A CLASS OF CLONES ON COUNTABLE SETS
ARISING FROM IDEALS

GABOR CZEDLI AND LUTZ HEINDORF

Let X be a non-empty set. By O(X) we denote the set of all fini-
tary operations on X, i.e. all functions X™ — X of arbitrary ar-
ity n. A clone on X is a subset of @(X) which contains all pro-
jections, i.e. all mappings (x1,...,x,) — z; for arbitrary 1 < i <
n, and which is closed under superposition, i.e. together with f :
X" — X and ¢1,...,9, : X™ — X the function (xq,...,2,) —
flori(z1,.ocvxm)y ooy gu(z1, ..., 2)) must belong to the clone. In the
sequel this superposition will be written as f(g1,...,gn)-

It is well-known that the collection £(X) of all clones on X forms
an algebraic lattice under inclusion. If X is finite, much is known
about these lattices, but very little in the infinite case. Omne of the
major open questions is whether or not £(X) is always dually atomic.
It was known for a while ([1], [3]) that for infinite sets X there is
the maximal possible number, namely 22|X‘, of coatoms (from now on
maximal clones) in £(X). Until very recently the proof of this fact
was rather indirect. In [2] GOLDSTERN and SHELAH gave the first
explicit construction of that many maximal clones using prime ideals
on X. It was their proof that led us to the question what happens
when arbitrary ideals are used.

Let I be an ideal on X (more precisely of the power-set Boolean
algebra P(X)). Then it is very easily checked that

Cr={feOX): f[A¥] eI for all A€ I}

is a clone on X. Here ny means the arity n of f and f[A"] is the usual
image {f(a1,...,a,) : a1,...,a, € A}.

In this note we investigate the position of these clones in the lattice
£(X) and, in particular, the question whether they are maximal. Tt
turns out that this is often but not always the case.
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We restrict our attention to countably infinite sets X. The more
complicated uncountable case will be dealt with in a future paper.

The countability assumption will (always tacitly) be used for choos-
ing functions that map one arbitrarily given infinite subset A of X onto
any given non-empty B C X.

1. SOME FIRST OBSERVATIONS

For the rest of the paper X is a countably infinite set and I and J
denote nontrivial ideals on X. The trivial ideal {@} gives rise to the
full clone O(X) and is, therefore, of little interest.

Nontrivial ideals include some, possibly all, singletons. We call the
set {y € X : {y} € I} = I the supportof I. If | JI = X, we say that
I has full support. The support of I can also be characterized as the
only subset Y of X for which Pf;,(Y) C I C P(Y) holds. Here and in
the following Py, (Y) denotes the collection of all finite subsets of Y.

Proposition 1. Assume C; = C; for nontrivial ideals I # J. Then
there is a non-empty subsetY of X such that {I,J} = {Psn(Y), P(Y)}.

Proof. The ideals I and J must have the same support which we denote
by Y. This is because {y} € I iff the constant function with value y
belongs to C;. As mentioned above, Py;,(Y) C I, J C P(Y).

Claim 1. If I # Py;,(Y'), then J C 1.

Take some infinite A € I. Let B € J be arbitrary. We prove B € [.
This is clear if B = (). Otherwise we can take a function f : X — B
such that f[A] = B. Being in C; (all values are in a set from J!), f
must be in Cy, too. This forces B into I and proves the claim.

It implies that one of the ideals, say I, must be P;,(Y). Because if
both were different from Py;,(Y), they would be subsets of each other,
i.e. equal.

It remains to see that J is P(Y') or, equivalently, that Y € J. Being
not equal to I = Py, (Y'), J contains an infinite set B. Fix a function
g+ X — Y such that f[B] =Y. Then f € Cp, ) = C;, which
implies Y = f[B] € J. O

Call a function f : X™ — X almost conservative iff there is a finite set
E; such that f(xy,...,2,) € {21,...,2,} U Ef for all 24,...,2, € X.
If E¢ = 0 works, then f will be called conservative.

It is quite easy to see that a function is conservative iff it belongs to
all C;. A little more interesting is the following

Proposition 2. A function is almost conservative iff it belongs to all
C[ with me<X) - I.



A CLASS OF CLONES ON COUNTABLE SETS ARISING FROM IDEALS 3

Proof. 1t should be clear that all almost conservative functions belong
to all those C;.

