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Abstract. Let L be a bounded lattice. If for each a1 < b1 ∈ L and a2 < b2 ∈ L there
is a lattice embedding ψ : [a1, b1 ] → [a2, b2] with ψ(a1) = a2 and ψ(b1) = b2 then we say

that L is a quasifractal. If ψ can always be chosen an isomorphism or, equivalently, if L
is isomorphic to each of its nontrivial intervals then L will be called a fractal lattice. For

a ring R with 1 let V(R) denote the lattice variety generated by the submodule lattices
of R-modules. Varieties of this kind are completely described in [16]. The prime field of

characteristic p will be denoted by Fp.
Let U be a lattice variety generated by a nondistributive modular quasifractal. The

main theorem says that U is neither too small nor too large in the following sense: there is
a unique p = p(U), a prime number of zero, such that V(Fp) ⊆ U and for any n ≥ 3 and

any nontrivial (normalized von Neumann) n-frame (~a,~c) = (a1, . . . , an, c12 , . . . , c1n) of any
lattice in U , (~a,~c) is of characteristic p. We do not know if U = V(Fp) in general; however

we point out that for any ring R with 1, V(R) ⊆ U implies V(R) = V(Fp). It will not be
hard to show that U is Arguesian.

The main theorem does have a content, for it has been shown in [2] that each of the
V(Fp) is generated by a single fractal lattice Lp; moreover we can stipulate either that Lp

is a continuous geometry or that Lp is countable.
The proof of the main theorem is based on the following result of the present paper: if

(~a,~c) is a nontrivialm-frame and (~u, ~v) is an n-frame of a modular lattice L with m,n ≥ 3
such that u1 ∨ · · · ∨ un = a1 and u1 ∧ u2 = a1 ∧ a2 then these two frames have the same

characteristic and, in addition, they determine a nontrivial mn-frame (~b, ~d) of the same
characteristic in a canonical way, which we call the product frame.

1. Introduction and definitions

Following [2], by a fractal lattice or, shortly, fractal we mean a bounded lattice L
such that for each a < b ∈ L the interval [a, b] is isomorphic with L. For motivation
and an application of this concept cf. [2], and cf. Giudici [11] for an overview of
fractals coming from the theory of bisimple rings. If for any a1 < b1 ∈ L and
a2 < b2 ∈ L there is a lattice embedding [a1, b1] → [a2, b2] with a1 7→ a2 and
b1 7→ b2 then L is called a quasifractal. Fractals are clearly quasifractals but it is
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an open problem if every quasifractal is a fractal. From now on we assume that
fractals and quasifractals consist of at least two elements. The two element lattice
is a fractal, and so is the bounded chain of rational numbers between 0 and 1. Using
the fact that the theory of countable atomless boolean algebras is ℵ0-categorical,
one should find it easy to verify that the (unique) countable atomless boolean lattice
is a fractal. An additional distributive countable fractal, which is neither a chain
nor a complemented lattice, is given in [2]. These distributive fractals and the Lp to
be mentioned later in the Introduction are the only known countable fractal lattices
at present.

For a ring R with 1 let V(R) denote the lattice variety generated by the sub-
module lattices of R-modules. Notice that V(R) is a congruence variety and con-
gruence varieties of this kind are completely described in [16]. For n ∈ N let
Sub(Rn) = Sub(RRn) denote the lattice of submodules of RRn. The residue class
of integers modulo m will be denoted by Zm. Let P denote the set of prime num-
bers. For p ∈ P ∪ {0} let Fp stand for the prime field of characteristic p. I.e.,
F0 = Q and Fp = Zp for p ∈ P . The congruence varieties V(Fp), p ∈ P ∪ {0}, are
exactly the minimal modular nondistributive congruence varieties from Freese [4],
cf. also Freese, Herrmann and Huhn [8].

It is shown in [2] that each of these V(Fp) is generated by a countable fractal
lattice Lp. However, fractal lattices seem to be rare phenomena and [2] presents
continuously many lattice varieties such that none of them is fractal generated,
i.e., no fractal lattice generates it. The main theorem of the present paper gives
a much stronger statement on modular fractal generated varieties, and even on
modular quasifractal generated varieties. Namely, it asserts that for each modular
nondistributive lattice variety U generated by a quasifractal there is a unique p =
p(U) ∈ P ∪ {0} such that (i) V(Fp) is included in U and (ii) for any M ∈ U ,
n ≥ 3 and any nontrivial (normalized von Neumann) n-frame (~a,~c) of M , (~a,~c)
is of characteristic p. This says that U cannot be too large and, by giving the
exact lower bound, also says that U cannot be too small. Of course we cannot say
n ≥ 2 instead of n ≥ 3, for no meaningful characteristic of 2-frames can be defined.
(Indeed, any nontrivial 2-frame generates the same M3 up to isomorphism.) It
remains an open problem if U = V(Fp). As a corollary to the main theorem we
show that V(Fp) is the only congruence variety of the form V(R) which is included
in U . By giving an infinite chain of lattice varieties between V(Fp) and V(Zp2 ), for
a prime p, we also show that this corollary is weaker than the main theorem.

