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Abstract. Strietz [6, 7] and Zádori [10] have shown that Equ(A), the lattice
of all equivalences of a finite set A with |A| ≥ 7, has a four-element generating
set such that exactly two of the generators are comparable. In other words, these
lattices are (1 + 1 + 2)-generated. We extend this result for many infinite sets A;
even for all sets if there are no inaccessible cardinals. Namely, we prove that if A
is a set consisting of at least seven elements and there is no inaccessible cardinal
≤ |A|, then the complete lattice Equ(A) is (1 + 1 + 2)-generated. This result is
sharp in the sense that Equ(A) has neither a three element generating set nor a
four-element generating set with more than one pair of comparable generators.
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I. The main result

Given a set A, let Equ(A) denote the (complete) lattice of all equivalences of A. If A is
finite, then Equ(A) can be generated by four elements, but three elements are insufficient
for |A| ≥ 4, cf. Strietz [6, 7] and Zádori [10]. Zádori [10] has also shown that Equ(A) is
(1 + 1 + 2)-generated if |A| ≥ 7 (cf. also Strietz [7] for |A| ≥ 10), i.e., we can assume that
exactly two of the four generators are comparable.

Our aim is to extend the above result on (1 + 1 + 2)-generation for some infinite
sets A. We will consider Equ(A) as a complete lattice, for otherwise it would not be
finitely generated. A subset Q of Equ(A) is said to generate Equ(A) if no proper complete
sublattice of Equ(A) includes Q.

The investigations of this and similar kind started with [1], where the “border” be-
tween finite and countable sets was relatively easy to step over. The lattice Equ(A) was
shown to be four-generated for “large” sets A in [2], and it was shown to be (1 + 1 + 2)-
generated for countable sets A in [3]; the techniques of these papers will intensively be
used. Without Takách’s idea of defining boxes by means of semiboxes, cf. [8], the present
proof would be at least twice as long.

As usual, ℵ0 denotes the smallest infinite cardinal. A cardinal m is called inaccessible

if it satisfies the following three conditions: (i) m > ℵ0; (ii) n < m implies 2n < m; and (iii)
if I is a set of cardinals such that |I| < m and n < m for all n ∈ I, then sup{n: n ∈ I} < m.
Note that sup{n: n ∈ I} in (iii) can be replaced by

∑

n∈I n. For details on inaccessible



2 G. Czédli

cardinals the reader can resort to standard textbooks, e.g., to Levy [5, pages 138–141].
By Kuratowski’s result [4] (cf. also [5]), ZFC has a model without inaccessible cardinals.
Hence the existence of inaccessible cardinals cannot be proved from ZFC, and the scope
of the following theorem includes all sets in an appropriate model of set theory.

Theorem 1. Let A be a set with at least seven elements, and suppose that there is
no inaccessible cardinal m such that m ≤ |A|. Then the complete lattice Equ(A) of all
equivalences of A has a four-element generating set of order type 1+1+2 Moreover, Equ(A)
can be generated by a subset {α, β, γ, δ} ⊆ Equ(A) such that {α, β, γ} and {δ, β, γ} are
antichains, δ < α, and α does not cover δ.

Corollary 2. If |A| ≥ 7 and there is no inaccessible cardinal m such that m ≤ |A| then
Equ(A) can be generated by a four-element antichain.

It is worth mentioning that, for |A| > 3, every at most four-element generating set
of Equ(A) is either a four-element antichain or a four-element subset of type 1+1+2. For
finite sets A this was proved by Strietz [7]. Parsing Strietz’s argument, it is easy to observe
that it works for all sets A. (For example, Equ(A) is simple for any set A, and Wille’s
D2-Lemma in [9] remains valid for generating sets of complete lattices.)

While Corollary 2 follows from Theorem 1 and from the fact that Equ(A) is relatively
complemented, the rest of the paper is devoted to the proof of the theorem.

II. Semiboxes and their extensions

By Zádori [10], it is sufficient to prove the result only for infinite sets. So even if we
start the proof at some finite sets, we do not have to deal (and will not deal) with all finite
sets. Basically, the proof is an induction on |A|. However, the mere assumption of the
statement for a given cardinal is far from being a suitable induction hypothesis. Therefore
we have to build a structure on A and study these structures to the necessary extent.
Before developing the necessary terminology, we give an example.

Let L = {a0, a1, . . . , a29, b0, b1, . . . , b28}. For p, q ∈ L (or p, q in any set), let 〈p, q〉
denote the smallest equivalence collapsing p and q. Note that 〈p, q〉 = 〈q, p〉 is an atom in
Equ(L) if p 6= q, and 〈p, p〉 = 0 ∈ Equ(L). If x ∈ L and Θ ∈ Equ(L), then the Θ-class
containing x will be denoted by [x]Θ. Denoting the lattice operations by

∑

or + (join)
and

∏

or · (meet), we let

α =

28
∑

i=0

〈ai, ai+1〉 +

27
∑

i=0

〈bi, bi+1〉, β =

28
∑

i=0

〈ai, bi〉

γ =

28
∑

i=0

〈bi, ai+1〉, δ = 〈a0, a29〉 + 〈b0, b28〉.

These equivalences are represented by horizontal, vertical and oblique lines, and (dotted)
arcs in Figure 1 and in the rest of the figures, respectively. Zádori has shown that {α, β,
γ, δ} generates Equ(L); this will also follow from our proof. The elements u = a0 and
v = b0 will be treated as constants. For i = 0, . . . , 4, the 10-tuple

s(i) = (a5i+2, a5i+3, . . . , a5i+6, b5i+2, b5i+3, . . . , b5i+6)
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is called a switch. Let E = {s(i) : 0 ≤ i ≤ 4} denote the set of switches. From now on L is
considered as the structure L = (L, u, v, E, α, β, γ, δ). This structure is outlined in Figure
2, where the switches are represented by shaded rectangles.

L is just a particular case of a more general structure, which we introduce under the
name “semibox”.

Definition 3. By a semibox we mean a structure

A = (A, u, v, E, α, β, γ, δ)

provided A is a set, u, v ∈ A are distinct constants, α, β, γ, δ ∈ Equ(A), E ⊆ (A\{u, v})10,
each s ∈ E has ten distinct components, and for any two distinct s, f ∈ E the set of
components of s is disjoint from the set of components of f .

For a semibox A = (A, u, v, E, α, β, γ, δ) the elements of E are called switches. For
s ∈ E we will use the notation

s =
(

a(s), b(s), c(s), d(s), e(s), a′(s), b′(s), c′(s), d′(s), e′(s)
)

,

or shortly s = (a, b, c, d, e, a′, b′, c′, d′, e′). Although the notion of semiboxes does not
require any connection between switches and α, β, γ, δ, the switch depicted in Figure 3,
which has already occurred in L, will be typical. The idea behind the notion of a semibox is
that, under suitable additional conditions, {α, β, γ, δ} will generate Equ(A). Let Ai = (Ai,
ui, vi, Ei, αi, βi, γi, δi) be semiboxes for i = 1, 2. A bijective map ϕ: A1 → A2 is called
an isomorphism if ϕ(u1) = u2, ϕ(v1) = v2, ϕ(α1) = {(ϕ(x), ϕ(y)): (x, y) ∈ α1} = α2,
ϕ(β1) = β2, ϕ(γ1) = γ2, ϕ(δ1) = δ2, and ϕ(E1) = {

(

ϕ(x1), . . ., ϕ(x10)
)

: (x1, . . . , x10) ∈
E1} = E2.