To establish the converse we need a simple combinatorial fact. As it
will be used a second time much later, we honour it with a name (but
skip the obvious proof).

Lemma 1 (Thinning-out Lemma). Every sequence (a),, a2, ..., a™)>,

of m tuples has a subsequence (a}tk, aik, e ,azzk),;";o such that for each

i =1,2,...,m the coordinate sequence (al, )72, is either constant or
o) k=

mjective.

Now consider a function f which is not almost conservative. For
simplicity of notation we assume it binary. The aim is to construct an
ideal such that f & C;. More precisely, we find some A C X such that
f[A?]\ A is infinite. Then the ideal I := {B C X : B\ A is finite} does
the required job.

First, there are zg,yo such that f(zo,v0) € {Zo,%}. Then choose
recursively x,11,Yns1 in such a way that

f(ITH—la yn+1) € {In+layn+l} U {IOJ cees T Yoy v v o5 Yn, f(IOJ yO)a R
f(@ns yn)}

This is always possible, for otherwise f were almost conservative.

By Thinning-out Lemma we can further assume that one of three
cases takes place: either both sequences (x,), (y,) are injective or one
is injective and the other is constant. They cannot both be constant,
for all the values f(z,,y,) are pairwise distinct, by construction.

Put C' = U~ {zn, yn}. If f[C?]\ C is infinite, then we are done.
Otherwise, there is some ng such that for all n > ngy there is some
m such that f(z,,y,) € {Tm,Ym}. In all three of the possible cases,
there can be at least two such m (but f(z,,¥n) = Tm, = Ym, 1S POS-
sible). By construction, we must have n < m. This makes it possible
to choose another subsequence by recursion: Take ny as given above
and choose ngy; in such a way that ngz.; > ng and {xnk+1,ynk+1} N
{f('rnoa yno)7 AR f('rnkaynk)} = @ PUtting A= Uzozo{mnka ynk} now
we have forced f[A?]\ A to be infinite, which completes the proof of
Proposition 2. O

2. A MAXIMALITY TEST AND SOME APPLICATIONS
Theorem 1. Assume that I is a nontrivial ideal on the countably in-
finite set X and let' Y denote its support.

(1) If Y is a proper subset of X, then the clone C; is maximal (in
O(X)) iff T € {Pyun(Y), P(V)}.
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(2) If I has full support, then C; is mazimal iff Py, (X) C I C P(X)
and for each set B & I there exists some f € Cy such that
f1B"] = X.

(3) C; is maximal in Cpyy iff Prin(Y) C I C P(Y) and for each
set B CY such that B € I there exists some f € Cy such that
f1B] =Y.

Proof. (1) It is easily checked that

Crc{feOX): flYy"]| CY} = Cpy).
The latter clone is known (e.g. 6.1 in [4]), to be maximal (for () #
Y # X). So C; will be maximal iff it coincides with that clone. By
Proposition 1 this takes place iff I € {Py;,,(Y), P(Y)}.

(2) being a special case we go over to (3). Assume first that Cy is
maximal in Cp(y), which, by Proposition 1, is equal to Cp,, (v). It
follows that the inclusions Py;,(Y) C I C P(Y') must be strict.

Next we assume that the second condition in (3) is not satisfied and

show that C; can be strictly extended to some C; C Cp(y).
Let BCY,B ¢ I be such that f[B"f] #Y for any f € C; and put

J:={ACX:AC f[B"] for some f € C;}.
Claim 2. J is an ideal such that P;,,(Y) C J C P(Y).

By its very definition, J is downward closed. To see that it is closed
under unions, assume that A; C fi[B"], Ay C fo[B™] with f1, f2 € Cy.
Given that the switching function s with

u, ifr=y

s(ﬂfayauav):{ v, ifz#£y

is conservative, it belongs to Cy, as does the 2 + m + n-ary function

g($;y7u1; ceey Up, V1, e 7Um) = S('T7y7 fl(uh . '7un)a f2(vla s avm))-
It follows that A; U Ay C f1[B"| U fo B™] = ¢g[B*™*™] is in J, as
desired.

Constant functions show that all singletons {y} are in J. C;-functions
map B CY into Y. So, we have Py;,(Y) C J C P(Y). The identity
function puts the (infinite because not in ) set B in J and, by as-

sumption, Y & J. Therefore, the inclusions are strict. This proves
Claim 2.