It is pointed out in [2] that the metric completion Lp of Lp is a continuous
geometry and also a fractal lattice, and Lp still generates V(Fp). So if we consider
fractalness as something good and expected then, from equational point of view,
our result is close to saying that von Neumann [18] defined continuous geometries
in an optimal and more or less the only possible way.

To prove the main result on fractal lattices some results on von Neumann’s
(normalized) n-frames are necessary, and these results also belong to the main
achievements of the paper. The lattice operations join and meet will be denoted
by + and · (mostly juxtaposition) such that meets take precedence over joins. The
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indices we use will be positive integers so, for example, i ≤ n is understood as
1 ≤ i ≤ n. For definition, let 2 ≤ n, let L be a nontrivial modular lattice with 0
and 1 and let ~a = (a1, . . . , an) ∈ Ln and ~c = (c12, . . . , c1n) ∈ Ln−1. We say that
(~a,~c) is a spanning n-frame of L if the following equations hold for all 1 ≤ j ≤ n
and 2 ≤ k ≤ n:

∑

i≤n

ai = 1, aj

∑

i6=j

ai = 0,

a1 + c1k = ak + c1k = a1 + ak, a1c1k = akc1k = 0.
(1)

When referring to (1) we will often use without further notice that it implies a1ak =
0 for 2 ≤ k ≤ n. We almost always assume that the spanning n-frame is nontrivial,
i.e., 0 6= 1. Notice that either the frame is trivial or |{a1, . . . , an, c12, . . . , c1n}| =
2n− 1. The definition of a spanning n-frame means that the ai are the atoms of a
spanning Boolean lattice 2n and {a1, c1k, ak} generates an M3 with bottom 0 = 0L

for k ∈ {2, . . . , n}. By the order of the frame we mean n. Notice that if we do not
assume that 0 and 1 in formula (1) are the bottom and the top of L then we arrive
at the notion of an n-frame in a modular lattice which is not necessarily a spanning
one. However, we will mainly use spanning n-frames (of L or of an interval of L)
only. Notice also that von Neumann [18], page 19, calls c1k the axis of perspectivity
between the intervals [0, a1] and [0, ak] and we will shortly call c1k as the axis of
〈a1, ak〉-perspectivity.

For a ring R with 1 let ei = (0, . . . , 0, 1, 0, . . ., 0) (1 at the ith position, 1 ≤ i ≤ n)
form a canonical basis of Rn, and let ai = Rei and c1j = R(e1 − ej). Then (~a,~c)
is a spanning n-frame in the submodule lattice Sub(Rn); it is called the canonical
spanning n-frame of Sub(Rn).

Given a spanning n-frame (~a,~c) we can define ck1 = c1k for 2 ≤ k ≤ n, and for
1, j, k distinct let cjk = (c1j + c1k)(aj + ak). Then, according to Lemma 5.3 in
page 118 in von Neumann [18] (cf. also Freese [5]), for i, j, k distinct we have

cik = (cij + cjk)(ai + ak)
ai + cij = aj + cij = ai + aj, aicij = ajcij = aiaj = 0.

(2)

This means that the index 1 has no special role if we consider the system ~c ′ of
the cij (i 6= j) rather then ~c. To make a distinction between (~a,~c) and (~a,~c ′)
the latter will be called an extended spanning n-frame. When we do calculations
with a frame we often pass to the elements of the extended frame. Sometimes, to
unify some definitions or arguments, we allow the formal definition of a trivial axis
cii = 0, 1 ≤ i ≤ n. This notation harmonizes with the canonical spanning n-frame
of Sub(Rn) and makes formula (1) valid also for k = 1. However, according to
tradition, the trivial axes belong neither to frames nor to extended frames.

Now let n ≥ 3 and consider the extended spanning frame. For i, j, k ∈ {1, . . . , n}
distinct let 1eij = cij and for ` ∈ N let

(` + 1)eij = (ai + aj)
(
(`eij + ak)(cik + aj) + cjk

)
.

For n = 3, (i, j) uniquely determines k while for n ≥ 4 von Neumann [18] proved
that `eij does not depend on k. The characteristic of the spanning n-frame (~a,~c),
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denoted by char(~a,~c), is the smallest ` ∈ N such that `e12 = a1 while char(~a,~c) is
zero if no such ` exists. It follows from p. 284 in Freese [6] that `eij = ai implies
that char(~a,~c) divides `. Notice that the characteristic of (~a,~c) is 1 if and only if
(~a,~c) is a trivial frame.