Since we want to create large semiboxes from smaller ones, we introduce a concept
that expresses how the small semiboxes can be put together. First we give a rigourous
definition, then an intuitive one, and finally an example; the reader may want to read them
simultaneously.

Definition 4. Suppose A0 = (A0, u0, v0, E0, α0, β0, γ0, δ0) and B = (B, u, v, E, α, β, γ,
δ) are semiboxes and Γ is a partition on the set B. Let Ai (i ∈ I) denote the classes of this
partition. We assume that 0 ∈ I, so the support of the semibox A0 is one of the classes.
For i ∈ I \ {0}, let ϕi: A0 → Ai be a bijection, and define ui = ϕi(u0) and vi = ϕi(v0).
For s ∈ E0 let

si = ϕi(s) =
(

ϕi

(

a(s)
)

, ϕi

(

b(s)
)

, . . . , ϕi

(

d′(s)
)

, ϕi

(

e′(s)
)

)

,

define Ei = ϕi(E0) = {si: s ∈ E0}, and let αi = ϕi(α0), βi = ϕi(β0), γi = ϕi(γ0), and
δi = ϕi(δ0). Let ϕ0 denote the identity automorphism of A0. Then Ai = (Ai, ui, vi, Ei,
αi, βi, γi, δi) is a semibox isomorphic to A0.

Let us assume that
E ⊆

⋃

i∈I

Ei,
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and, further, there exist F,G ⊆ E0 × I and H ⊆ E0 × I × I such that (s, i) ∈ F ∪ G
implies {(s, i, j), (s, j, i)} ∩ H = ∅ for all j ∈ I, F ∩ G = ∅, (s, i, j) ∈ H implies i 6= j,
(E × I) ∩ (F ∪G) = ∅, (E × I × I) ∩H = ∅, and

α =
⋃

i∈I

αi,

β =
⋃

i∈I

βi +
∑

(s,i,j)∈H

〈b(si), b(sj)〉,

γ =
⋃

i∈I

γi +
∑

(s,i,j)∈H

〈d(si), d(sj)〉

δ =
⋃

i∈I

δi +
∑

(s,i)∈F

〈b(si), d(si)〉 +
∑

(s,i)∈G

〈b′(si), d
′(si)〉.

Further, let us assume that u = u0, v = v0. Then B is called an extension of A0, in
notation B | A0. The Ai (i ∈ I) are sometimes called the canonical copies of A0 in the
extension. Let Φ = (Γ, {ϕi: i ∈ I}); it is called the way of the extension. Sometimes,
when Φ is relevant, we say that B is an extension of A0 by Φ, in notation B |Φ A0. For
E′

0 ⊆ E0,
⋃

i∈I E
′
i = {si: i ∈ I, s ∈ E′

0} is called the extension of E′
0 to B (by Φ). If

the extension of E′
0 (⊆ E0) is included in E, then the semibox extension B | A0 is called

E′
0-preserving . By the degree of the semibox extension B |Φ A0 we mean |I|; the degree

is denoted by [B : A0]. (We will use this notation only when the meaning of Φ — at least
implicitly — is already given. Note that |B| = [B : A0] · |A0|.)

It is reasonable to describe less formally what a semibox extension means.

Definition 5. Given a switch s, the atoms 〈b(s), d(s)〉 and 〈b′(s), d′(s)〉 are called the
upper atom and the lower atom associated with s, respectively. These atoms will be used
to enlarge δ. On figures we use small arcs attached to shaded rectangles to indicate that
the upper or lower atom of a switch is used this way, cf. Figure 4. Now, we obtain an
extension B of the semibox A0 as follows.

• We take disjoint copies of A0. These copies are denoted by Ai (i ∈ I), B is
defined to be their union, and, at the beginning, α, β, γ and δ are defined as the
union of the αi, βi, γi and δi (i ∈ I), respectively. We assume that 0 ∈ I, and we
define u = u0, v = v0.

• We use some switches to make a distinction among these (originally isomorphic)
copies such that either the upper or the lower atom (but not both) associated
with a given “distinguishing” switch is joined to δ. The switches we use here
cannot be used in the sequel.

• We use pairs of switches to connect distinct copies of Ai. If si = ϕi(s) ∈ Ei and
sj = ϕj(s) ∈ Ej are canonical copies of the same switch s ∈ E0 and i 6= j, then
we may connect these two switches by joining the atom 〈b(si), b(sj)〉 to β and
joining the atom 〈d(si), d(sj)〉 to γ.

• E is a subset of
⋃

i∈I Ei, but E cannot contain switches that we previously used
to differentiate or connect.
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The connection of two switches is depicted in Figure 5. Notice that, instead of
〈d(si), d(sj)〉, Figures 5 and 6 indicate the atom 〈c′(si), d(sj)〉. Joining this atom to γ
gives the same as joining 〈d(si), d(sj)〉. The advantage to draw the edge representing
〈c′(si), d(sj)〉 is that it is oblique, as all γ-edges have to be, and it makes the figure less
crowded.

Now we present an example. If A0 = L is the semibox defined by Figures 1 and 2,

I = {0 = U0 = ∅, U1, U2, U3}, H = {(s(0), Ui, Ui+1) : 0 ≤ i ≤ 2}, E = {s
(3)
i : i ∈ I}∪{s

(4)
i :

i ∈ I}, and F and G are appropriately chosen, then an extension B of A0 is depicted in
Figure 6. Notice that A0 ⊆ B but E0 6⊆ E.

Now we formulate some kind of transitivity for extensions. Let B0 = (B0, ū0, v̄0, Ē0,
ᾱ0, β̄0, γ̄0, δ̄0) be an extension of A0 by Φ = (Γ, {ϕi: i ∈ I}). Further, let C = (C, u,
v, E, α, β, γ, δ) be an extension of B0 by Ψ = (∆, {ψj : j ∈ J}). I.e., ∆ = {Bj: j ∈ J}
is a partition of C, ψj : B0 → Bj is a bijection (j ∈ J), ψ0 is the identical map of B0,
ūj := ψj(ū0), v̄j := ψj(v̄0), ᾱj := ψj(ᾱ0), etc. For i ∈ I and j ∈ J , let Aj,i = ψj(ϕi(A0)) =
(ψj ◦ ϕi)(A0), and define ̺j,i = ψj ◦ ϕi, cf. Figure 7. Then the Aj,i ((j, i) ∈ J × I) form
a partition of C, which we denote by ∆ ◦ Γ. Let us identify (0, 0) with 0. Then we obtain
Ψ ◦ Φ := (∆ ◦ Γ, {̺j,i: (j, i) ∈ J × I}), which we call the composition of Ψ and Φ. With
the above notations we have

Claim 6. Suppose A0, B0 and C are semiboxes, B0 | A0 and C | B0. Then
(i) if B0 |Φ A0 and C |Ψ B0, then C |Ψ◦Φ A0;
(ii) [C : A0] = [C : B0] · [B0 : A0];
(iii) if E′

0 ⊆ E0, B0 |Φ A0 is an E′
0-preserving extension, the extension of E′

0 to B0 is
denoted by Ē′

0, and C |Ψ B0 is an Ē′
0-preserving extension, then C |Ψ◦Φ A0 is an

E′
0-preserving extension.

We do not know if Ψ ◦ Φ is the only way of extension C | A0, but permitting other
ways would cause trouble in the sequel.

