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Abstract. Let K0 be a compact convex subset of the plane R2, and assume
that whenever K1 ⊆ R2 is congruent to K0, then K0 and K1 are not crossing
in a natural sense due to L. Fejes-Tóth. A theorem of L. Fejes-Tóth from 1967
states that the assumption above holds for K0 if and only if K0 is a disk. In
a paper that appeared in 2017, the present author introduced a new concept
of crossing, and proved that L. Fejes-Tóth’s theorem remains true if the old
concept is replaced by the new one. Our purpose is to describe the hierarchy
among several variants of the new concepts and the old concept of crossing. In
particular, we prove that each variant of the new concept of crossing is more
restrictive than the old one. Therefore, L. Fejes-Tóth’s theorem from 1967
becomes an immediate consequence of the 2017 characterization of circles but
not conversely. Finally, a mini-survey shows that this purely geometric paper
has precursors in combinatorics and, mainly, in lattice theory.

1. Aim and introduction

Denoting the (usual real) Euclidean plane by R2, let X and Y be subsets of R2. We

say that X and Y are congruent (also called isometric) if there exists a distance-

preserving bijection ϕ : R2 → R2 such that ϕ(X) = Y . The convex hull Conv(X)

of X ⊆ R2 is the smallest convex subset of R2 that contains X. Disks and circles

are subsets of R2 of the form {〈x, y〉 : x2 + y2 ≤ r2} and {〈x, y〉 : x2 + y2 = r2}

where r ∈ R, respectively; they are necessarily nonempty sets.
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There is an everyday but not precise meaning of the clause that “two congruent

convex subsets X and Y of R2 are crossing”. For example, the “plus” symbol + is the

union of two congruent (in fact, rotated) crossing copies of the “minus” symbol −.

Similarly, if X is a convex hull of an ellipse that is not a circle and Y is obtained from

X by rotating it around its center point by 90 degrees, then X and Y are crossing.

In order to make a distinction from new concepts to be discussed later, we name

the first precisely defined concept of crossing after its inventor, see Fejes-Tóth [26];

see also the review MR0226479 (37 #2068) on [25] in MathSciNet.

Definition 1.1. Let X and Y be convex subsets of the Euclidean plane. We say

that X and Y are Fejes-Tóth-crossing if none of the sets X \ Y and Y \ X are

connected.

A subset X of R2 is connected (in other words, path-connected) if for any two

points A,B ∈ X there is a continuous curve g ⊆ X from A to B. In particular,

the empty set is connected; so if X and Y are Fejes-Tóth-crossing, then X \ Y and

Y \X are nonempty. Let us recall the following theorem.

Theorem 1.2. (Fejes-Tóth [26]) For every nonempty compact subset X of the Eu-

clidean plane R2, the following two conditions are equivalent.

(a) There exists no Y ⊆ R2 such that Y is congruent to X and X and Y are

Fejes-Tóth-crossing.

(b) X is a disk.

Hence, condition (a) above characterizes disks among compact subsets of R2.

Since circles are exactly the boundaries of disks and disks are the convex hulls of

circles, Theorem 1.2 gives the following characterization of circles immediately:

A subset X ⊆ R2 is a circle if and only if X is the boundary of

Conv(X) and Conv(X) satisfies condition (a) of Theorem 1.2.
(1.1)

Since (b) trivially implies (a), the essence of Theorem 1.2 is that (a) implies (b).

Note that some stronger statements are also known. It is implicit in Fejes-Tóth [26]

that if we replace “is congruent to” in (a) by “is obtained by a rotation from”, then

(a) becomes weaker but it still implies (b); in this way, Theorem 1.2 turns into a

stronger statement. Also, Fejes-Tóth [26] extends the validity of Theorem 1.2 for

subsets of a sphere, while Erdős and Straus [25] extends the results of [26] for higher

dimensions. As a by-product of a long proof given in Czédli [14], we are going to

cite a statement as Theorem 2.2 here, which looks similar to Theorem 1.2. A new

way of crossing has naturally been introduced in the above-mentioned long proof.

The main result of the present paper, Theorem 2.4, describes the hierarchy for the
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old concept and some variants of the new concept of crossing for compact convex

subsets of R2. As a corollary of the main result, it will appear that Theorem 1.2

follows trivially from Theorem 2.2 but not conversely; see Observation 3.3.