Claim 3. C[ Q (CJ Q (Cp(y).

The first inclusion is trivial, because if A C f[B"| and g: X" — X
with f,g € Cy, then g[A™] C ¢[f[B"]™] = h[B™"] for the C;-function

h(zi,...,xh o2 2 = g(flay,. .zl flal . a™)).
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The second inclusion is clear from J C P(Y) and definitions. This
proves Claim 3.

Now it remains to apply Proposition 1. From B € J\ I and J #
(Cp(y) we get (C] 7é (CJ 7& (Cp(y).

Finally we prove the sufficiency of condition (3). This needs the
following lemma.

Lemma 2. Suppose I has support Y and f : X™ — X is a function
in Cpyy such that f[A"] =Y for some A € I. Then [ together with
C; generates Cp(yy.

Proof. Let h: X™ — X be such that A[Y™] C Y. We have to represent
it as a superposition of f and functions from C;. To achieve this we
choose functions gy, ...,9, : X — A such that f(¢91(y),...,9.(y)) =y
for all y € Y. Then h(y) = f(91(R(Y)), ..., gn(R(y))) for all y € Y™
To check that all g;(h) belong to Cy, let B € I be arbitrary. Then
gi(h)[B™ C g;[X] C A€l

Next we consider the m + l-ary function ki defined by

h(Z,u) == {

Assuming B € I we have B C Y, hence h[B"t!] = B € I. Tt follows
that h € Cy. It remains to observe that h(z) = h(z, f(g:1(h(Z)), ...,
gn(h(Z)))). The lemma is proved. O

u, ifreY"andu ey
h(z), otherwise.

Assume now that [ satisfies condition (3) and consider some, say
m-ary, function g € Cp(y) \ C;. We have to show that C; together
with g generates every function preserving Y. The lemma reduces this
task to generating a function A that maps some power of some A € [
to the whole of Y.

The function g not being in C;, there exists some A € I such that
B = g[A"] & I. As A C Y, we have B = g[A™] C g[Y™] C Y.
Therefore, the condition yields some f € Cj such that f[B"] =Y. It
follows that the mn-ary function

h(zy, ...zl o2t oo 2™) = flg(xl, ..., 2k), . .. g, .. 2m)

maps A™ to Y. O
From the above proof and notably Lemma 2 we get a

Corollary 1. Ezcept for I € {{0}, Pf;n(X), P(X)}, each clone of the
form Cy can be extended to a maximal clone.

In the exceptional cases C; equals O(X), so there is no chance.
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Proof. If I does not have full support, then part (1) in the proof of
Theorem 1 shows that C; € Cpyy, which is maximal.

If I has full support, then Py;,(X) C I, but there must be an infinite
A € I, because I # Pf;,(X). Take a mapping f : X — X such that
f[A] = X. It cannot be in Cj, because X ¢ [. By the lemma, C;
together with f generates everything.

The rest of the argument is standard. Apply ZORN’s Lemma to the
collection of all clones A such that C; C A Z f. A maximal element in
that collection is easily seen to be a maximal clone above Cj. O

Problem 1. Can every C; be extended to a maximal clone, which is
of the form C;?

As our first application of the theorem we reprove (the countable
version of) the GOLDSTERN-SHELAH result.

Theorem 2 (Goldstern and Shelah [2]). If @ is a prime ideal on a
countable set X, then Cq is a mazimal clone.

Proof. 1f @ is principal, i.e. @ = P(X \ {zo}) for some zy € X, then
Cg is maximal, because condition (1) of the theorem is satisfied. So
assume that @ is non-principal, then Pp;,, C Q C P(X) and we have
to map an arbitrary A ¢ @@ by a Cgp-function to the whole of X. As
@ is non-principal, A is infinite and we can split it into two disjoint
infinite parts: A = A; U Ay. Exactly one of them is in @ (this is what
prime means), say As € @ Z A;. Notice that X \ A; also belongs to Q.
Choose a function f : X — X that is identical on A;, maps A, onto
X\ A; and X \ A (if it is non-empty) somehow into X \ A;.

By construction, this f maps A onto X. To see that it belongs to
Cg consider any B € . Then

Bl = fIBNAJUf[BNAJUf[B\A]CBU(X\ A1) €Q
proving the result. O

Next we establish a ‘metaexample’ which will have some interesting
special cases.