Proof. It suffices to show (i); the rest will follow as an evident consequence. Fortunately,
(i) is more or less clear even without heavy formalism. Indeed, C is the disjoint union of
Aj,i, (j, i) ∈ J × I, and α =

⋃

(j,i)∈J×I αj,i. The distinguishing and connecting switches

that we used to obtain Bj do not belong to Ēj, whence no switch is used twice. This
ensures that C is obtained from A0 according to Definition 5. ⋄

Definition 7. Extensions of the semibox L given by Figures 1 and 2 are called boxes.

For example, L, being a trivial extension of itself, is a box. Every box is a semibox,
but not conversely. It is clear from Claim 6 that if A is a box then all semibox extensions
of A are boxes. When dealing with boxes, the geometrical arrangement of their elements,
as suggested by Figures 1 and 2, will be useful. Suppose A is a box, say A |Φ L, where
Φ = (Γ, {ϕi: i ∈ I}). The canonical copies ϕi(L) of L (i ∈ I) will be called the ladders

of A. Each ladder ϕi(L) consists of two rows; ϕi({a0, . . . , a29}) is the upper row , while
ϕi({b0, . . . , b28}) is the lower row . For 0 ≤ k ≤ 28, {ϕi(ak) : i ∈ I} ∪ {ϕi(bk) : i ∈ I} is
called the k-th column, and {ϕi(a29) : i ∈ I} is the 29th column. We write col(x) = k if
x ∈ A belongs to the k-th column. Given a fixed switch s of L, the a-column (of s) or, to
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be more precise, the a(s)-column is defined to be {ϕi(a(s)) : i ∈ I}∪{ϕi(a
′(s)) : i ∈ I}; the

meaning of b-columns, . . ., e-columns are analogous. An equivalence Θ ∈ Equ(A) is said to
be ladder preserving , row preserving , row changing , column preserving , column changing ,
column k-changing , and column 1-preserving if for all (x, y) ∈ Θ with x 6= y the elements x
and y belong to the same ladder, they belong to the same row, they belong to distinct rows,
they belong to the same column, they belong to distinct columns, |col(x) − col(y)| = k,
and |col(x) − col(y)| ≤ 1, respectively. For X ⊆ A, X is said to be closed with respect to
Θ if [x]Θ ⊆ X holds for every x ∈ X . For example, in case of L , γ is row changing and
column 1-changing, while α is row preserving, i.e., both rows are closed with respect to α.
Many geometric properties of L are inherited by all boxes.

Lemma 8. Let A = (A, u, v, E, α, β, γ, δ) be a box.
(1) α and δ are row preserving and column changing, β is column preserving, γ is

column 1-preserving, and β and γ are row changing.
(2) αβ = αγ = βγ = 0, δ < α, {α, β, γ} and {δ, β, γ} are antichains, and α does not

cover δ.
(3) If x ∈ A and [x]β is a singleton, then col(x) = 29. If |[x]β| > 2 or [x]β is not

included in a ladder then there is an s in L with col(x) = col(b(s)) and s /∈ E.

Proof. (1) and (3) follow from definitions. (2) is a straightforward consequence of (1),
(3) and the definitions. ⋄

Now let B |Φ A0, and let us use the notations of Definition 4. For p, q ∈ A0 we
introduce the notation

〈p, q〉(A0,B) = 〈p, q〉(A0,B,Φ) =
∑

i∈I

〈ϕi(p), ϕi(q)〉 ∈ Equ(B).

For i ∈ I, we will also use the notations 〈ϕi(p), ϕi(q)〉
(A0,B,Φ) := 〈p, q〉(A0,B,Φ) and

〈ϕi(p), ϕi(q)〉
(A0,B) := 〈p, q〉(A0,B). I.e., for x, y ∈ Ai we define 〈x, y〉(A0,B,Φ) as

〈x, y〉(A0,B,Φ) = 〈ϕ−1
i (x), ϕ−1

i (y)〉(A0,B,Φ).

Usually we drop Φ from these notations but we must be careful: always a fixed Φ should
be understood when it is not indicated.

Definition 9. A box A is called a good box if, for every extension B = (B, u, v, E, α, β,
γ, δ) of A, say B |Φ A, and every complete sublattice Q of Equ(B) with {α, β, γ, δ} ⊆ Q,
〈p, q〉(A,B,Φ) ∈ Q for all p, q ∈ A.

Notice that A is an extension of itself, and 〈p, q〉(A,A) = 〈p, q〉 in this case. Since
Equ(A) is clearly generated by its atoms 〈p, q〉 (p 6= q), we conclude that Equ(A) is
(1 + 1 + 2)-generated, provided A is a good box. This is why we want to find good boxes
of any cardinality below the first inaccessible cardinal. To accomplish this task, first we
show that L (given in Figures 1 and 2) is a good box, then we give two methods to obtain
larger good boxes from given good boxes, and finally we show that we can reach all infinite
cardinals m (such that no inaccessible cardinal is ≤ m) this way.
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Claim 10. L, the box defined in Figures 1 and 2, is a good box.

Proof. Let L be denoted by A = A0 = (A0, u0, v0, E0, α0, β0, γ0, δ0), and let us consider
an extension B of A; the notations from Definition 4 will be in effect. Let Q be a complete
sublattice of Equ(B) such that {α, β, γ, δ} ⊆ Q. The key step is to show

〈u, v〉(L,B) = 〈a0, b0〉
(A,B) = β(γ + δ). (1)

The ⊆ inclusion hardly needs any proof. In order to show the converse inclusion, suppose
(x, y) ∈ β(γ + δ) and x 6= y. Let x ∈ Ai and y ∈ Aj. Since β is column preserving,
col(x) = col(y). By Lemma 8(3), col(x) ≤ 28. If col(x) = col(y) = 0 then Lemma 8(3)
applies again, and {x, y} = {ϕi(a0), ϕi(b0)} = {ϕi(u), ϕi(v)} yields (x, y) ∈ 〈u, v〉(L,B).

If col(x) = col(y) = 28 and k ∈ {i, j} then we have [ϕk(a28)](γ + δ) = {ϕk(a28),
ϕk(b27)} and [ϕk(b28)](γ + δ) = {ϕk(b28), ϕk(a29), uk, vk, ϕk(a1)}. Hence [x](γ+δ) ∩
[y](γ+δ) = ∅, which is a contradiction.

A similar contradiction can easily been achieved from the assumption col(x) = 1 or
col(x) = 27. Hence 2 ≤ col(x) = col(y) ≤ 26 can be assumed. Therefore x and y belong
to the a-column or b-column or . . . or e-column of some switch s of L. If si or sj belongs
to E, the set of switches of B, i.e., if at least one of si and sj was not used to build B
from L, then we easily obtain a contradiction like in case col(x) = col(y) = 28. Hence we
assume that both si and sj were used to build B from L.

Suppose at least one of these switches, say si, was used to enlarge δ during the
construction of B. Since si was used only once, the (γ + δ)-class of every component of
si is included in the i-th ladder Ai. If the lower atom, 〈b′(si), d

′(si)〉 of si was joined to
δ then the (γ + δ)-classes {b′(si), c(si), d

′(si), e(si)}, {a
′(si), b(si)}, {c

′(si), d(si)}, and the
two-element classes [a(si)](γ + δ) and [e′(si)](γ + δ) cover (the set of components of) si

but none of then has two distinct component from the same column, which contradicts
col(x) = col(y). The case of the upper atom is similar.