Outline and prerequisites

The rest of the paper is structured as follows. In Section 2, we define some new

concepts of crossing and formulate our main result, Theorem 2.4. Section 3 is devoted

to the proof of Theorem 2.4; up to the end of this section, the paper is intended to

be readable for most mathematicians. Finally, Section 4 is a historical mini-survey

to point out that besides geometry, this paper has precursors in combinatorics and,

mainly, in lattice theory; this section can be interesting mainly for those who are a

bit familiar with the mentioned fields.

2. New concepts of crossing and our main result

First, we recall some notations, well-known concepts, and well-known facts from

Czédli [14] and Czédli and Stachó [23]. In order to ease our terminology, let us agree

that every convex set in this paper is assumed to be nonempty, even if this is not

always mentioned. By a direction we mean a point α on the

unit circle Cunit := {〈x, y〉 ∈ R2 : x2 + y2 = 1}. (2.1)

A direction 〈x, y〉 ∈ Cunit is always identified with the angle α for which we have that

〈x, y〉 = 〈cosα, sinα〉; of course, α is determined only modulo 2π. This convention

allows us to write, say, π < dir(ℓ) < 2π instead of saying that the direction of a line

ℓ is strictly in the lower half-plane. If ℓ1 and ℓ2 are (directed) lines that are equal

as undirected lines but their orientations are opposite, that is, dir(ℓ2) = dir(ℓ1)+π,

then we denote ℓ2 by −ℓ1. As another notational convention, let us agree that for

points A and B of a line ℓ, we write A < B or A <ℓ B to denote that the direction

of the vector from A to B is the same as that of ℓ. For example, if ℓ is the x-axis

with dir(ℓ) = 〈1, 0〉 ∈ Cunit or, in other words, dir(ℓ) = 0, then 〈1, 0〉 < 〈2, 0〉. Unless

otherwise stated explicitly,

every line in this paper will be directed ; (2.2)

we denote the direction of a line ℓ by dir(ℓ) ∈ Cunit. In our figures, the direction of

a line ℓ is denoted by an arrowhead, and we use a half arrowhead to indicate the

left half-plane determined by ℓ. Let X ⊆ R2 be a compact convex set. Its boundary
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will be denoted by ∂X. An undirected line ℓ is an undirected supporting line of X

if ℓ ∩X 6= ∅ and X lies in one of the closed half-planes determined by ℓ.

A (directed) line ℓ is a supporting line of X if ℓ ∩ X 6= ∅

and X lies in the left closed half-plane determined by ℓ.
(2.3)

The properties of supporting lines that we need here are more or less clear by

geometric intuition and they are discussed in Czédli and Stachó [23] at an elementary

level. For a more advanced treatise, one can resort to Bonnesen and Fenchel [7].

Two sets are incomparable if none of them is a subset of the other. Note that

for each α ∈ Cunit, there is a unique supporting line ℓ of X such

that dir(ℓ) = α. Furthermore, any two incomparable compact

convex sets X1 and X2 have a common directed supporting line

that is also a supporting line of Conv(X1 ∪X2).

(2.4)

After (2.2), the adjective “directed” above occurs only for emphasis. Note that two

disjoint compact convex subsets of R2 with nonempty interiors have exactly two

common supporting lines and four non-directed common supporting lines; see the

second half of Figure 1 for an illustration.

Figure 1. If the interior of D and that of L are disjoint

If disjointness is not stipulated, then two incomparable compact convex sets

can have much more than two common supporting lines. By basic properties of

continuous functions and since our lines are directed, if X1 and X2 are compact

convex subsets of R2 and ℓ is a common supporting line of them, then ℓ∩ (X1∪X2),

with respect to its direction dir(ℓ), has a unique first point and a unique last point.

Definition 2.1. Let D and L be compact convex subsets of R2. We say that D

(2.5)-crosses L if D and L have two distinct common supporting lines t and t′ such

that
the first point UD of (D ∪ L) ∩ t is in D \ L,

the last point UL of (D ∪ L) ∩ t is in L \D,

the first point U ′
D of (D ∪ L) ∩ t′ is in D \ L, and

the last point U ′
L of (D ∪ L) ∩ t′ is in L \D;

(2.5)

where “first” and “last” refer to the orientation of the common supporting line in

question. Also, we say that D and L strongly (2.5)-cross each other if D (2.5)-
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crosses L and L (2.5)-crosses D. Finally, we say that D and L weakly (2.5)-cross

each other if D (2.5)-crosses L or L (2.5)-crosses D.