From now on the general assumption for the rest of this section is that either
n ≥ 4 or L is Arguesian and n ≥ 3. Then, for i 6= j ∈ {1, . . . , n},

Rij = R(ai, aj) = {x ∈ L : aj + x = ai + aj , ajx = 0}

is a ring associated with the frame by von Neumann [18] (n ≥ 4) and by Day and
Pickering [3] (n = 3 and L being Arguesian); cf. also Freese [5] or Herrmann [12].
This ring is called the auxiliary ring of the frame; the terminology is justified by
[18] and [3] where it is shown that, up to isomorphism, R(ai, aj) does not depend
on (i, j). The zero resp. unit of R(ai, aj) is ai resp. cij, and the ring addition will
be denoted by ⊕. (The multiplication of the auxiliary ring will not be used in this
paper.) It is known that `eij is 1Rij ⊕· · ·⊕1Rij and ai = 0Rij in R(ai, aj). Therefore
the characteristic of (~a,~c) is that of the auxiliary ring R(a1, a2). We will sometimes
exploit that `eij ∈ R(ai, aj) and therefore (`eij)aj = 0 and (`eij) + aj = ai + aj.

It is well-known by von Neumann [18] that the auxiliary ring of the canoni-
cal n-frame of the submodule lattice Sub(Rn) is isomorphic with R, cf. also Her-
rmann [12]. Finally let us emphasize the terminology: spanning frames have two
numerical attributes: the order (which was denoted by n) and the characteristic.

To help the reader to understand our calculations in modular lattices more
quickly and also to shorten some of these calculations the following notations will be
in effect. We use =i resp. =f to indicate that formula (i) resp. some basic property
of frames is used. In many cases, =f means the same as =1. When an application
of the modular law uses the relation x ≤ z then, beside using =m, x resp. z will be
underlined resp. doubly underlined. For example, (x + y)(x + z) =m x + y(x + z).
The use of the shearing identity (cf. Thm. IV.1.1 in Grätzer [10]) is indicated by
=s and underlining the subterm “sheared”: x(y + z) =s x

(
y(x + z) + z

)
or even

x(y + z) =s xz when y(x + z) = 0. When x1 ≥ x2 . . .xk for some easy reason
then we write x1x2 . . . xk to indicate that this expression is considered as x2 . . . xk.
In other words, we overline meetands that can be omitted. We can even iterate
or combine our notations; e.g., (x1x2 + x3)x4 gives x4 (and indicates x2 ≤ x1 and
x4 ≤ x2 + x4) while =m5 refers to modularity and formula (5).

2. The product frame and its characteristic

Let L be a bounded modular lattice for the whole section. For m, n ∈ N \ {1}
let (~a,~c) be a spanning m-frame of L and let (~u,~v) be a spanning n-frame of the
interval [0, a1]. We say that (~a,~c) is the outer frame while (~u,~v) will be called the
inner frame. We define a spanning mn-frame of L as follows. For 1 ≤ i ≤ n and
1 ≤ j ≤ m let

bj
i = (ui + c1j)aj and d1j

1i =
(
v1i + c1j(ui + aj)

)
(u1 + bj

i ). (3)
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Let ~b denote the vector of the all the bj
i such that b1

1 is the first component. Let ~d

denote the vector of all the d1j
1i , (i, j) 6= (1, 1). With d1j

1i playing the role of the axis
of 〈b1

1, b
j
i 〉-perspectivity, (~b, ~d) is a candidate for a spanning mn-frame of L. It will

be called the product frame of the outer and inner frames.
For convenient later use we reformulate (3) without relying on trivial axes and

providing simpler expressions for some particular values of indices:

b1
i = ui for 1 ≤ i ≤ n,

bj
i = (ui + c1j)aj for 2 ≤ j ≤ m and 1 ≤ i ≤ n,

d1j
11 = (u1 + aj)c1j for 2 ≤ j ≤ m,

d11
1i = v1i for 2 ≤ i ≤ n,

d1j
1i =

(
v1i + c1j(ui + aj)

)
(u1 + bj

i ) for 2 ≤ j ≤ m and 2 ≤ i ≤ n.

(4)

It is easy to see that (4) leads to the same (~b, ~d) as formula (3). Consequently, the
product frame (~b, ~d) clearly determines the inner frame (~u,~v). The notations above
are fixed in this section.

Theorem 1. (A) (~b, ~d) is indeed a spanning mn-frame of L.
(B) Let m ≥ 3 and n ≥ 3. Then the outer frame (~a,~c), the inner frame (~u,~v)

and the product frame (~b, ~d) have the same characteristic.