Suppose now that the switches si and sj were connected during the construction of
B from L. Of course, i 6= j and these switches have never been used to enlarge δ. From
Lemma 8(3) we conclude that x and y belong to the b-column. But this is impossible, for
[b(si)](γ+ δ) = {b(si), a

′(si)} and [b′(si)](γ+ δ) = {b′(si), c(si)}. We have proved (1), and
therefore 〈u, v〉(L,B) ∈ Q.

Now let Θ = 〈u, v〉(L,B) + α. Clearly, Θ is ladder preserving and Θ collapses each Ai

(i ∈ I). Let
β′ = βΘ, γ′ = γΘ, δ′ = δΘ;

they belong to Q. Let

g0 = 〈u, v〉(L,B) = 〈a0, b0〉
(A,B) and H0 = 〈b28, a29〉

(A,B).

Using the fact that β′, γ′ and δ′ are ladder preserving, it is easy to list the (β′ + δ′)-classes
of any ladder Ai = ϕi(L) (i ∈ I). (There is a five element class; the number of four element
classes is the number of switches of Ai that were used as distinguishing switches; all other
classes consist of two elements.) Armed with this list we obtain H0 := γ′(β′ + δ′), so g0
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and H0 belong to Q. Now, similarly to Zádori [10], we can define some further members
of Q inductively:

hi+1 =
(

(gi + γ′)α+ gi

)

γ′ (i = 0, 1, . . . , 28),

gi+1 =
(

(hi+1 + β′)α+ hi+1

)

β′ (i = 0, 1, . . . , 27),

Gi+1 =
(

(Hi + β′)α+Hi

)

β′ (i = 0, 1, . . . , 28), and

Hi+1 =
(

(Gi+1 + γ′)α+Gi+1

)

γ′ (i = 0, 1, . . . , 27).

Since all the Aj (j ∈ J) are closed with respect to α, β′, γ′, g0 and H0, they are also closed
with respect to gi, hi, Gi and Hi. Now an easy induction shows that

gj =

j
∑

i=0

〈ai, bi〉
(A,B) (j = 0, 1, . . . , 28),

hj =

j
∑

i=1

〈bi−1, ai〉
(A,B) (j = 1, 2, . . . , 29),

Hj =

j
∑

i=0

〈a29−i, b28−i〉
(A,B) (j = 0, 1, . . . , 28), and

Gj =

j
∑

i=1

〈a29−i, b29−i〉
(A,B) (j = 1, 2, . . . , 29).

(Note that, for B = A = L, these formulas with notational changes occur in Zádori [10, p.
582].) Therefore the following elements

〈aj, bj〉
(A,B) = gj ·G29−j (j = 0, 1, . . . , 28),

〈bj−1, aj〉
(A,B) = hj ·H29−j (j = 1, 2, . . . , 29),

〈aj−1, aj〉
(A,B) =

(

〈aj−1, bj−1〉
(A,B) + 〈bj−1, aj〉

(A,B)
)

α (j = 1, 2, . . . , 29),

〈bj−1, bj〉
(A,B) =

(

〈bj−1, aj〉
(A,B) + 〈aj , bj〉

(A,B)
)

α (j = 1, 2, . . . , 28)

all belong to Q. Now let p, q ∈ A = A0 = L be distinct elements. Then there is a circle
p = z0, z1, . . . , zi = q, zi+1, . . . , zi+j−1, zi+j = p in the graph depicted in Figure 1 such
that |{z0, z1, . . . , zi+j−1}| = i+ j. Since the 〈zℓ−1, zℓ〉

(A,B) already belong to Q,

〈p, q〉(A,B) =

(

i
∑

ℓ=1

〈zℓ−1, zℓ〉
(A,B)

)

·

(

i+j
∑

ℓ=i+1

〈zℓ−1, zℓ〉
(A,B)

)

∈ Q.

This proves Claim 10. ⋄

III. Successors and limits of boxes

Given a cardinal m, the smallest cardinal that is greater than m will be denoted by
m+. For a finite set X , let R(X) = P (X), the set of all subsets of X . When X is infinite,
R(X) will always denote a fixed subset of P (X) such that ∅ ∈ R(X) and, unless explicitly
otherwise stated, |R(X)| = |X |+. R+(X) will always stand for R(X) \ {∅}.
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Definition 11. Suppose A = A0 = (A0, u0, v0, E0, α0, β0, γ0, δ0) is a box. Choose
r ∈ E0, D ⊆ E0 and F ⊆ E0 such that E0 = {r}∪D∪F and, further, the sets {r}, D and
F are pairwise disjoint. For each U ∈ R(D) we take an isomorphic copy A(U) = (A(U),
u(U), v(U), E(U), α(U), β(U), γ(U), δ(U)) of A such that these copies are pairwise
disjoint, and A(∅) coincides with A = A0. Let ϕU : A→ A(U) be a fixed isomorphism for
U ∈ R+(D); ϕ∅ = ϕ0 will stand for the identity map on A = A(∅). Let

B =
⋃

U∈R(D)

A(U), α =
⋃

U∈R(D)

α(U),

β =
⋃

U∈R(D)

β(U) +
∑

U∈R+(D)

〈b(r(∅)), b(r(U))〉,

γ =
⋃

U∈R(D)

γ(U) +
∑

U∈R+(D)

〈d(r(∅)), d(r(U))〉,

δ =
⋃

U∈R(D)

δ(U) +
∑

U∈R(D)

(

∑

s∈U

〈b(s(U)), d(s(U))〉+

∑

s∈D\U

〈b′(s(U)), d′(s(U))〉
)

.

Define E =
⋃

U∈R(D) ϕU (F ), u = u0 = u(∅), and v = v0 = v(∅). This way we obtain

B = (B, u, v, E, α, β, γ, δ), which we call a successor of A.

For example, if A = L, the box defined by Figures 1 and 2, D = {s(1), s(2)}, F =
{s(3), s(4)} and r = s(0), then the corresponding successor of A is depicted in Figure 6,
where U1 = {s(1)}, U2 = {s(2)}, and U3 = {s(1), s(2)}.

Clearly, the successor of a box A is a semibox that extends A. Hence the successor
of a box is a box by the remark after Definition 7. Therefore the following statement is
obvious.

Claim 12. Let B be a successor of a box A. Then B is a box. Moreover, B |Φ A for the
“canonical” Φ = (Γ, {ϕU : U ∈ R(D)}), where the classes of Γ are the A(U), U ∈ R(D).

Claim 13. Let B be a successor of A. If A is a good box, then so is B.

Proof. Let A0 = A and use the notations of Definition 11. We know that B |Φ A with
the canonical Φ. Let us consider an extension C = (C, ū, v̄, Ē, ᾱ, β̄, γ̄, δ̄) of B, say
C |Ψ B. Then C is an extension of A0 by Ψ ◦ Φ, cf. Claim 6. So we can use the following
self-explaining notations: B0 = B, Ψ = (∆, {ψj: j ∈ J}), Bj := ψj(B), Ej = ψj(E),
A(j, U) := ψj(A(U)) for U ∈ R(D), and A(0, U) = A(U). Then Bj :=

⋃

U∈R(D) A(j, U)

and C =
⋃

(j,U)∈J×R(D) A(j, U); both of these unions are disjoint ones. Similar notations

(with obvious meaning) will be used for s ∈ E0, u, α, etc. The smallest complete sublattice
of Equ(C) that contains ᾱ, β̄, γ̄, and δ̄ will be denoted by Q.
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First we deal with the case p = u(0, U) ∈ B = B0 and q = v(0, U) ∈ B. Then we
assert

〈p, q〉(B,C) =〈p, q〉(A,C) ·
∏

s∈U

(

〈p, b(s(0, U))〉(A,C) + δ̄ + 〈d(s(0, U)), q〉(A,C)
)

·

·
∏

s∈D\U

(

〈p, b′(s(0, U))〉(A,C) + δ̄ + 〈d′(s(0, U)), q〉(A,C)
)

.
(2)

Before proving (2) let us point out that it easily implies 〈p, q〉(B,C) ∈ Q. Indeed, this
follows from Claim 6 and the goodness of A. Similarly, all the subsequent equations
will automatically imply that their left-hand sides belong to Q; we will rely on this fact
implicitly.