Armed with Definition 2.1, we recall the following statement from Czédli [14].

Theorem 2.2. ([14, Lemma 3.3]) For every nonempty compact convex subset X of

the Euclidean plane R2, the following two conditions are equivalent.

(a) There exists no Y ⊆ R2 such that X and Y weakly (2.5)-cross each other and,

in addition, Y is congruent to X.

(b) X is a disk.

Next, we clarify the hierarchy of several concepts of crossing. Two subsets of

R2 are rotationally congruent if there is a rotation that takes one of them to the

other. By a quasiorder (also known as preorder) we mean a reflexive transitive

relation. Partial orders are antisymmetric quasiorders and a partially ordered set

(also known as a poset) is a pair 〈A;≤〉 such that A is a nonempty set and ≤ is a

partial order on A.

Definition 2.3. Let HCC denote the set of the four concepts of crossing for planar

compact convex sets investigated in this paper; the acronym comes from “Hierarchy

of Crossing Concepts”. For u, v ∈ HCC, let u ≤ v mean that u implies v. That is,

u ≤ v iff for any compact convex subsets D and L of R2, if D crosses L in the

sense of u, then D crosses L in the sense of v. Also, let u ≤rot v mean that for any

compact convex subsets D and L of R2, if L is obtained from D by a rotation and

D crosses L in the sense of u, then D crosses L in the sense of v. Clearly both ≤

and ≤rot are quasiorders on HCC. Note that both u ≤ v and u ≤rot v mean that u,

as a set of pairs of compact convex subsets of R2, is a subset of v.

In view of Theorems 1.2 and 2.2, the following observation might look a little

bit surprising at first sight.

Theorem 2.4. (Main Theorem) Both 〈HCC;≤〉 and 〈HCC;≤rot〉 are partially or-

dered sets, they are the same partially ordered sets, and their common Hasse diagram

is the one given in Figure 2.

〈HCC;≤〉 = 〈HCC;≤rot〉
τ {〈D,L〉 :D and L are Fejes-Tóth-crossing}

ε {〈D,L〉 :D and L weakly (2.5)-cross each other}

λ{〈D,L〉 :D (2.5)-crosses L} ρ {〈D,L〉 :L (2.5)-crosses D}

β {〈D,L〉 :D and L strongly (2.5)-cross each other}

Figure 2. The hierarchy of crossing concepts for compact convex subsets of
R2; D and L stand for compact convex subsets of R2
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3. Lemmas and proofs

We begin this section with an easy lemma.

Lemma 3.1. There exist rotationally congruent compact convex subsets X and Y

of R2 such that X and Y are Fejes-Tóth-crossing but they do not (2.5)-cross each

other weakly.

Proof of Lemma 3.1. Let X be the convex hull of the solid curve given on the left

of Figure 3.

Figure 3. Our construction proving Lemma 3.1

In order to define it more precisely, consider the graphs F := {〈x, f(x)〉 : −1 ≤ x ≤

1} and G := {〈x, g(x)〉 : −1 ≤ x ≤ 1} of the concave real functions f : [−1, 1] → R,

x 7→ (1− x2)/2 and g : [−1, 1] → R, x 7→ (1− x4)/4, respectively; see Figure 4.

Figure 4. Auxiliary functions for the proof of Lemma 3.1

Both of them are tangent to (the graph of) the absolute value function at x = −1

and x = 1. Next, take a regular octagon. On the left of Figure 3, every second

edge of this octagon is given by a dashed line. Replace two opposite dashed edges

of the octagon by congruent copies of F , and replace the rest of dashed edges by

congruent copies of G. So the boundary ∂X of X consists of four straight line

segments, two arcs congruent to F , and two arcs congruent to G. (Note at this

point that Figure 4 is scaled differently from Figure 3.) Next, let us rotate X by 90

degrees counterclockwise around the center C of symmetry of the original octagon,

and let Y be the compact convex set we obtain in this way. On the right of Figure 4,