Proof. Formula (1) together with the isomorphism theorem of modular lattices
(cf., e.g., Thm. IV.1.2 in Grätzer [10]) yield that the map ϕj : [0, a1] → [0, aj],
x 7→ (x + c1j)aj is an isomorphism. (Clearly, ϕ1 is the identical map.) This gives

aj =
∑

i≤n

bj
i (5)

and we conclude
∑

j≤m

∑
i≤n bj

i =
∑

j≤m aj =f 1. Further, for i ≤ n and j ≤ m,

bj
i

∑

(r,s) 6=(i,j)

bs
r = bj

i

(∑

s6=j

∑

r≤n

bs
r +

∑

r 6=i

bj
r

)
=5 bj

i

(∑

s6=j

as +
∑

r 6=i

bj
r

)
=sf

bj
i

∑

r 6=i

bj
r = ϕj

(
b1
i

∑

r 6=i

b1
r

)
=f ϕj(0) = 0.

Since the rest of the required equations are trivial for j = 1, we assume 2 ≤ j ≤ m
in the sequel.

First we consider the case i = 1. We have to show that {b1
1, d

1j
11, b

j
1} =4 {u1, (u1+

aj)c1j, (u1 + c1j)aj} generates an M3. Indeed, we have

u1 + (u1 + aj)c1j =m (u1 + aj)(u1 + c1j),

u1 + (u1 + c1j)aj =m (u1 + aj)(u1 + c1j),

(u1 + aj)c1j + (u1 + c1j)aj =m (u1 + c1j)
(
aj + (u1 + aj)c1j

)
=m

(u1 + c1j)(u1 + aj)(aj + c1j) =f (u1 + c1j)(u1 + aj)(a1 + aj),

while the meet of any two is 0 since u1c1j ≤ a1c1j =f 0, u1aj ≤ a1aj =f 0 and
c1jaj =f 0.
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From now on let 2 ≤ i ≤ n and 2 ≤ j ≤ m. We have to show that {b1
1, d1j

1i ,
bj
i} =4 {u1,

(
v1i + c1j(ui + aj)

)
(u1 + bj

i ), (ui + c1j)aj} generates an M3. The meets
are obtained easily:

u1b
j
i ≤4 a1aj = 0,

u1d
1j
1i =4 u1

(
v1i + c1j(ui + aj)

)
(u1 + bj

i ) =sf u1v1i =f 0,

d1j
1ib

j
i =4

(
v1i + c1j(ui + aj)

)
(u1 + bj

i )b
j
i =4

(
v1i + c1j(ui + aj)

)
(ui + c1j)aj =m

(
v1i(ui + c1j) + c1j(ui + aj)

)
aj =sf c1j(ui + aj)aj =f 0.

The next task is to show that each of the three elements is below the join of the
other two. Clearly, d1j

1i ≤4 u1 + bj
i = b1

1 + bj
i . Further,

d1j
1i + bj

i =4
(
v1i + c1j(ui + aj)

)
(u1 + bj

i ) + bj
i =m

(u1 + bj
i )

(
v1i + bj

i + c1j(ui + aj)
)

=4

(u1 + bj
i )

(
v1i + (ui + c1j)aj + c1j(ui + aj)

)
=m

(u1 + bj
i )

(
v1i + (ui + aj)

(
(ui + c1j)aj + c1j

))
=m

(u1 + bj
i )

(
v1i + (ui + aj)(ui + c1j)(aj + c1j)

)
=f

(u1 + bj
i )

(
v1i + (ui + aj)(ui + c1j)(a1 + aj)

)
≥ (u1 + bj

i )(v1i + ui) ≥f u1 = b1
1,

and finally

b1
1 + d1j

1i =4 u1 +
(
v1i + c1j(ui + aj)

)
(u1 + bj

i ) =m

(u1 + bj
i )

(
u1 + v1i + c1j(ui + aj)

)
=f (u1 + bj

i )
(
u1 + ui + c1j(ui + aj)

)
=m

(u1 + bj
i )

(
u1 + (ui + c1j)(ui + aj)

)
≥

bj
i (ui + c1j)(ui + aj) =4 bj

i .

This proves part (A) of the theorem.