The “⊆” inclusion in (2) is an obvious consequence of the definitions. To show the
reverse inclusion, let us assume that (x, y) belongs to the right-hand side of (2), x, y ∈ C
and x 6= y. From (x, y) ∈ 〈p, q〉(A,C) we infer that x and y are in the same copy of A; say
they are in A(j, V ) ⊆ Bj . It also follows from (x, y) ∈ 〈p, q〉(A,C) = 〈u(j, V ), v(j, V )〉(A,C)

that {x, y} = {u(j, V ), v(j, V )}. Hence, for any s ∈ U , (2) yields

(u(j, V ), v(j, V )) ∈〈u(j, V ), b(s(j, V ))〉(A,C)+

+ δ̄ + 〈d(s(j, V )), v(j, V )〉(A,C).
(3)

Since s(j, V ) is not a switch of Bj (∼= B), s(j, V ) was not used to construct C from the Bk

(k ∈ J). Therefore the restriction of δ̄ to (the set of components of) s(j, V ) coincides with
the restriction of δj . Now, combining (3) with the fact that the δ̄ classes of u(j, V ) and
v(j, V ) are singletons, we obtain

(

b(s(j, V )), d(s(j, V ))
)

∈ δ̄. Hence
(

b(s(j, V )), d(s(j, V ))
)

belongs to δj , and we infer s ∈ V . This shows U ⊆ V . We obtain D \ U ⊆ D \ V
analogously. Thus U = V , and we conclude

(x, y) ∈〈u(j, V ), v(j, V )〉(B,C) = 〈u(j, U), v(j, U)〉(B,C) =

〈u(0, U), v(0, U)〉(B,C) = 〈p, q〉(B,C).

This proves (2).

If p, q ∈ A(0, U) ⊆ B = B0 such that |{p, q, u(0, U), v(0, U)}| = 4, then we easily
obtain

〈p, q〉(B,C) = 〈p, q〉(A,C) ·
(

〈p, u(0, U)〉(A,C) + 〈u(0, U), v(0, U)〉(B,C)+

+ 〈v(0, U), q〉(A,C)
)

.

Now let p, q ∈ A(0, U) ⊆ B0 be arbitrary distinct elements. Since |A(0, U)| ≥ |L| = 59,
we can choose distinct p1, q1 ∈ A(0, U) \ {u(0, U), v(0, U), p, q}. The previous formula
applies for (p1, q1), and we obtain

〈p, q〉(B,C) = 〈p, q〉(A,C) ·
(

〈p, p1〉
(A,C) + 〈p1, q1〉

(B,C) + 〈q1, q〉
(A,C)

)

. (4)
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The next step is to deal with the case p = b(r(0, ∅)) ∈ A(0, ∅) and q = b(r(0, U)) ∈
A(0, U) for U ∈ R+(D). (Remember, r was the switch connecting the copies of A when
we constructed B.) We assert that

〈b(r(0, ∅)), b(r(0, U))〉(B,C) = β̄ ·
(

〈b(r(0, ∅)), d(r(0, ∅))〉(B,C)+

+ γ̄ + 〈d(r(0, U)), b(r(0, U))〉(B,C)
)

.
(5)

The “⊆” part is evident. Suppose now that x 6= y ∈ C, and (x, y) belongs to the right-hand
side of (5). Since β̄ is column-preserving by Lemma 8, col(x) = col(y). Let, say, x ∈ Bj.
Then there is a shortest sequence z0 = x, z1, . . ., zt−1, zt = y such that every (zi−1, zi)
belongs to

〈b(r(0, ∅)), d(r(0, ∅))〉(B,C) ∪ γ̄ ∪ 〈d(r(0, U)), b(r(0, U))〉(B,C) =

〈b(r(j, ∅)), d(r(j, ∅))〉(B,C) ∪ γ̄ ∪ 〈d(r(j, U)), b(r(j, U))〉(B,C).

Let a(r(j, V ),ւ) denote the element in the row of a′(r(j, V )) such that col(a(r(j, V ),ւ)) =
col(a(r(j, V ))) − 1. Similarly, e′(r(j, V ),ր) denotes the element in the row of e(r(j, V ))
such that col(e′(r(j, V ),ր)) = col(e′(r(j, V ))) + 1. The set

Hj =
⋃

V ∈R(D)

{

a(r(j, V )), . . . , e(r(j, V )), a′(r(j, V )), . . . , e′(r(j, V )),

a(r(j, V ),ւ), e′(r(j, V ),ր)
}

is clearly closed with respect to 〈b(r(j, ∅)), d(r(j, ∅))〉(B,C) and 〈d(r(j, U)), b(r(j, U))〉(B,C).
It is also closed with respect to γj = ψj(γ) and γ̄, for Bj was obtained from the A(j, V ),
V ∈ R(D), by connecting the switches r(j, V ), V ∈ R(D). Hence all the zi, 0 ≤ i ≤ t,
belong to Hj ⊆ Bj. Since β̄γ̄ = 0 by Lemma 8, not all the (zi−1, zi) belong to γ̄. Hence
there is an ℓ with

(zℓ−1, zℓ) ∈ 〈b(r(j, ∅)), d(r(j, ∅))〉(B,C) (6)

or there is an m with

(zm−1, zm) ∈ 〈d(r(j, U)), b(r(j, U))〉(B,C). (7)

Since 〈b(r(j, ∅)), d(r(j, ∅))〉(B,C) and 〈d(r(j, U)), b(r(j, U))〉(B,C) are column 2-changing,
γ̄ is column 1-preserving and col(x) = col(y), both ℓ and m exist. By the minimal-
ity of t, (6) resp. (7) can hold only for one ℓ resp. m, so ℓ and m are uniquely deter-
mined. Since β̄ is column preserving but no element of

[

d(r(j, ∅))
]

γ̄ =
[

d(r(j, U))
]

γ̄
belongs to a b-column, it is easy to derive that {x, y} = {b(r(j, ∅)), b(r(j, U))}. Thus
(x, y) ∈ 〈b(r(0, ∅)), b(r(0, U))〉(B,C), proving (5).

Now, using the fact that γ̄ is column 1-preserving, we conclude easily that

〈d(r(0, ∅)), d(r(0, U))〉(B,C) = γ̄ ·
(

〈d(r(0, ∅)), b(r(0, ∅))〉(B,C)+

+ 〈b(r(0, ∅)), b(r(0, U))〉(B,C)+

+ 〈b(r(0, U)), d(r(0, U))〉(B,C)
)

.