X \ Y and Y \X are denoted by light-grey (or yellow) and by dark-grey (or blue)

respectively. Clearly, X and Y are Fejes-Tóth-crossing. Since g(x) < f(x) for every
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x from the open interval (−1, 1), it follows from our construction that X and Y

have exactly four common supporting lines and each of these lines contains one of

the non-dashed edges of the initial octagon as an interval. Hence, for every common

supporting line t, we have that (X ∪ Y ) ∩ t ⊆ X ∩ Y . Hence the first point of

(X ∪ Y ) ∩ t is in X ∩ Y but outside X \ Y . Therefore, X does not (2.5)-cross Y .

Since the role of X and Y is rotationally symmetric, Y does not (2.5)-cross X. That

is, X and Y do not (2.5)-cross each other weakly.

Lemma 3.2. (Main Lemma) Let D and L be nonempty compact convex subsets of

the plane R2. Then the following two implications hold.

(i) If D (2.5)-crosses L, then D and L are Fejes-Tóth-crossing.

(ii) If D and L weakly (2.5)-cross each other, then D and L are Fejes-Tóth-

crossing.

Proof of Lemma 3.2. Since we are going to rely on continuity, we recall some ter-

minology and well-known facts; these facts are summarized in Czédli and Stachó [23].

It is well known that

if the interior of a compact convex set X ⊆ R2 is nonempty, then its

boundary, ∂D, is a rectifiable Jordan curve of positive finite length.
(3.1)

A pointed supporting line of a compact convex set H ⊆ R2 is a pair 〈P, ℓ〉 such that

P ∈ ∂H and ℓ is a supporting line of H through P ; it is uniquely determined by

〈P, dir(ℓ)〉, which belongs to the cylinder Cyl := R2 ×Cunit. We have proved in [23]

that for every compact convex set H ⊆ R2

Sli(H) := {〈P, dir(ℓ)〉 : 〈P, ℓ〉 is a pointed supporting line of H}

is a rectifiable simple closed curve.
(3.2)

In Czédli and Stachó [23], we introduced the term slide-turning for pointed sup-

porting lines to express the idea that we are moving along Sli(H). Unless otherwise

stated, we always slide-turn a pointed supporting line 〈P, ℓ〉 counterclockwise; this

means that both P on ∂H and dir(ℓ) on Cunit go counterclockwise. The same convec-

tion applies to points, which always move counterclockwise unless otherwise stated.

The visual meaning of (3.2) is that we can think of slide-turning as a continuous

progression in a finite interval of time; this is why the concept of pointed supporting

lines has been introduced.

After these preliminaries, we deal with part (i) first. So assume that D and L

are nonempty compact convex subsets of the plane such that D (2.5)-crosses L.

First, for the sake of contradiction, suppose that D or L is a singleton {P}.

Then slide-turning its supporting lines means that we simply turn a directed line
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through P , and it follows trivially thatD andL have at most one common supporting

line. This contradicts our assumption that D (2.5)-crosses L. Therefore, we conclude

that none of D and L is a singleton.

Second, for the sake of contradiction again, suppose that the interior of D is

empty. Then, since it is not a singleton, D is a line segment with distinct endpoints

A and B. Suppose that t is a common supporting line of D and L such that A,B ∈ t

and t satisfies the first half of (2.5). Choosing the coordinate system appropriately,

we can assume that dir(t) = 0; see Figure 5.

Figure 5. If D = [A,B] is a line segment

Let A <t B (with respect to the orientation of t); otherwise we could change

the notation. So we have that D = [A,B]. Clearly, UD from (2.5) is A. Using

that UL from (2.5) is not in D = [A,B], D is convex, and UD <t UL, it follows

that B < UL. Now, we focus our attention on t′ from (2.5). It is distinct from

−t since otherwise U ′
L = A = UD would belong to D and this would contradict

(2.5). So t′ is a supporting line of D with dir(t′) /∈ {0, π}, whereby exactly one of

the containments A ∈ t′ and B ∈ t′ holds. If t′ went through B, then A ∈ D and

UL ∈ L would be strictly on different sides of t′ by A <t B <t UL, contradicting

(2.3). Hence t′ goes through A. Since dir(t′) /∈ {0, π} and since UL ∈ L is in the left

half-plane determined by t′, it follows that π < dir(t′) < 2π; see Figure 5 where

t∗, t♭, t†, and t♮ indicate some possibilities for t′. However, then A = U ′
D <t′ U

