denoted by K; see on the right of the figure. The new
meet-irreducible element is denoted by u, its lower covers are v and v′, as it
is shown in the figure. By (2.1), K ∈ S01. Clearly, the embedding ι : L → K
defined by x 7→ x is a morphism in S01. Since we have assumed that L is
an absolute retract for S01, ι has a retraction ρ : K → L in S01. That is,
ρ is a {0, 1}-preserving-homomorphism such that ρ ◦ ι = idL. In particular,
ρ(x) = x for all x ∈ L. As in the previous proof, we let Θ = ker ρ. Observe
that since ρ(x) = x for all x ∈ L,

the restriction Θ to L is ∆L, that is, Θ⌉L = ∆L. (2.14)

Since ρ(u) = (ρ ◦ ι)(ρ(u)) = ρ((ι ◦ ρ)(u)) = ρ(ι(ρ(u))) = ρ(ρ(u)), we
have that u Θ ρ(u). Also, u ̸= ρ(u) since ρ(u) ∈ L but u /∈ L. Depending on
whether u ̸≤ ρ(u) or u ̸≥ ρ(u), we have that u > u ∧ ρ(u) or u < u ∨ ρ(u).
Since (u, ρ(u)) ∈ Θ gives that {u ∧ ρ(u), u ∨ ρ(u)} ⊆ u/Θ, it follows that u
is not a minimal element or not a maximal element of u/Θ. Using that u/Θ
is a convex subset of K and taking into account that u covers or is covered
by exactly three elements, i, v, and v′, we obtain that at least one of (u, i),
(v, u), and (v′, u) belongs to Θ. This gives us three cases to consider; each of
them leads to contradiction in a different way.

If (u, i) ∈ Θ, then it follows from (the Swing) Lemma 2.1 that (b, i) ∈ Θ,
contradicting (2.14). If (v, u) ∈ Θ, then (a, i) = (a∨ v, a∨ u) ∈ Θ contradicts
(2.14). If (v′, u) ∈ Θ, then (b, i) = (b ∨ v′, b ∨ u) ∈ Θ, contradicting (2.14)
again. Thus, |L| ≥ 5 leads to a contradiction and it follows that |L| = 4.
Finally, a four-element patch lattice is boolean, and we have shown the “only
if” part of Proposition 1.8.

Next, in order to prove the “if” part, assume that L is a boolean lattice
with at most four elements, L ∈ S01, and ι : L → L′ is a monomorphism in
S01. That is, ι is a lattice embedding preserving 0 and 1. We need to find a
morphism ρ in S01 such that ρ ◦ ι = idL. If |L| = 1, then the preservation
of 0 and 1 gives that |L′| = 1, ι is an isomorphism, and we can let ρ := ι−1.
Hence, in the rest of the proof, it suffices to deal with the cases |L| = 2 and
|L| = 4. Before doing so, let us recall from Grätzer [20, Corollary 14] that

if 1 ̸= p ∈ ↑wleft(K) ∪ ↑wright(K) in a slim rectan-
gular lattice K, then ↓p is a prime ideal of K.

}
(2.15)
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First, assume that |L| = 2. Then L = {0, 1}. We can assume that
|L′| > 2 since otherwise ι is an isomorphism and ρ := ι−1 does the job. It
follows from (2.8) and (2.9) that there exists a slim rectangular lattice K and
a monomorphism ι′ : L′ → K in S01. (In fact, ι′ belongs even to Slen.) By
(1.3), ι′ is a lattice embedding. We know from (2.15) that I := ↓wleft(K) is
a prime ideal of K. Hence, the map

ρ′ : K → L, defined by x 7→

{
0, if x ∈ I,

1, if x ∈ K \ I,

is a lattice homomorphism. In fact, ρ′ is a morphism in S01. Let ρ := ρ′ ◦ ι′.
Then ρ is a map from L′ to L. Since both ρ′ and ι′ are morphisms in S01,
so is their product, ρ. By the same reason, ρ ◦ ι : L → L is again a morphism
in S01. Since L = {0, 1}, idL is the only L → L morphism belonging to S01.
Hence, ρ ◦ ι = idL, showing that ρ is a retraction of ι. Therefore, L is an
absolute retract for S01.

Second, assume that |L| is the four-element boolean lattice and ι : L →
L′ is a monomorphism in S01. As in the previous case, (1.3), (2.8), and (2.9)
yield that there exists a slim rectangular lattice K and a lattice embedding
ι′ : L′ → K such that ι′ is a monomorphism in S01. As previously, I :=
↓wleft(K) is a prime ideal of K, and so is J := ↓wright(K). The atoms of
L will be denoted by u and v, and we let û := (ι′ ◦ ι)(u) = ι′(ι(u)) and
v̂ := (ι′ ◦ ι)(v). Of course, we have that (ι′ ◦ ι)(0) = 0 and (ι′ ◦ ι)(1) = 1
since we are in S01. Since ι′ ◦ ι is a lattice embedding, û ∧ v̂ = 0, û ∨ v̂ = 1,
and |{0, û, v̂, 1}| = 4. Since I and J are prime ideals, we can observe that
{û, v̂} ̸⊆ I and {û, v̂} ̸⊆ K\I, and analogously for J , since otherwise û∨v̂ = 1
or û ∧ v̂ = 0 would fail. That is

|{û, v̂} ∩ I| = 1 and |{û, v̂} ∩ J | = 1. (2.16)