(8)
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Finally, for any two distinct elements x and y in B0 there is a circle x = z0, z1, . . . , zi =
y, zi+1, . . . , zi+j−1, zi+j = x of elements in B0 such that |{z0, z1, . . . , zi+j−1}| = i+ j, and
all the 〈zℓ−1, zℓ〉

(B,C) already belong to Q by (4), (5) and (8). Hence

〈p, q〉(B,C) =

(

i
∑

ℓ=1

〈zℓ−1, zℓ〉
(B,C)

)

·

(

i+j
∑

ℓ=i+1

〈zℓ−1, zℓ〉
(B,C)

)

∈ Q,

proving Claim 13. ⋄

Definition 14. Let µ be an ordinal number. For ν < µ let Aν = (Aν , uν , vν , Eν , αν ,
βν , γν , δν) be a box. Suppose that Aν |Φλν

Aλ for λ < ν < µ such that Φκν = Φλν ◦ Φκλ

for all κ < λ < ν < µ. (This condition will be referred to as “the ways of extensions are
compatible”.) Then we say that the Aν (ν < µ) together with the Φλν (λ < ν < µ) form
a directed system of boxes. Associated with this directed system we define

A =
⋃

ν<µ

Aν , α =
⋃

ν<µ

αν , β =
⋃

ν<µ

βν , γ =
⋃

ν<µ

γν , and δ =
⋃

ν<µ

δν .

We let u = u0 and v = v0; note that u = uν and v = vν for all ν < µ. Let us choose a
subset E ⊆

⋃

ν<µEν such that

E ⊆
⋃

ν<µ

⋂

λ
ν≤λ<µ

Eλ . (9)

Then A = (A, u, v, E, α, β, γ, δ) is called a limit of the Aν (ν < µ).

Note that A, α, β, γ and δ are unions of ascending chains. If µ is a successor ordinal,
say µ = ̺+ 1, then the limit is A̺ (with less switches, perhaps). Hence the limit of boxes
is interesting (and will be used) for limit ordinals µ only. Unfortunately, the union of the
right-hand side of (9) (and therefore E) can be empty. This phenomenon is responsible
for a lot of work put in the rest of the paper.

Claim 15. The limit A defined above is a box. There are canonical Φνµ such that
A |Φνµ

Aν for all ν < µ. Moreover, denoting A by Aµ, the Aν (ν < µ + 1) with the Φνλ

(ν < λ < µ+ 1) form a directed system of boxes.

Proof. It is evident that A is a semibox. We can assume that µ is a limit ordinal,
for otherwise the statement is trivial. Let us fix a ν < µ. For ν ≤ λ < µ, let Φνλ =
(Γνλ, {ϕi: i ∈ Iνλ}) where the classes of Γνλ are denoted by Aν,i (i ∈ Iνλ). By the
compatibility of the Φκ̺ we may assume that Iνλ ⊆ Iνκ for λ ≤ κ, and ϕi and Aν,i are
the same for i ∈ Iνλ as they are for i ∈ Iνκ. (This is clear from definition if we choose
I̺λ = Γ̺λ, i.e. the set of classes, for all ̺ < λ < µ.) Let I = Iνµ =

⋃

ν≤λ<µ Iνλ. Then
{Aν,i: i ∈ I} is a partition Γνµ on A, and (the collection of these) Φνµ = (Γνµ, {ϕi: i ∈ I})
is compatible with all Φκ̺ in the (original) directed system.
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So all we have to show is that Φνµ establishes an extension. Since αλ =
⋃

i∈Iνλ
αν,i

(where αν,i = ϕi(αν)), we obtain α =
⋃

ν≤λ<µ αλ =
⋃

i∈I αν,i. For ν ≤ λ < µ, Aλ | Aν

gives that

δλ =
⋃

i∈Iνλ

δν,i +
∑

(s,i)∈Fλ

〈b(si), d(si)〉 +
∑

(s,i)∈Gλ

〈b′(si), d
′(si)〉 (10)

It is easy to observe that

Fλ = {(s, i) ∈ E × Iνλ: (b(si), d(si)) ∈ δλ},

Gλ = {(s, i) ∈ E × Iνλ: (b′(si), d
′(si)) ∈ δλ}.

(11)

Since δλ ⊆ δκ for ν ≤ λ ≤ κ < µ, we infer Fλ ⊆ Fκ and Gλ ⊆ Gκ. Let F =
⋃

ν≤λ<µ Fλ

and G =
⋃

ν≤λ<µGλ. Forming the union of (10) for all permitted λ we obtain the “⊆”
part of

δ =
⋃

i∈I

δν,i +
∑

(s,i)∈F

〈b(si), d(si)〉 +
∑

(s,i)∈G

〈b′(si), d
′(si)〉, (12)

while the “⊇” part is clear from the fact that each of the δν,i and the upper and lower
atoms occurring in the sum on the right-hand side is smaller than some δλ ⊆ δ. For
ν ≤ λ < µ, Aλ | Aν gives that

βλ =
⋃

i∈Iνλ

βν,i +
∑

(s,i,j)∈Hλ

〈b(si), b(sj)〉 (13)

(Notice that here and in the sequel, β resp. b( ) could be replaced by γ resp. d( ).) We
may assume that

Hλ = {(s, i, j) ∈ E × Iνλ × Iνλ: i 6= j, (b(si), b(sj)) ∈ βλ}. (14)

Since βλ ⊆ βκ for ν ≤ λ ≤ κ < µ, we infer Hλ ⊆ Hκ. Let H =
⋃

ν≤λ<µHλ; then

β =
⋃

i∈Iνλ

βν,i +
∑

(s,i,j)∈H

〈b(si), b(sj)〉.

follows similarly to (12). Since the necessary disjointness conditions on F , G and H are
implied by these conditions on Fλ, Gλ and Hλ, we have shown that Φνµ establishes an
extension. Finally, being an extension of boxes, the semibox A is a box. ⋄

Claim 16. With the notations of Definition 14, if all the Aν (ν < µ) are good boxes,
then their limit, A, is a good box as well.
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Proof. Let B = (B, ū, v̄, Ē, ᾱ, β̄, γ̄, δ̄) be an extension of A = Aµ by Ψ. We know
from Claim 15 that A |Φνµ

Aν for ν < µ. Claim 6 yields that B is an extension of Aν

by Ψ ◦ Φνµ. Now all the necessary ways of extensions are fixed and compatible, so the
notations 〈p, q〉(A,B) and 〈p, q〉(Aν ,B) will make sense later in the proof.