′
L

implies that U ′
L ∈ L is below t, that is strictly on the right of t, contradicting the

fact that L is on the left of t. This contradiction shows that no common supporting

line of D and L can contain A and B, that is,

D cannot be a subset of t if t satisfies the first half of (2.5). (3.3)

Therefore, still for the case D = [A,B], it follows that

every common supporting line satisfying the first half of (2.5)

contains exactly one of A and B.
(3.4)

At present, the role of A and B in (3.4) and that of t and t′ is (2.5) are symmetric.

So (3.4) allows us to assume that there is a common supporting line t of D and L

such that A ∈ t and t satisfies the first half of (2.5). Then A = UD <t UL ∈ L. We

can assume that A and B are on the x-axis such that A <x B; see Figure 6.
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Figure 6. Illustration for (3.4)

Then π < dir(t) < 2π since B is to the left of t. For the sake of contradiction, suppose

that we can rotate t around A counterclockwise to obtain a common supporting

line t′ satisfying the second half of (2.5). By the positive A-ray of t we mean the

ray {X ∈ t : A <t X}. Similarly, the negative A-ray of t is {X ∈ t : X <t A}; it is

often denoted by a dotted ray; see Figure 6. It is clear by (2.5) that UL is on the

positive A-ray of t. When we rotate t counterclockwise by an angle α ∈ (0, 2π), then

its positive A-ray is also rotated. The point U ′
L belongs to the positive A-ray of t′.

The lines t∗ and t♭ in Figure 6 and (3.3) indicate that α > π has to hold to obtain

t′, since otherwise UL ∈ L would not be on the left half-plane of t′. Furthermore,

t♮ shows that π < α < 2π is impossible, because otherwise the positive A-ray of t′

is strictly on the right half-plane of t but contains U ′
L ∈ L, contradicting the fact

that the whole L is on the left of t. So t′, which is a line through A but distinct

from t, cannot be obtained from t by rotating it by an angle α ∈ (0, 2π), which is

impossible. Hence, we conclude from this contradiction that at most one of t and

t′ goes through A. The same holds for B, because A and B play symmetric roles.

So, by (3.4), we can choose the notation so that

for t and t′ satisfying (2.5), A ∈ t, B /∈ t, A /∈ t′, and B ∈ t′; (3.5)

see Figure 7.

Figure 7. Illustration for (3.5)

We can choose the coordinate system so that D = [A,B] is a horizontal line

segment and A and B are on the x-axis, A being to the left of B; see Figure 7.

Since B is on the left of t and (3.3) excludes that t is horizontal, we have that

π < dir(t) < 2π, that is, the positive A-ray of t is under the x-axis. By a similar

reasoning, the positive B-ray of t′ is above the x-axis. Observe that UL is not on
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the negative B-ray of t′ since the first point of t′ ∩ (D ∪ L) with respect to <t′ is

B = U ′
D. Hence the line segment [UL, U

′
L] intersects D = [A,B] at an inner point

V . By the convexity of L, we have that V ∈ L. But none of A = UD and B = U ′
D

is in L, whereby it is clear that D \ L is not connected. The intersection of the

left half-plane of t and that of t′ is indicated by (very light) grey in Figure 7; it

can be of a different shape but this does not cause a problem. Since L is a subset

of this grey area and since UL and U ′
L witness that L contains points below and

above the x-axes, it follows that L \D is not connected either. Hence D and L are

Fejes-Tóth-crossing if the interior of D is empty.

If the interior of L rather than that of D is empty, then it is easy to mod-

ify the argument above to conclude that D and L are Fejes-Tóth-crossing; the

straightforward details are omitted.

Third, still striving for a contradiction, for the rest of the proof we suppose

that neither the interior of D, nor that of L is empty. We claim that

if the interior of D and that of L are disjoint,

then they have only one common supporting line

satisfying the first half of condition (2.5).