Now, to prove part (B), we define

dj1
i1 = d1j

1i and djk
ii = (d1j

1i + d1k
1i )(bj

i + bk
i )

for i ∈ {1, . . . , n} and j, k ∈ {1, . . . , m} with (1, 1) 6= (i, j) 6= (i, k) 6= (1, 1). Then
(2) (for the product frame) gives that djk

ii is the axis of 〈bj
i , b

k
i 〉-perspectivity in the

extended frame. We claim that for 2 ≤ j ≤ m

c1j =
∑

i≤n

d1j
ii . (6)

First we show that
(
v1i + c1j(ui + aj)

)
(ui + aj) ≤ c1j. (7)



PRODUCTS OF FRAMES AND FRACTAL LATTICES 7

Indeed,
(
v1i + c1j(ui + aj)

)
(ui + aj) =m v1i(ui + aj) + c1j(ui + aj) =s c1j(ui + aj),

which gives formula (7). For 2 ≤ i ≤ n we have

d1j
ii = (d11

1i + d1j
1i )(b

1
i + bj

i ) =4
(
v1i +

(
v1i + c1j(ui + aj)

)
(u1 + bj

i )
)

(ui + bj
i ) =m

(
v1i + c1j(ui + aj)

)
(v1i + u1 + bj

i )(ui + bj
i ) =f

(
v1i + c1j(ui + aj)

)
(ui + u1 + bj

i )(ui + bj
i ) =4

(
v1i + c1j(ui + aj)

)(
ui + (ui + c1j)aj

)
=m

(
v1i + c1j(ui + aj)

)
(ui + c1j)(ui + aj).

Hence
∑

i≤n

d1j
ii =

∑

2≤i≤n

(d1j
11 + d1j

ii ) =4

∑

2≤i≤n

(
(u1 + aj)c1j +

(
v1i + c1j(ui + aj)

)
(ui + c1j)(ui + aj)

)
=m

∑

2≤i≤n

(ui + c1j)
(

(u1 + aj)c1j +
(
v1i + c1j(ui + aj)

)
(ui + aj)

)
=m7

∑

2≤i≤n

(ui + c1j)c1j

(
u1 + aj +

(
v1i + c1j(ui + aj)

)
(ui + aj)

)
=m

∑

2≤i≤n

c1j

(
u1 + (ui + aj)

(
aj + v1i + c1j(ui + aj)

))
=m

∑

2≤i≤n

c1j

(
u1 + (ui + aj)

(
v1i + (aj + c1j)(ui + aj)

))
=f

∑

2≤i≤n

c1j

(
u1 + (ui + aj)

(
v1i + (a1 + aj)(ui + aj)

))
=

∑

2≤i≤n

c1j(u1 + ui + aj) = c1j(u1 + u2 + aj) +
∑

3≤i≤n

c1j(u1 + ui + aj) =m

c1j

(
u1 + u2 + aj +

∑

3≤i≤n

c1j(u1 + ui + aj)
)

=

c1j

(
u1 + u2 +

∑

3≤i≤n

(
aj + c1j(u1 + ui + aj)

))
=m

c1j

(
u1 + u2 +

∑

3≤i≤n

(aj + c1j)(u1 + ui + aj)
)

=f

c1j

(
u1 + u2 +

∑

3≤i≤n

(a1 + aj)(u1 + ui + aj)
)

=

c1j(u1 + u2 + · · ·+ un + aj) =5 c1j(a1 + aj) =f c1j.

This proves (6).
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Now, armed with (6), for 1, j, k ∈ {1, . . . , m} distinct and i ≤ n we have

djk
ii =2 (d1j

ii + d1k
ii )(bj

i + bk
i ) ≤

(∑

t≤n

d1j
tt +

∑

t≤n

d1k
tt

)(∑

t≤n

bj
t +

∑

t≤n

bk
t

)
=5,6

(c1j + c1k)(aj + ak) =2 cjk.

This and (6) give that for any j 6= k ∈ {1, . . . , m} and i ≤ n we have

djk
ii ≤ cjk. (8)

Working in the auxiliary ring R(a1, a2) of (~a,~c) we define

1e = c12, (` + 1)e = (a1 + a2)
(
(`e + a3)(c13 + a2) + c23

)

while in the auxiliary ring R(b1
i , b

2
i ) we have

1ei = d12
ii , (` + 1)ei = (b1

i + b2
i )

(
(`ei + b3

i )(d13
ii + b2

i ) + d23
ii

)
.

Notice that ` is the characteristic of (~a,~c) resp. (~b, ~d) iff ` is the smallest positive
integer with `e = a1 resp. `ei = b1

i . The choice of i is irrelevant in the previous
sentence, for the order of the extended frame is at least four (in fact, at least nine)
whence the auxiliary rings R(b1

i , b
2
i ), i ∈ {1, . . . , n}, are isomorphic. We obtain from

(5) and (8) via induction on ` that `ei ≤ `e for i ≤ n, which yields
∑

i≤n `ei ≤ `e.
Therefore, denoting the use of `ei ∈ R(b1

i , b
2
i ) and `e ∈ R(a1, a2) by =R, we obtain

`e =R `e(a1 + a2) =5 `e
(∑

i≤n

(b1
i + b2

i )
)

=R

`e
(∑

i≤n

(b2
i + `ei)

)
=5 `e

(
a2 +

∑

i≤n

`ei

)
=m,R

∑

i≤n

`ei.