Let Ψ be of the form (Γ, {ϕi: i ∈ I}) where Γ = {A(i): i ∈ I} and A = A(0). Let
Q denote the smallest complete sublattice of Equ(B) that includes {ᾱ, β̄, γ̄, δ̄}. Denote

ϕi(Aν) by A
(i)
ν . Suppose that p, q ∈ A are distinct elements. Then there is a smallest λ

such that p, q ∈ Aλ. The goodness of Aν yields 〈p, q〉(Aν ,B) ∈ Q for all λ ≤ ν < µ. We
assert that

〈p, q〉(A,B) =
∏

λ≤ν<µ

〈p, q〉(Aν ,B) ∈ Q; (15)

only the equality has to be checked. The “⊆” part follows from the fact that the ways
of extensions are compatible. For the converse inclusion, suppose (x, y) belongs to the
right-hand side of (15), x 6= y ∈ B. From (x, y) ∈ 〈p, q〉(Aλ,B) we obtain that x and y
are in the same copy of Aλ. Hence, by compatibility, they are in the same A(i). Choose

a (sufficiently large) λ ≤ ν < µ such that {ϕi(p), ϕi(q), x, y} ⊆ A
(i)
ν . Then (x, y) ∈

〈p, q〉(Aν ,B) = 〈ϕi(p), ϕi(q)〉
(Aν ,B) gives {x, y} = {ϕi(p), ϕi(q)}. Consequently, (x, y) ∈

〈ϕi(p), ϕi(q)〉
(A,B) = 〈p, q〉(A,B), proving (15). ⋄

IV. Pursuing boxes at infinity

Starting from L = A0 = (A0, u0, v0, E0, α0, β0, γ0, δ0) (cf. Figures 1 and 2)
we intend to define a directed system Ai = (Ai, ui, vi, Ei, αi, βi, γi, δi) of boxes,
i ∈ N0 = {0, 1, 2, . . .}, together with ways Φij of extension (i < j) such that, for all
i ∈ N0, Ai+1 is a successor of Ai and Ai+1 |Φi,i+1

Ai is the canonical extension associated
with the successor construction. Denoting by ri, Di and Fi the parameters establishing
that Ai+1 is a successor of Ai (cf. Definition 11, note that ri ∈ Ei and Di, Fi ⊆ Ei),
we also want that F0 ⊆ F1 ⊆ F2 ⊆ F3 ⊆ . . . . Let A1 be the box defined by Figure 6;
the meaning of Φ01 is obvious. Now suppose that i ≥ 1 and A0, A1, . . ., Ai are already
defined together with compatible Φjk (j < k ≤ i). By the construction of Ai from Ai−1 and
Ai |Φi−1,i

Ai−1 we obtain Fi−1 ⊆ Ei. Choose Fi ⊆ Ei such that Fi−1 ⊆ Fi and |Fi| = 1
2 |Ei|

(we will see that this is possible); let ri ∈ Ei \ Fi and let Di = Ei \ ({ri} ∪ Fi). These
parameters determine a unique successor Ai+1 of Ai and a unique (canonical) Φi,i+1 with
Ai+1 |Φi,i+1

Ai; for j < i we set Φj,i+1 = Φi,i+1 ◦ Φj,i. The sequence ti = (|Ei|, |Fi|, |Di|),
i = 1, 2, 3, . . ., clearly obeys the following rule:

t1 = (8, 4, 3), t2 = (32, 16, 15), t3 = (16 · 215, 16 · 214, 16 · 214 − 1), . . . ,

ti+1 = (|Fi| · 2
|Di|, |Fi| · 2

|Di|−1, |Fi| · 2
|Di|−1 − 1), . . .

It is easy to see that 2 · |Fi−1| ≤ |Ei| for i = 1, 2, 3, . . ., so the choice of Fi is always
possible. Since F0 ⊆ F1 ⊆ F2 ⊆ F3 ⊆ . . . and Fi ⊆ Ei, for all natural numbers n we
obtain

⋂

n≤ℓ Eℓ ⊇
⋂

n≤ℓ Fℓ = Fn. Hence, the choice E =
⋃

n∈N0
Fn is in accordance with

(9). Now let A = (A, u, v, E, α, β, γ, δ) be the limit of the directed system we have just
defined. The fast growing of the sequence (ti)i∈N0

makes it clear that |E| = ℵ0. Therefore
|A| = |E|, and this property will be so important in the sequel that it deserves a separate
name.
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Definition 17. A box A = (A, u, v, E, α, β, γ, δ) is called a perfect box if it is a good
box and |A| = |E|. A cardinal m will be called small if ℵ0 ≤ m and there is no inaccessible
cardinal ≤ m.

In virtue of Claim 16, the box we have defined before Definition 17 is a countable
perfect box. Clearly, every perfect box is necessarily infinite. We want to show that for
each small cardinal m there is a perfect box of power m. However, we need an even stronger
induction hypothesis.

Definition 18. Given a small cardinal m, we say that the condition H(m) holds if
(i) for each small cardinal n ≤ m there is a perfect box of cardinality n; and
(ii) for any two small cardinals n < k ≤ m, for every perfect box A = (A, u, v, E, α,

β, γ, δ) with |A| = n, and for each E′ ⊂ E with |E \ E′| = n there is a perfect
box B of power k such that B is an E′-preserving extension of A.

Clearly, if a cardinal m is small, then so is m+, the least cardinal that is greater than
m. The existence of a countable perfect box trivially implies that H(ℵ0) holds.

Claim 19. Suppose m is a small cardinal and H(m) holds. Then H(m+) holds as well.

Proof. It suffices to show H(m+)(ii) for n ≤ m and k = m+. Let us take a perfect
box A = (A, u, v, E, α, β, γ, δ) of power n (such a box exists by H(m)), and a subset
E′ ⊂ E with |E \ E′| = |E| = n. We want to construct an E′-preserving extension B of
A such that |B| = m+. Since n = n + n by the cardinal arithmetics, we can chose an
E′′ such that E′ ⊂ E′′ ⊂ E and |E \ E′′| = |E′′ \ E′| = n. In virtue of H(m) we obtain

a perfect box C = (C, û, v̂, Ê, α̂, β̂, γ̂, δ̂) of power m such that C is an E′′-preserving
extension of A. Let Ê′ and Ê′′ denote the extensions of E′ and E′′ to C, respectively.
Then m = |Ê| ≥ |Ê \ Ê′| ≥ |Ê′′ \ Ê′| = |E′′ \ E′| · [C : A] = |A| · [C : A] = |C| = m,
i.e., |Ê \ Ê′| = m. Hence we can partition Ê into {r̂}, D̂ and F̂ such that Ê′ ⊆ F̂
and |F̂ | = |D̂| = m. These parameters determine a successor B of C. By Claim 12
and Definition 11, B is an Ê′-preserving extension of C. Therefore, by Claim 6, B is an
E′-preserving extension of A. ⋄

Claim 20. Suppose that k is a small limit cardinal (i.e., k = m+ holds for no m) and
H(m) holds for all m < k. Then H(k) holds as well.

Proof. We can assume that k > ℵ0. Since k is small, either
(∗) 2m ≥ k for some m < k, or

(∗∗) there is a set M of cardinals such that |M | < k, m < k for all m ∈ M , and
sup{m: m ∈M} = k.

The treatment of (∗) is very similar to that of Claim 19; the only difference is that to
obtain B from C we use the successor construction with |R(D̂)| = k instead of |R(D̂)| =
|D̂|+ = m+.

From now on we deal with (∗∗). Again, we have to prove only (ii) and only in a
particular case. I.e., let A = (A, u, v, E, α, β, γ, δ) be a perfect box of power n < k,
and let E′ ⊂ E with |E \ E′| = |A| = n. By H(n), A and E′ exist. Our task is to give



16 G. Czédli

an E′-preserving extension of A to a perfect box of power k. We have to distinguish two
cases.

Case (A): |M | ≤ n. Then we may assume that n ∈ M and (∀m ∈ M) (n ≤ m), for
otherwise we can replace M by {n} ∪ {m ∈ M : n ≤ m}. Since any set of cardinals is
well-ordered, M is of the form M = {mξ: ξ < µ} where µ is a limit ordinal, |µ| = |M | ≤
n < k, m0 = n, and mξ < mη for ξ < η < µ. For convenience, define mµ = k; then
mµ = sup{mξ: ξ < µ}.