(3.6)

This observation follows from Figure 1, which carries the generality. By the hyper-

plane separation theorem, there is at least one non-directed dashed line separating

the interior of D and that of L; however, such a line cannot be oriented to satisfy

(2.3). Furthermore, neither U ′
D ∈ D \ L, nor U ′

L ∈ L \D holds on the dotted com-

mon supporting lines denoted by t′, because each of U ′
D and U ′

L is in the “wrong

half-plane” determined by a dashed separating line. Hence (3.6) follows.

Since D (2.5)-crosses L, they have at least two common supporting lines and

it follows from (3.6) that the interiors of D and that of L are not disjoint. This

implies that the interior of the compact convex set D ∩ L is nonempty, whereby

(3.1) gives that

∂(D ∩ L) is a rectifiable Jordan curve of positive finite length. (3.7)

The notation D and L comes from dark-grey and light-grey; which are blue

and yellow, respectively, in the colored version of the paper. Since D (2.5)-crosses

L, we can pick two common supporting lines t and t′ together with the points

occurring in (2.5) such that (2.5) holds; see Figure 8. Starting from UD and going

on ∂D clockwise, there is a first point SD of ∂D∩∂L. Similarly, there is a first point

TD of ∂D ∩ ∂L if we go counterclockwise. We know by (2.5) that UD /∈ {SD, TD}.

Analogously, starting from UL and walking along ∂L clockwise and counterclockwise,

we obtain the first points SL and TL of ∂L ∩ ∂D, respectively; see Figure 8. It is
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clear again that UL /∈ {SL, TL} and UD /∈ {SD, TD}. The points SD, TD and the

arcs between them on the two boundaries define an “ear” ED; it is the rightmost

dark region in Figure 8.

Figure 8. With nonempty interiors, D (2.5)-crosses L

This ear is understood so that it does not include the “light” arc of ∂L from

SD and TD (going counterclockwise). However ED includes the dark-grey arc from

SD to TD on ∂D except for its endpoints SD and TD. So ED ⊆ D \ L. The points

SD and TD will be called the starting point and the terminating point of ED; this

explains S and T in the notation. Similarly, the arcs on the boundaries ∂D and

∂L from SL to TL form an ear EL; it is the upper light-grey region in the figure, it

does not include the “dark arc” from SL to TL on ∂D and it is a subset of L \D.

The other common supporting line, t′, determines the ears E′
D and E′

L and their

starting and terminating points S′
D, T ′

D, S′
L, T ′

L analogously; see Figure 8.

Some comments on Figure 8 seem appropriate here. Although SL is distinct

from TD, the equality T ′
D = S′

L indicates that this is not always so.

Figure 9. A slightly different arrangement of ears
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As Figure 9 shows, none of the equalities TL = S′
D and T ′

L = SD is necessary.

Also, TD 6= SL witnesses that T ′
D = S′

L in Figure 8 is not necessary either. Note

also that the situation can be much more involved than those in Figures 8 and 9. If

we start from an n-gon for a large natural number n rather than from a hexagon,

then we can easily construct D and L having more than two common supporting

lines and more than two ears. Combining this idea with the construction of the

Cantor Set, it is not hard to construct compact convex sets D and L that have ℵ0

many ears such that none of these ears has a neighboring ear. The present paper

neither needs, nor details this peculiar case, which explains why we do not claim

that, say, E′
D is the next ear after EL if we go counterclockwise. We claim only the

following.

Each of t, ED, and EL determines the other two.

The same holds for t′, E′
D, and E′

L.
(3.8)

By symmetry, it suffices to deal with the first half of (3.8). Clearly t determines the

ears ED and EL by their definitions. Consider the (directed) secant h of L from SD to

TD; it is given by a thick dotted light-grey line in Figure 8. Let L∗ be the intersection

of L and the closed left half-plane determined by h. Since the ear ED is in the closed

right half-plane determined by this secant, so is Conv(ED). By the definition of SD

and TD, none of the internal points of the arc of ∂L between SD and TD belongs to

∂D. Hence, going from TD along ∂L counterclockwise, TL is not later then SD, and

we conclude that the ear EL is in the closed left half-plane determined by the secant.