(9)

Now we are ready to show that, for any ` ∈ N, `e = a1 iff `e1 = b1
1; this will

clearly give part (B) of Theorem 1, for char(~u,~v) = char(~b, ~d) is evident.
Suppose `e1 = b1

1. Since all the auxiliary rings R(b1
i , b

2
i ) are isomorphic, `ei = b1

i

for all i ≤ n. Hence `e =9
∑

i≤n `ei =
∑

i≤n b1
i =5 a1. Conversely, let us assume

that `e = a1. Then

`e1 ≤R9 `e(b1
1 + b2

1) = a1(b1
1 + b2

1) =m5 a1b
2
1 + b1

1 =f5 b1
1,

whence
b1
1 =R b1

1(`e1 + b2
1) =m `e1 + b1

1b
2
1 =f `e1,

completing the proof of Theorem 1. �

In the light of Herrmann [12], two remarks on the above proof are relevant.
Defining (~b, ~d) via djj

1i and d1j
11 would lead to an easier proof of part (A) via Lemma

2.1 of [12] but then we should derive (4) for part (B). After verifying (6) the whole
situation is described by a single spanning frame, the product frame of order at
least nine. Hence [12], which gives a solution for the word problem of modular
lattices generated by a single frame, offers an alternative argument for the last part
of the proof. However, the present approach within the theory of modular lattices
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(motivated by [12] of course) is more elegant (and shorter) than coordinate-wise
computations in sublattices of direct powers of modules.

3. Quasifractal generated modular lattice varieties

With the notations from Section 1 the main theorem of the paper is the following.

Theorem 2. Let U be a nondistributive modular lattice variety generated by a
quasifractal. Then

(i) there exists a unique p = p(U), a prime number or zero, such that V(Fp) ⊆ U ;
(ii) for any n ≥ 3 and any nontrivial n-frame (~a,~c) of an arbitrary lattice in U ,

char(~a,~c) = p(U);
(iii) U is Arguesian.

Proof. Let L be a quasifractal that generates U . Since L is not distributive, it has
a nontrivial 2-frame (a1, a2, c12) (i.e., (a1, a2, c12) generates an M3 sublattice). The
interval [a1a2, a1] is Arguesian by Theorem 1 of Freese [7], where this theorem is
attributed to B. Jónsson. Since L can be embedded in [0, a1], L is Arguesian as
well. This yields part (iii) of Theorem 2. The rest of the proof is based on the
following two observations.

(∗) Any two spanning frames of L with orders at least 3 have the same charac-
teristic, and for each n ≥ 3 there is a spanning n-frame in L.

(∗∗) If n ≥ 3, h > 1 and some lattice in U has an n-frame of characteristic h
then there exists a prime divisor p of h such that L has a spanning n-frame of
characteristic p.

In order to prove (∗), let (~a,~c) and (~u,~v) be spanning frames of orders at least 3.
Then an appropriate lattice embedding L → [0, a1] sends (~u,~v) to a spanning frame
of [0, a1]. This embedding preserves the characteristic of (~u,~v). Hence it follows
from Theorem 1 that char(~a,~c) = char(~u,~v), proving the first half of (∗).

We have already seen that L has a nontrivial 2-frame, say, (x1, x2, y12). Since L
is a quasifractal, we can assume that (x1, x2, y12) is a spanning 2-frame of L and
there is a spanning 2-frame of [0, x1]. Then the product of these two 2-frames is
a spanning 4-frame of L by Theorem 1. Repeating this argument with a 4-frame
instead of a 2-frame we obtain a spanning 222

-frame of L. And so one, we see that
for each k ∈ N, L has a spanning 22k

-frame, say (~a,~c). If 3 ≤ n ≤ 22k

then the
first n of the ai together with the c1i, 2 ≤ i ≤ n, constitute a nontrivial n-frame.
Since L is a quasifractal, it has a spanning n-frame, too. This proves (∗).

Now, to verify (∗∗), let n ≥ 3 and let us consider an n-frame of characteris-
tic h > 1 in an arbitrary lattice of U . Let S denote the sublattice generated by
this n-frame. Corollary 4.3 of Herrmann [12] says that S is a subdirect prod-
uct of certain submodule lattices Sub(Zn

pk) with pk dividing h and p being a
prime. Therefore some Sub(pk−1Zn

pk), an ideal of Sub(Zn
pk ), belongs to U . Hence

Sub(Zn
p ) ∼= Sub(pk−1Zn

pk) ∈ U ; the isomorphism follows by an easy argument
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(submodules are the same as subgroups and pk−1Zn
pk

∼= Zn
p as groups since the

(0, . . . , 0, pk−1, 0, . . . , 0) form a basis in pk−1Zn
pk ), or this follows from Corollary