Like in the previous proof, we can choose an E′′ such that E′ ⊂ E′′ ⊂ E and |E\E′′| =
|E′′\E′| = n = m0. Since n = 2n· |µ+1|, we can choose a partition {Xξ: ξ ≤ µ}∪{Yξ: ξ ≤
µ} of E′′ \ E′ such that |Xξ| = |Yξ| = n for all ξ ≤ µ. We define

E(ξ) = E′′ \
(

⋃

η≤ξ

Xη ∪
⋃

η<ξ

Yη

)

and

T (ξ) = E′′ \
(

⋃

η≤ξ

Xη ∪
⋃

η≤ξ

Yη

)

= E(ξ) \ Y (ξ).

Then T (ξ), E(ξ) ⊆ E′′ for all ξ ≤ µ, T (µ) = E′, and, for all ξ < η ≤ µ,

E(ξ) ⊃ T (ξ) ⊃ E(η) ⊃ T (η) and

|E(ξ) \ T (ξ)| = |T (ξ) \ E(η)| = |E(η) \ T (η)| = n.

Via induction on ν, for each ν ≤ µ we want to define a directed system Sν of perfect
boxes Aξ = (Aξ, uξ, vξ, Eξ, αξ, βξ, γξ, δξ) (ξ ≤ ν) together with compatible Φξη

(ξ < η ≤ ν) such that |Aξ| = mξ, A0 = A, Aξ |Φ0ξ
A0 is a T (ξ)-preserving extension, and

Sλ ⊆ Sν for all λ ≤ ν. Let I(ν) denote this collection of conditions that we expect from
Sν .

Let S0 consist only of A0 = A; I(0) is evident.

Now suppose that Sν satisfying I(ν) is already constructed; we want to construct Sν+1.

Since Aν |Φ0ν
A0 is T (ν)-preserving, we can extend T (ν) and T (ν+1) to Aν ; let T

(ν)
ν and

T
(ν+1)
ν denote their extension, respectively. We have mν = |Eν | ≥ |Eν \ T

(ν+1)
ν | ≥ |T

(ν)
ν \

T
(ν+1)
ν | = |T (ν) \T (ν+1)| · [Aν : A0] = |A0| · [Aν : A0] = |Aν | = mν . I.e., |Eν \T

(ν+1)
ν | = mν .

Hence, by H(mν+1), there exists a perfect box Aν+1 = (Aν+1, uν+1, vν+1, Eν+1, αν+1,

βν+1, γν+1, δν+1) of powermν+1 such that Aν+1|Aν is a T
(ν+1)
ν -preserving extension. From

Claim 6 we infer that Aν+1 is a T (ν+1)-preserving extension of A0. Let Φν,ν+1 denote the
way of Aν+1|Aν , and define Φξ,ν+1 = Φν,ν+1 ◦ Φξν for ξ < ν. Hence, augmenting Sν by
Aν+1 and by the Φξ,ν+1 (ξ < ν + 1), we obtain a directed system Sν+1. Sν+1 clearly
satisfies I(ν + 1).

Now let ν (ν ≤ µ) be a limit ordinal, and suppose that the Sξ satisfying I(ξ) are
already defined for all ξ < ν. The union

⋃

ξ<ν Sξ is clearly a directed system again; let

Bν = (Bν , ûν , v̂ν , Êν , α̂ν , β̂ν , γ̂ν , δ̂ν) be its limit. (Êν will be given soon.) By Claim
15, Bν |Ψξν

Aξ such that the Ψξν (ξ < ν) are compatible with the Φξ̺ (ξ < ̺ < ν). For
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ξ < ν, Aξ|A0 is a T (ξ)-preserving extension, and E(ν) ⊂ T (ξ). So E(ν) extends to Aξ; let

E
(ν)
ξ denote its extension. For ξ < ̺ < ν we have E

(ν)
ξ ⊆ E

(ν)
̺ , for Φ0̺ = Φξ̺ ◦Φ0ξ. So we

obtain
⋃

ξ<ν

⋂

ξ≤̺<ν

E̺ ⊇
⋃

ξ<ν

⋂

ξ≤̺<ν

E(ν)
̺ =

⋃

ξ<ν

E
(ν)
ξ .

Hence, according to (9), we can let Êν =
⋃

ξ<ν E
(ν)
ξ , and Bν becomes an E(ν)-preserving

extension of A0. Since mξ = |Eξ| ≥ |E
(ν)
ξ | = |E(ν)|·[Aξ : A0] = |A0|·[Aξ : A0] = |Aξ| = mξ,

we obtain |Êν | = sup{mξ: ξ < ν} = |Bν |. Hence Bν is a perfect box, and it is an E(ν)-
preserving extension of A0.

Now we have to distinguish two cases. First assume that ν < µ. Since T (ν) ⊂ E(ν),

T (ν) extends to Bν . Let T̂
(ν)
ν and Ê

(ν)
ν denote the extension of T (ν) and E(ν) to Bν ,

respectively. Then |Êν \ T̂
(ν)
ν | ≥ |Ê

(ν)
ν \ T̂

(ν)
ν | = |E(ν) \ T (ν)| · [Bν : A0] = |Bν|. On the

other hand, |Bν | = sup{mξ: ξ < ν} ≤ mν . Thus H(mν) applies and yields a perfect box

Aν = (Aν , uν , vν , Eν , αν , βν , γν , δν) of power mν such that Aν |Ψ̂ Bν is a T̂
(ν)
ν -preserving

extension. Then Aν is an extension of Aξ by Φξν := Ψ̂ ◦ Ψξν (ξ < ν), and Aν is a
T (ν)-preserving extension of A0, cf. Claim 6. Further, for ξ < ̺ < ν,

Φ̺ν ◦ Φξ̺ = (Ψ̂ ◦ Ψ̺ν) ◦ Φξ̺ = Ψ̂ ◦ (Ψ̺ν ◦ Φξ̺) = Ψ̂ ◦ Ψξν = Φξν .

This shows I(ν).

The other case is ν = µ. Then |Bµ| = |Bν| = sup{mξ: ξ < µ} = k = mµ. Hence we
do not have to (and we are even not allowed to) apply H(mν) to extend this Bν to Aν .
We simply let Aµ := Bµ, Φξµ := Ψξµ (ξ < µ), and I(µ) clearly holds.

From I(µ) we obtain that Aµ is a T (µ) = E′-preserving extension of A = A0 and
|Aµ| = mµ = k.

Case (B): n < |M |. Now we can choose a subset E′′ ⊂ E such that E′ ⊂ E′′ ⊂ E
and |E \ E′′| = |E′′ \ E′| = n, and an element m ∈ M with |M | ≤ m < k. By H(m),

A has an E′′-preserving extension to a perfect box C = (C, û, v̂, Ê, α̂, β̂, γ̂, δ̂) with
|C| = m. Let Ê′ and Ê′′ denote the extensions of E′ and E′′ to C, respectively. Then
m = |Ê| ≥ |Ê \ Ê′| ≥ |Ê′′ \ Ê′| = |E′′ \ E′| · [C : A] = |A| · [C : A] = m, i.e. |Ê \ Ê′| = m.
By Case (A), C has an Ê′-preserving extension to a perfect box B with |B| = k. In virtue
of Claim 6, B is an E′-preserving extension of A. This proves Claim 20. ⋄

Finally, from the existence of a countable perfect box (i.e., H(ℵ0)) and Claims 19 and
20 we derive H(m) for all small cardinals m via induction. According to the remark after
Definition 9, this proves Theorem 1.
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