In particular, UL ∈ L∗. The interiors of Conv(ED) and L∗ are disjoint, because

they are in opposite half-planes of h. Thus, applying (3.6) to L∗ and the convex

hull of ED, we obtain that ED and L∗ together determine t. But ED determines

SD, TD and so L∗, whereby we conclude that ED alone determines t. So does EL by

a similar reasoning, or because of (left, counterclockwise)–(right,clockwise) duality.

Next, starting from SD, walk around the rectifiable Jordan curve ∂(D ∩ L)

until we arrive at SD again; see (3.7). In other words, we walk fully around ∂(D∩L).

While walking, EL comes immediately after ED among the ears. That is, first we

walk in the interior of L, and the next interior in which we walk is the interior of

D, either because TD = SL, or because the line segment [TD, SL] is a subset of

∂(D) ∩ ∂(L). Since t′ 6= t and (3.8) yield that E′
D 6= ED, it follows that E′

D comes

before we reach SD again. So does E′
L, since it comes right after E′

D and this part

of our walk along E′
L goes in the interior of L while the walk along ED goes on the

boundary of L. The ears ED and E′
D will be called the two D-ears while EL and E′

L

are the two L-ears. (There can be other ears but we disregard them.) The argument
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of this paragraph shows that no matter if we go clockwise or counterclockwise,

if we depart from SD and walk fully around ∂(D ∩ L),

then the two D-ears alternate with the two L-ears.
(3.9)

Next, we claim that

the two D-ears are connected components of D \ L while

the two L-ears are connected components of L \D.
(3.10)

It suffices to deal with ED since the rest of the ears can be handled similarly. Assume

that X ∈ D \ L is a point such that there is a continuous curve g within D \ L

connecting X and a point Y ∈ ED. For the sake of contradiction, suppose that

X /∈ ED. Then X is in the left half-plane determined by the secant line h while Y

is in the right half-plane. By continuity, there is a point W ∈ h ∩ g. If W <h SD,

then SD is in the interior of the non-degenerate quadrangle formed by four points,

W , UD, TD, and S′
D of D; see Figure 8. So, since D is convex, SD has a (small)

neighborhood that is a subset of D, and this contradicts SD ∈ ∂D. Replacing TD by

SD, we obtain a similar contradiction if TD <h W . Hence SD ≤h W ≤h TD, that is,

W ∈ [SD, TD] ⊆ L, which contradicts W ∈ g ⊆ D \ L. This proves (3.10). Finally,

(3.10) yields that D and L are Fejes-Tóth-crossing. Thus part (i) of Lemma 3.2

holds.

Finally, part (ii) of Lemma 3.2 follows from part (i) and from the fact that

Fejes-Tóth-crossing is a symmetric relation.

Proof of Theorem 2.4. Let D be the compact convex set we obtain from a regular

hexagon with vertices SD, TD = SL, TL, S′
D, T ′

D = S′
L, and TL as Figure 9 shows;

the notation is borrowed from Figure 8. Namely, two opposite edges of the hexagon

are replaced by congruent circular arcs that are tangent to the undirected thin

dashed lines determined by the neighboring edges. The boundary of D is drawn in

dark grey. We obtain L from D by rotating it around the center of the hexagon by

π/3 counterclockwise; ∂(L) is drawn in light-grey while dark-grey and light-grey

alternate on ∂(D) ∩ ∂(L). The common supporting lines t and t′ witness that

D (2.5)-crosses L. (3.11)

There are exactly two more common supporting lines h and h′; they are horizontal

with dir(h) = 0 and dir(h′) = π; h and h′ are not indicated in the figure. For

each of the four common supporting lines, the first point in the intersection of this

supporting line with L ∪D belongs to D. Therefore

L does not (2.5)-cross D but they are clearly Fejes-Tóth-crossing. (3.12)
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Denote the elements of HCC by β (bottom), λ (left), ρ (right), τ (top), and ε (else),

as shown in Figure 2. Using (3.11), (3.12), and the fact that we could rename 〈D,L〉

to 〈L,D〉, we conclude that λ and ρ are incomparable with respect to ≤rot, whence

they are also incomparable with respect to ≤. For the rest of the proof, note that

we need to prove the incomparabilities and the comparabilities only for ≤rot and

only for ≤, respectively; we will rely on this remark implicitly.

