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Abstract. A subset X of a lattice L with 0 is called CD-independent if for any x, y ∈ X ,
either x ≤ y or y ≤ x or x ∧ y = 0. In other words, if any two elements of X are either

comparable or “disjoint”. Maximal CD-independent subsets are called CD-bases.
The main result says that any two CD-bases of a finite distributive lattice L have the

same number of elements. It is also shown that distributivity cannot be replaced by a
weaker lattice identity. However, weaker assumptions on L are still relevant: semimodu-

larity implies that no CD-basis can have fewer elements than a maximal chain, while lower
semimodularity yields that each maximal chain together with all atoms forms a CD-basis.

Let L be a lattice with 0. A subset X of L will be called CD-independent if
for any x, y ∈ X, either x ≤ y or y ≤ x or x ∧ y = 0. In other words, if any two
elements of X either form a chain (i.e., they are comparable) or they are “disjoint”;
the initials explain our terminology. As one might expect, maximal CD-independent
subsets are called CD-bases of L.

The classical notion of independent subsets of (semimodular or modular) lattices
has many applications ranging from von Neumann’s coordinatization theory to
combinatorial applications via matroid theory. Some other notions of independence
were introduced in [1] and [2], and there was a decade witnessing an intensive
study of weak independence, cf. Lengvárszky’s [10] and his other papers. Recently,
the result of [1] has been successfully applied to combinatorial problems, cf. [3],
Pluhár [13] and Horváth, Németh and Pluhár [8]. The present research started
with the (easy) observation that many subsets occurring in [3], [8] and [13] are, in
fact, CD-independent. At the time of the final revision of this paper, we add that
so are the subsets in Lengvárszky [11] and [12], and E. K. Horváth, G. Horváth,
Németh and Szabó [9].

As a general reference to (the rudiments of) lattice theory the reader is referred
to Grätzer [6]. For b ∈ L, ↓b will stand for the principal ideal {u ∈ L : u ≤ b}. The
length, that is the supremum of {|C|−1 : C is a chain in L}, of L is denoted by `(L).
For u ∈ L, let h(u) = `(↓u) denote the height of u. If for all a, b, c ∈ L, a � b implies
a ∨ c � b ∨ c then L is called semimodular. Lattices satisfying the dual property
are called lower semimodular. It is well-known that any two maximal chains of a
semimodular lattice L of finite length have the same number of elements, and for
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any u ≤ v ∈ L the length `([u, v]) of the interval [u, v] = {x ∈ L : u ≤ x ≤ v}
equals h(v) − h(u).

Facts and notation. For a lattice L of finite length and a CD-basis X of L,
• 0, 1 ∈ X;
• max(X) denotes the set of maximal elements of X \ {1},
• for b ∈ X, we define X(b) = (X ∩ ↓b) \ {0}, and we have

X(b) ∪ {0} ∈ B(↓b); (1)

• the set of all CD-bases of L will be denoted by B(L);
• if max(X) consists of k elements, say max(X) = {a1, . . . , ak}, then

X = {0, 1} ∪̇ X(a1) ∪̇ · · · ∪̇ X(ak) and ai ∧ aj = 0 for all i 6= j, (2)

where ∪̇ stands for (pairwise) disjoint union, and

either k = 1 and a1 is a coatom or a1 ∨ · · · ∨ ak = 1. (3)

Facts (1) and (2) are trivial, while (3) is straightforward from the assumption
that X is a maximal CD-independent subset.

Proposition 1. Let X be a CD-basis of a finite semimodular lattice L. Then X
has at least `(L) + 1 elements.

Proof. We prove the statement by induction on the length of L. The case `(L) ≤ 1
is evident, so we assume that `(L) > 1. If |max(X)| = 1, then (1), (2), (3) and the
induction hypothesis give

|X| = |({0} ∪̇ X(a1)) ∪̇ {1}| ≥ `(↓a1) + 1 + 1 = `(L) + 1.