Lemma 3. Assume that Ppin(X) C I and that each A ¢ I contains
an infinite B such that no infinite subset of B is in I. Then Cy is
mazimal.

Proof. Let A € I be given and choose B C A according to the assump-
tion. Choose f: X — X in such a way that f[B] = X and f[X\B]is a
singleton. Then f[A] D f[B] = X and for each C € I, the intersection
BN C is finite, hence f[C] = f[BN C]U f[C \ B] is finite, too. So
f € C; as desired. O



A CLASS OF CLONES ON COUNTABLE SETS ARISING FROM IDEALS 7

Corollary 2. If Pf;,,(X) C I and I is countably generated, then Cy is
maximal.

Proof. Indeed, if I is countably generated, then there is some increasing
chain Cy C C; C Cy C ... of infinite sets such that

I = {ACX:ACC, for some n} =

= {AC X :A\C, is finite for some n}.

Assume that A ¢ I. Take ag € A arbitrarily and choose recursively
ant1 € A\ [C, U{ag,...,a,}]. Then B := {ag,a,...} has the proper-
ties assumed in Lemma 2. O

It is well-known that for a finite set X and an arbitrary total order
on it the set of all monotone functions is a maximal clone. For infinite
X this is wrong, as easily follows from

Corollary 3. Let < be a total order on X which is not a well-ordering.
Let I be the ideal of all well-ordered subsets of X. Then Cj is maximal.

Proof. Indeed, if A is not well ordered, it contains an infinite strictly
decreasing sequence. Its members form the desired B. O

3. A NON-MAXIMAL EXAMPLE

Having so many maximal clones of the form C; with I D Pg;,(X)
one is tempted to conjecture that Cj is always maximal. Here we give
an example showing that this is not true.

We fix a decomposition X = U(p€<I> X, of X into infinitely many
pairwise disjoint infinite subsets. Here ® is some index set and we
denote the unique ¢ such that = € X, by ¢(z). Next we define two
ideals

I = {AC X : thereis some natural number n
such that |[AN X,| < n for all ¢}
J = {ACX: ANX, is finite for all p}

Clearly, Py, (X) C I C J C P(X). We show that C; € C;. From
Proposition 1 it then follows that C; C C; C Cpxy = O(X), so [ is
the promised counterexample.

Let some k-ary f € C; and some B € J be given. We have to
show that f[B*] € J. Striving for a contradiction, we assume that
this is not true. Then there is some § € ¢ and an infinite sequence
(BE, ..., b%)>2, of elements of B* such that the images f(bl,...,b") are
pairwise distinct elements of Xp.

An application of Thinning-out Lemma to the sequence (¢(bl), ...

. o(bF))>, allows us to assume that for i = 1,...,k all sequences
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@(b!)52, are either constant or injective. For notational simplicity, we
assume that the former takes place for i = 1,...m and the latter for
t=m+1,...k. Let ai,...,q, be the corresponding constant values.

As B € J, the intersections BN X, are finite, with n; elements, say.
We put n:=ny + -+ +nm, + (k—m) and D == |J77 {b},.... b5}

Claim 4. |D N X,| < n for all .

Indeed, if ¢ equals a;, then from D C B we get |D N X,| < |BN X,,|
=n; <n.

Now, let ¢ be distinct from all o;. For ¥, to belong to X, means
©(bi)) = ¢ and this is possible only if # > m. Moreover, for each i there
can be at most one n such that ¢(},) = . This shows that p(b) = ¢
is possible for at most £ — m < n elements, which proves our claim.

It shows that D € I. On the other hand f[D*] is not even in J,
because it contains the infinitely many f(b.,...,b%) of Xz. This con-
tradicts the assumption f € C; and ends our proof.

Remark 1. Using Lemma 2 it is easily seen that C; is maximal.

Remark 2. Tt would be possible to establish the non-maximality of C;
by referring to our theorem. Essentially the same argument as above
shows that no B that has finite intersection with all X, can be mapped
onto X by a Cr-function. The ideal J that was constructed in the proof
of the theorem is identical with our J above; it does not depend on B.

Problem 2. We do not know if the constructed C; C Cj is a covering
in £(X).

Problem 3. Is every clone of the form C; covered by a clone of the
same type?
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