Thus, using that u and v play symmetrical roles, we can assume that û ∈ I
but v̂ /∈ I. It follows from (2.2) that I ∩ J = {0}. This fact and 0 ̸= û ∈ I
give that û /∈ J . Combining this with (2.16), we obtain that v̂ ∈ J . So (2.16)
gives that

û ∈ I, û /∈ J, v̂ ∈ J, and v̂ /∈ I. (2.17)

Applying (2.2) again, we conclude easily that

wleft(K) ∈ I, wleft(K) /∈ J, wright(K) ∈ J, and wright(K) /∈ I. (2.18)

Since I is a prime ideal, the equivalence α with blocks I and K \ I is a
congruence of K. Similarly, let β be the congruence with blocks J and K \J .
Let γ := α ∧ β = α ∩ β ∈ Con(K). Since each of α and β has only two
blocks, γ has at most four blocks. It follows from (2.18) that 0, 1, wleft(K),
and wright(K) are in different γ-blocks. Hence γ has exactly four blocks.
Therefore, using that wleft(K) and wright(K) are complementary and that 0,
1, wleft(K), and wright(K) are in different γ-blocks, it follows that K/γ is
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isomorphic to L and the map

ρ′ : K → L, defined by x 7→


u, if (x,wleft(K)) ∈ γ,

v, if (x,wright(K)) ∈ γ,

0, if (x, 0) ∈ γ,

1, if (x, 1) ∈ γ

(2.19)

is a lattice homomorphism and it is a morphism belonging to S01. Comparing
(2.17) and (2.18), we obtain that (û, wleft(K)) ∈ γ and (v̂, wright(K)) ∈ γ.
Thus, it follows from (2.19) that ρ′(û) = u, ρ′(v̂) = v. These two equalities
and the fact that all the homomorphisms occur in the proof are morphisms
in S01 imply that ρ′ ◦ (ι′ ◦ ι) = idL. In other words, (ρ′ ◦ ι′) ◦ ι = idL. Thus,
with ρ := ρ′ ◦ ι′, which also belongs to S01, we have that ρ ◦ ι = idL. Since ρ
is an L′ → L morphism in S01, L is an absolute retract for S01, as required.
Hence, the “if” part holds and the proof of Proposition 1.8 is complete. □

Finally, we give a joint proof of two corollaries.

Proof of Corollaries 1.7 and 1.9. Let Y be Slen or S01. A lattice L ∈ Y is
called an absolute H-retract for Y if for any monomorphism ι : L → K of
the category Y there exists a lattice homomorphism ρ : K → L such that
ρ ◦ ι = idL. (We do not require here that ρ is a morphism of Y.) We claim
that

for L ∈ Y, L is an absolute retract for Y if and
only if L is an absolute H-retract for Y.

}
(2.20)

This is trivial for Y = S01 since for a {0, 1}-preserving homomorphism ι : L →
K and a lattice homomorphism ρ : K → L, the equality ρ ◦ ι = idL implies
that ρ is also {0, 1}-preserving. For Y = Slen, (2.20) follows from (2.11).

For L ∈ Y, we know from Czédli and Molkhasi [15, Proposition 1.1] that
X is an absolute H-retract for Y if and only if X is strongly algebraically
closed in Y, and the same holds if the adverb “strongly” is removed. This fact,
(2.20), Theorem 1.5, and Proposition 1.8 imply Corollaries 1.7 and 1.9. □
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modular lattices. Algebra Universalis 64, 309–311 (2010)

[24] Kelly, D., Rival, I.: Planar lattices. Canadian J. Math. 27, 636–665 (1975)

[25] Molkhasi, A.: On strongly algebraically closed lattices. Zh. Siberian Fed. Univ.
Mat. Fiz. 9, 202–208 (2016)

[26] Molkhasi, A.: On strongly algebraically closed orthomodular lattices. Southeast
Asian Bull. Math. 42, 83–88 (2018)

[27] Molkhasi, A.: Refinable and strongly algebraically closed lattices. Southeast
Asian Bull. Math. 44, 673–680 (2020)

[28] Reinhold, B.: Absolute retracts in group theory. Bull. Amer. Math. Soc. 52,
501–506 (1946)

[29] Schmid, J.: Algebraically and existentially closed distributive lattices. Z. Math.
Logik Grundlagen Math. 25, 525–530 (1979)

Gábor Czédli
Bolyai Institute, University of Szeged, H-6720 Szeged, Hungary
URL: http://www.math.u-szeged.hu/~czedli/
e-mail: czedli@math.u-szeged.hu

http://www.math.u-szeged.hu/~czedli/

	1. Introduction
	1.1. Outline
	1.2. Goal
	1.3. Definitions and a mini-survey
	1.4. The results of the paper

	2. Proofs
	3. Declarations
	Data availability
	Compliance with ethical standards

	References