Hence we may assume that max(X) = {a1, . . . , ak} consists of at least two elements.
For i ∈ {1, . . . , k}, denote X(a1) ∪ · · · ∪ X(ai) by Xi and a1 ∨ · · · ∨ ai by bi. Then
Xk = X \ {0, 1} by (2) and h(bk) = h(1) = `(L), whence it suffices to show that

|Xi| ≥ h(bi) (4)

for i = 1, . . . , k. For i = 1 this is clear from the induction hypothesis on the
length of the lattice. Now, let us assume the validity of (4) for i < k. Since finite
semimodular lattices satisfy the well-known “dimension inequality”

h(x) + h(y) ≥ h(x ∧ y) + h(x ∨ y) (5)

for any x, y ∈ L (cf. Grätzer [6], Thm. IV.2.2), we have

`(↓ai+1) ≥ h(ai+1) − h(bi ∧ ai+1) ≥ h(bi ∨ ai+1) − h(bi) = `([bi, bi+1]). (6)

Since `(↓ai+1) = h(ai+1) < h(1) = `(L), the induction hypothesis (on the length)
gives |X(ai+1)| ≥ `(↓ai+1). Hence it follows from (6) and the induction hypothesis
(on i) that |Xi+1| = |Xi| + |X(ai+1)| ≥ h(bi) + `([bi, bi+1]) = h(bi+1), showing
(4). �

The black-filled elements of the lattice A, cf. Figure 1, form a CD-basis with
less than `(A)+1 elements. This indicates that semimodularity cannot be dropped
from Proposition 1.
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A : B :

Figure 1. Lattices A and B

Proposition 2. Let C be a maximal chain in a finite lower semimodular lattice L,
and let A(L) denote the set of atoms in L. Then A(L) ∪ C is a CD-basis of L.

Proof. Let C = {0 = c0 ≺ c1 ≺ c2 ≺ · · · ≺ cn = 1}. It is clear, even without
assuming lower semimodularity, that C ∪ A(L) is a CD-independent set. Let y ∈
L \ C such that C ∪ {y} is CD-independent; we need to show that y ∈ A(L). Let
ci be the smallest member of C such that y ≤ ci. Then i > 0, ci = ci−1 ∨ y and
ci−1 is incomparable with y. The CD-independence of C ∪ {y} gives y ∧ ci−1 = 0.
Hence lower semimodularity yields 0 ≺ y, i.e., y ∈ A(L). �

Note that B, cf. Figure 1, is a CD-basis of itself. Hence no maximal chain plus
the atoms of B form a CD-basis. This indicates that lower semimodularity cannot
be dropped from Proposition 2.

Main Theorem. Any two CD-bases of a finite distributive lattice have the same
number of elements.

Proof. The notations from the previous two proofs will be in effect. Let L be a finite
distributive lattice. Clearly, we can assume that |L| ≥ 3. In virtue of Proposition 2,
it suffices to show that, for every CD-basis X of L, we have

|X| = `(L) + |A(L)|. (7)

Since X ∪ A(L) is CD-independent, the maximality of X implies that

A(L) ⊆ X. (8)

We prove (7) by induction on |L|. Notice that, in formulas (2) and (3), k =
|max(X)| must be 1 or 2. Indeed, if k ≥ 3 then, for i ≥ 3, ai ∧ (a1 ∨ a2) =
(ai ∧ a1) ∨ (ai ∧ a2) = 0. Since ai 6= 0, we conclude a1 ∨ a2 6= 1, which means that
X ∪̇ {a1 ∨ a2} is CD-independent, a contradiction.

First we consider the case k=1. Then a1, the unique element of max(X), is a
coatom by (3). Hence we conclude by (8) that A(↓a1) = A(L). Now X = {1} ∪̇
({0} ∪̇ X(a1)) and, by (1), we know that {0} ∪̇ X(a1) ∈ B(↓a1). Hence we can
apply the induction hypothesis to the distributive lattice ↓a1:

|X| = 1 + |{0} ∪̇ X(a1)| = 1 + `(↓a1) + |A(↓a1)| = `(L) + |A(L)|,
as desired.
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Secondly, let k = 2. Then, by (2) and (3), a2 is a complement of a1. Hence
`(L) = h(1) = h(a1) + h(a2) by distributivity. Now it is well-known that L is
(isomorphic to) the direct product of L1 = ↓a1 and L2 = ↓a2. Let Xi = X ∩ Li =
X(ai)∪{0} ∈ B(↓ai), and let Ai = A(L)∩Li. Clearly, X = X1 ∪̇

(
(X2∪{1})\{0}

)
,

A(Li) = Ai, and `(L) = h(a1) + h(a2) = `(L1) + `(L2). Hence the induction gives
|X| = |A(L)| + `(L) easily. �

Now, by giving an unusual characterization of the variety of all distributive
lattices, we point out that “distributivity” in the Main Theorem cannot be replaced
by a weaker lattice identity. A lattice variety is called nontrivial if it is distinct
from the class of all one-element lattices.

Corollary 3. For every nontrivial variety V of lattices, the following two conditions
are equivalent.

(1) any two CD-bases of each finite member of V have the same number of
elements;

(2) V is the variety of all distributive lattices.