3.4 (and the sentence preceding Lemma 3.3) of Herrmann [12]. It belongs to the
folklore of lattice theory that Sub(Zn

p ) is a subdirectly irreducible lattice, cf. e.g.
Freese [5] or page 240 in Grätzer [10] or Herrmann [12]. Hence the famous lemma of
Jónsson [17] yields that L has an ultrapower L′ and L′ has a sublattice K such that
Sub(Zn

p ) is a homomorphic image of K. Now we will use Theorem 1.6 of Freese [6];
note that we could use Freese [5] instead. Freese’s theorem says that for any g > 1,
n-frames of characteristic g are projective configurations in modular lattices. Hence
the canonical n-frame of Sub(Zn

p ) has a preimage in K ⊆ L′ which is an n-frame of
characteristic p. Having an n-frame of characteristic p is a first-order property, so
 Loś’ Theorem applies and we conclude that L has an n-frame of characteristic p.
Since L is a quasifractal, it has a spanning n-frame of characteristic p, too. This
proves (∗∗).

Now let h ∈ N0 denote the common characteristic of nontrivial spanning frames
of L with order at least three. Then h is well-defined by (∗). We distinguish two
cases depending on h.

If h > 1 then (∗∗) gives a prime divisor p of h and an n ≥ 3 such that L has
a spanning n-frame of characteristic p. It follows from (∗) and quasifractalness
that all nontrivial frames of L are of characteristic p and, furthermore, L has a
spanning n-frame of characteristic p for each 3 ≤ n ∈ N. Applying Corollary 4.3 of
Herrmann [12] to the sublattice generated by any nontrivial n-frame of L we obtain
that Sub(Zn

p ) = Sub(F n
p ) ∈ U , for all n ≥ 3. It is clear from the theory of Mal’cev

conditions (or cf. e.g. [16]) that these lattices generate V(Fp), so V(Fp) ⊆ U . This
is the existence part of (i) when h > 1.

Now we need the fact that n-frames are projective configurations in the variety
of modular lattices. This is the conjunction of Satz 1 in Huhn [15] with page 104
of Herrmann and Huhn [14], cf. also Lemma 3 in Freese, Herrmann and Huhn [8].
Hence any lattice Horn sentence of the form “for any n-frame (~x, ~y), t1(~x, ~y) =
t2(~x, ~y)”, where t1 and t2 are lattice terms, is a equivalent with a lattice identity.
(This idea is used in chapter XIII of Freese and McKenzie [9].) Therefore for each
n and p there is a lattice identity µn,p such that µn,p holds in an arbitrary modular
lattice M iff the characteristic of any n-frame of M divides p iff every nontrivial
n-frame of M is of characteristic p. Therefore this property of L implies (ii) and,
by excluding V(Fq) ⊆ U for q 6= p, gives the uniqueness part of (i).

Now let us consider the case h = 0. Notice that V(Fp) with p prime contains
a lattice with a nontrivial a 3-frame of characteristic p, namely Sub(Z3

p) with its
canonical spanning 3-frame. Now it follows from (∗) and (∗∗) that, for all n ≥ 3,
any n-frame of an arbitrary lattice in U is of characteristic 0 and V(Fp) 6⊆ U for
p prime. This makes (i) and (ii) clear as soon as we show that V(F0) = V(Q) is
included in U . To verify this inclusion, let χ be an arbitrary lattice identity satisfied
by U ; we have to show that χ holds in V(Q). Let (mχ, nχ) ∈ N0 ×N be the pair of
integers associated with χ in [16] and let kχ be a sufficiently large integer (sufficient
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for χ and also for the dual of χ, cf. m in Theorem 1 of [16]). It is shown in [16] that
for any ring R with 1, χ holds in V(R) iff χ holds in Sub(R`) for some kχ ≤ ` ∈ N
iff χ holds in Sub(R`) for all kχ ≤ ` ∈ N iff mχx = nχ1R for some x ∈ R, i.e., mχ

divides nχ in R.
Suppose by way of contradiction that mχ = 0 and let ` ∈ N such that ` ≥ kχ

and ` ≥ 3. We know from (∗) that L has a spanning `-frame of characteristic 0.
Decompose the sublattice generated by this `-frame into a subdirect product of
subdirectly irreducible factors. According to Theorem 1.1 of Herrmann [12], each
of these factors belongs to the following list of lattices:

Sub(Z`
pk ) where p is a prime and k ∈ N,

Sub(Q`),
Sub(Q`

p) where p is a prime and Qp = {i/j ∈ Q : i, j ∈ Z, p6 | j},
Sub(Q`

p)(d), the dual of Sub(Q`
p), p is a prime.