It is trivial that β ≤ λ ≤ ε and β ≤ ρ ≤ ε. By Lemma 3.2, ε ≤ τ . Lemma 3.1

yields that τ �rot ε. The pair 〈D,L〉 from (3.11) and (3.12) gives that ε �rot ρ and

λ �rot β. . Hence, after renaming the pair 〈D,L〉 to 〈L′, D′〉, we also obtain that

ε �rot λ and ρ �rot β. By transitivity, the comparabilities and incomparabilities

we have shown above imply Theorem 2.4.

Although “triviality” is not a rigorous mathematical concept, we conclude this

section with the following observation.

Observation 3.3. Theorem 1.2, which we cited from Fejes-Tóth [26], follows trivially

from Theorem 2.2, taken from Czédli [14], and Theorem 2.4.

Although a true statement is implied by any other statement in principle,

neither Theorem 1.2, nor Theorem 2.4 seems to be useful in the proof of Theorem 2.2.

4. From congruence lattices to the present paper

The purpose of this section is to point out how distant fields of mathematics influ-

enced each other in the progress leading to the present paper. For non-specialists,

we mention only that combinatorics, geometry, and mainly lattice theory occurred

among the precursors.

The rest of this section is mainly for lattice theorists, and even some of them

may feel that a part of the concepts below would have deserved definitions. The

excuse is that our only purpose is to give a short historical survey to exemplify how

certain entirely lattice-theoretical problems led to this paper belonging to geometry;

a detailed survey with definitions and theorems would be much longer.

By old results of Funayama and Nakayama [27], R. P. Dilworth (see MathSciNet

MR0139551), and Grätzer and Schmidt [31], finite distributive lattices D are, up to

isomorphism, exactly the congruence lattices Con(L) of finite lattices L. There are

many results stating that D ∼= Con(L) can be achieved by a finite lattice L having

“nice” properties; see the monograph Grätzer [28] for a survey. One of these nice

properties is that L is a planar semimodular lattice; this concept was investigated

intensively in Grätzer and Knapp [29] and [30], devoted mostly to the D ∼= Con(L)
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representation problem. It appeared already in Grätzer and Knapp [29] that the

structure of a planar semimodular lattice is well captured by an even more particular

lattice, which they called a slim planar semimodular lattice. (Note that “planar” is

automatically understood and so dropped in some papers.)

Soon after that Grätzer and Knapp [29, 30] made slim semimodular lattices

popular, many additional papers started to investigate them; here we mention only

Czédli [8], [9], [12], Czédli and Grätzer [15, 16], Czédli, Ozsvárt, and Udvari [18],

Czédli and Schmidt [19–22], and Grätzer [28]; see also the bibliographic sections of

these papers. In particular, [18] deals mainly with slim planar semimodular lattices

but has links to group theory and combinatorics. An anonymous referee of [18]

pointed out that the lattices from [18] are in close connection with finite convex

geometries, which are combinatorial structures. These structures and equivalent

structures had frequently been discovered by 1985; see Monjardet [34]. Note that a

concept equivalent to that of finite convex geometries was first discovered within

lattice theory; see Dilworth [24] and Monjardet [34].

Recently, various representation theorems are available for convex geometries

and for the corresponding lattices; we mention only Adaricheva [1], Adaricheva and

Czédli [3], Adaricheva, Gorbunov and Tumanov [4], Adaricheva and Nation [5] and

[6], Czédli [10], Czédli and Kincses [17], Kashiwabara, Nakamura, and Okamoto [32],

and Richter and Rogers [35]. Czédli [11] gave a lattice-theoretical approach to

a new sort of representation, in which some convex geometries were represented

by circles. This paper raised the question which finite convex geometries can be

represented. Soon afterwards, Adaricheva and Bolat [2] proved that not all finite

convex geometries; see also Czédli [13] for an alternative proof. The reason of this

result is the Adaricheva–Bolat property, which is a convex combinatorial property

that circles have but most convex geometries do not have. Finally, Czédli [14] proved

that the Adaricheva–Bolat property characterizes circles, and [14] is the immediate

precursor of the present paper. The question whether ellipses rather than circles are

appropriate to represent all finite convex geometries was raised in Czédli [11]. This

question has recently been answered in the negative by Kincses [33], who presented

an Erdős–Szekeres type obstruction to such a representation.
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