Proof. Let Cn = {0 = d0 ≺ d1 ≺ · · · ≺ dn = 1} denote the chain of length n.
(Although it would suffice to consider n = 2 in the present proof, the needs of a
forthcoming proof makes it reasonable that we allow n ≥ 2 here.) Given a lattice
K, let K[Cn] = {(x1, x2, . . . , xn) ∈ Kn : x1 ≤ x2 ≤ · · · ≤ xn}. Then K[Cn] is a
sublattice of the n-th direct power of K. (In fact, the constant n-tuples show that
K[Cn] is a subdirect power of K.) For k ≥ 3, let Mk = {0, a1, . . . , ak, 1} denote the
modular lattice of length 2 with exactly k atoms, and let N5 be the five element
nonmodular lattice with elements 0, 1, a, b, c such that a < c.

It suffices to show that Condition (1) implies that neither M3 nor N5 belongs to
V, for the reverse implication is just the Main Theorem. Suppose that V satisfies
Condition (1).
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Figure 2. M3[C3] and N5[C2]

By way of contradiction, suppose first that M3 ∈ V. Then M3[Cn] ∈ V as well.
(For n = 3, it is depicted in Figure 2.) Consider the following principal ideals of



CD-INDEPENDENT SUBSETS IN DISTRIBUTIVE LATTICES 5

M3[Cn]:

↓(ai, . . . , ai) =
{
(0, . . . , 0, 0), (0, . . . , 0, ai), (0, . . . , ai, ai), . . . , (ai, . . . , ai, ai)

}
,

for i = 1, 2, 3. They are chains of length n. Using modularity and the fact that the
constant n-tuples in M3[Cn] form a sublattice isomorphic to M3, we obtain that
`(M3[Cn]) = 2n. Notice that M3[Cn] has exactly three atoms: the (0, . . . , 0, ai) for
i = 1, 2, 3. Therefore, in virtue of Proposition 2, M3[Cn] has a CD-basis G of size
2n + 3, cf. the cross-filled elements in the figure. By similar argument,

Mk[Cn] has a CD-basis of size 2n + k; (9)

we have noticed this for later reference. On the other hand, let

H =
{
(1, . . . , 1)

}
∪ ↓(a1, . . . , a1) ∪ ↓(a2, . . . , a2) ∪ ↓(a3, . . . , a3).

Then H is a CD-independent subset and |H| = 3n + 2, cf. the grey-filled elements
in the figure. (It is not hard to see that H is a CD-basis, but we do not need this
fact.) Similarly,

Mk[Cn] has a CD-independent subset of size at least kn + 2. (10)

Now 3n + 2 > 2n + 3 for n ≥ 2, contradicting Condition (1).
Secondly, suppose that N5 ∈ V. Then N5[C2] ∈ V as well; cf. Figure 2, which is

quoted from [16]. The cross-filled elements form a CD-basis G while the gray-filled
elements form a CD-basis H. So |G| = 7 6= 8 = |H| contradicts Condition (1). �

Remark 4. Let V be a lattice variety containing a non-distributive member. Then,
for each t ∈ N, there are a finite lattice L ∈ V and CD-bases X and Y of L such
that |X| − |Y | > t.

Proof. If Z is a CD-basis of L then it is straightforward to see that Z′ =
(
Z ×

{0}
)
∪

(
{0} × Z

)
∪

{
(1, 1)

}
is a CD-basis of L2 with |Z′| = 2 · |Z|. This together

with Corollary 3 implies the above remark. �

Remark 5. For each t ∈ N, there are a finite modular lattice L and CD-bases X
and Y of L such that |X| > t · |Y |.
Proof. Evident by (9) and (10). �

Historical remarks. The lattice M3[Cn] is just a particular case of the M3[D] con-
struction for bounded distributive lattices D. While M3[D] was introduced in [15]
in a very different way, by means of balanced triples, here we used the more general
definition of K[D] from [16]. For some other applications and generalizations of the
M3[D] construction cf., e.g., [17], Farley [4] and [5], Grätzer and Wehrung [7], and
Quackenbush [14].

Corollary 6. Let L be a finite distributive lattice. Then L is Boolean if and only
if |X| = 2 · `(L) holds for every (equivalently, some) CD-basis Xof L.

Proof. Let J(L) denote the set of nonzero join-irreducible elements of L. Then
|J(L)| = `(L), and L is Boolean iff J(L) = A(L), cf., e.g., Thm. II.1.9 and Cor.
II.1.14 in Grätzer [6] . Hence the Main Theorem and Proposition 2 complete the
proof. �
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