Now χ holds in the actual subdirectly irreducible factors, for they belong to U . This
excludes Sub(Q`

p) and Sub(Q`), for mχ = 0 divides nχ > 0 neither in Qp nor in
Q. Hutchinson’s duality theorem, cf. Theorem 7 of [16], yields that (mχ, nχ) is the
same as (mχ(d) , nχ(d)) for the dual identity. This excludes the dual of Sub(Q`

p). We
have excluded all but Sub(Z`

pk) from the list, whence at least one of the Sub(Z`
pk )

belongs to U . Hence there is an `-frame, the canonical `-frame of Sub(Z`
pk ), in U

whose characteristic is pk rather than 0. This contradiction shows that mχ 6= 0.
Therefore mχ | nχ in Q and χ holds in V(Q). This completes the case h = 0 and
the proof of Theorem 2. �

If L is a nondistributive modular quasifractal then, in virtue of Theorem 2, we
can uniquely define the characteristic of L as p(U) where U is the variety generated
by L. Since the auxiliary ring of the canonical spanning n-frame of Sub(Rn) is
isomorphic to R, cf. von Neumann [18] or Herrmann [12], we conclude the following
corollary as an evident consequence of Theorem 2.

Corollary 1. Let U and p = p(U) be as in Theorem 2. If R is a ring with 1, n ≥ 3
and Sub(Rn) ∈ U then char(R) = p(U).

Corollary 2. Let U and p = p(U) be as in Theorem 2. For any ring R with 1 if
V(R) ⊆ U then V(R) = V(Fp).

Proof. If V(R) is one of the V(Fp) then the statement is evident by Theorem 2. Now
suppose that V(R) is distinct from all the V(Fp), p prime or zero, and V(R) ⊆ U .
Then V(R) is one of the congruence varieties occurring in parts (1) and (2) of
Theorem 5 in [16]. This theorem of [16] clearly implies the existence of a prime
p such that V(Zp) ⊆ V(R) but p is distinct from the characteristic of R. Using
the canonical 3-frame of Sub(Z3

p) and that of Sub(R3) we obtain two 3-frames with
different characteristic in U , which contradicts Theorem 2. �

Both part (∗∗) of Theorem 2 and Corollary 2 say that U cannot be too large.
Although the latter may look more impressive, the former is a much stronger state-
ment. Indeed, it follows easily from the following example and the description of
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the congruence varieties V(R) given in [16] that part (∗∗) of Theorem 2 applies but
Corollary 2 does not apply for the varieties Uk defined below.

Example 1. Let p be a prime number, 3 ≤ k ∈ N and let Uk be the lattice variety
generated by {Sub(Zk

p2)} ∪ V(Fp). Then V(Fp) ⊂ Uk ⊂ Uk+1 ⊂ V(Zp2 ).

Proof. It is evident by [16] that V(Fp) ⊂ V(Zp2 ). Moreover, Sub(Zk
p2 ) is an ideal in

Sub(Zk+1
p2 ) ∈ V(Zp2 ). Hence the ⊆ inclusions in the statement are clear and only the

inequalities have to be verified. The identity χp of Herrmann and Huhn [13] (or the
identity ∆(0, p) of [16]) holds in V(Fp) but fails in Sub(Zk

p2 ), whence V(Fp) 6= Uk.
For the next inequality it suffices to show that Sub(Zk+1

p2 ) /∈ Uk.
Suppose the opposite. We already know (from the argument with χp) that

Sub(Zk+1
p2 ) /∈ V(Fp). Since Sub(Zk+1

p2 ) is subdirectly irreducible, cf. e.g. Her-
rmann [12], the Jónsson lemma yields an ultraproduct M =

∏
i∈I Ki/F such that

F is an ultrafilter over I, each Ki is either in V(Fp) or equals Sub(Zk
p2), and

Sub(Zk+1
p2 ) is a homomorphic image of a sublattice of M . Clearly, M /∈ V(Fp). We

will use  Loś’ theorem without further warning. Since Sub(Zk+1
p2 ) is finite, there is

a first-order lattice formula Φ which holds in a lattice iff the lattice is isomorphic
with Sub(Zk+1

p2 ). If Φ did not hold in M then F would contain {i ∈ I : Φ fails
in Ki} = {i ∈ I : Ki ∈ V(Fp)}, whence M ∈ V(Fp) would be a contradiction.
Hence Φ does hold in M , i.e., M ∼= Sub(Zk

p2 ). This is the desired contradiction, for
|M | = |Sub(Zk

p2)| < |Sub(Zk+1
p2 )| excludes that Sub(Zk+1

p2 ) is a homomorphic image
of a sublattice of M . Finally, the third inequality follows from the second one if we
substitute k + 1 for k. �

Acknowledgment. An anonymous referee has compressed formula (4) into the
more elegant (3). His helpful comments and also those from E. T. Schmidt an L.
Giudici are gratefully appreciated.
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