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Abstract. Motivated by a recent paper of G. Grätzer, a finite distribu-
tive lattice D is called fully principal congruence representable if for
every subset Q of D containing 0, 1, and the set J(D) of nonzero join-
irreducible elements of D, there exists a finite lattice L and an isomor-
phism from the congruence lattice of L onto D such that Q corresponds
to the set of principal congruences of L under this isomorphism. A sepa-
rate paper of the present author, see arXiv:1705.10833, contains a neces-
sary condition of full principal congruence representability: D should be
planar with at most one join-reducible coatom. Here we prove that this
condition is sufficient. Furthermore, even the automorphism group of L
can arbitrarily be stipulated in this case. Also, we generalize a recent
result of G. Grätzer on principal congruence representable subsets of a
distributive lattice whose top element is join-irreducible by proving that
the automorphism group of the lattice we construct can be arbitrary.
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1. Introduction and our main goal

Unless otherwise specified explicitly, all lattices in this paper are assumed to
be finite, even if this is not repeated all the time. For a finite lattice L, J(L)
denotes the ordered set of nonzero join-irreducible elements of L, J0(L) stands
for J(L)∪{0}, and we let J+(L) = J(L)∪{0, 1}. Also, Princ(L) denotes the
ordered set of all principal congruences of L; it is a subset of the congruence
lattice Con(L) of L and a superset of J+(Con(L)). It is well known that
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Con(L) is distributive. These facts motivate the following concept, which is
due to Grätzer [15] and Grätzer and Lakser [19].

Definition 1.1. Let D be a finite distributive lattice. A subset Q ⊆ D or, to
be more precise, the inclusion Q ⊆ D is principal congruence representable if
there exist a finite lattice L and an isomorphism ϕ : Con(L) → D such that
Q = ϕ(Princ(L)). We say that D is fully principal congruence representable
if all subsets Q of D with J+(D) ⊆ Q are principal congruence representable.

Note that Czédli [8] uses the terminology “fl-representable” to indicate
that L is finite and it is a lattice. We introduce a seemingly stronger property
of D as follows. The automorphism group of a lattice L will be denoted by
Aut(L).

Definition 1.2. A finite distributive lattice D is

fully principal congruence representable
with arbitrary automorphism groups,

(1.1)

in short, (1.1)-representable, if for each subset Q of D such that J+(D) ⊆ Q
and for any finite group G such that |D| = 1 ⇒ |G| = 1, there exist a finite
lattice L and an isomorphism ϕ : Con(L) → D such that Q = ϕ(Princ(L))
and Aut(L) is isomorphic to G.

For more about full principal congruence representability, the reader
can see Czédli [8], Grätzer [15] and Grätzer and Lakser [19]. The present
paper relies on these papers, in particular, it depends heavily on Grätzer [15].
For related results on the representability of the ordered set Q as Princ(L)
(without taking care of D), see Czédli [3], [4], [5], [6], and [7] and Grätzer [12],
[14], [16], and [17].

Our main goal is to prove the following theorem.

Theorem 1.3 (Main Theorem). If a finite distributive lattice is planar and
contains at most one join-reducible coatom, then it is (1.1)-representable.

The title of the present paper is motivated by the following statement,
which will be concluded from Theorem 1.3, Czédli [8], and Grätzer [15] only
in few lines.

Corollary 1.4. If D is a finite distributive lattice, then the following three
conditions are equivalent.

(i) D is fully principal congruence representable.
(ii) D is (1.1)-representable.
(iii) D is planar and it has at most one join-reducible coatom.

Clearly, Corollary 1.4 and Czédli [8, Proposition 1.6] imply the following
statement; the definition of full chain-representability is postponed to the
next section.

Corollary 1.5. A finite distributive lattice is fully principal congruence repre-
sentable if and only if it is fully chain-representable.
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Outline

In Section 2, we recall the main result of Grätzer [15] as Theorem 2.1 in this
paper, and we state its generalization in Theorem 2.2. Section 3 explains the
construction required by the (iii) ⇒ (i) part of Corollary 1.4 in a “proof-
by-picture” way. Even if Section 3 contains no rigorous proof, it can rapidly
convince the reader that our construction is “likely to work”. In Section 4,
we recall the quasi-coloring technique from Czédli [2] and develop it a bit
further. In Section 5, armed with quasi-colorings, the “proof-by-picture” of
Section 3 is turned to a rigorous proof of the implication 1.4(iii) ⇒ 1.4(i).
Section 6 contains a new proof of the hard part of G. Grätzer’s Theorem 2.1.
Section 7 modifies this proof to verify Theorem 2.2, and completes the proof
of Theorem 1.3 and that of Corollary 1.4.

2. G. Grätzer’s theorem and our second goal

For brevity, a subset Q of a finite distributive lattice D will be called a
candidate subset if J+(D) ⊆ Q. By a J(D)-labeled chain we mean a triplet
〈C, lab, D〉 such that C is a finite chain, D is a finite distributive lattice, and

lab: Prime(C) → J(D) is a surjective map from the set
Prime(C) of all prime intervals of C onto J(D).

(2.1)

Note that Grätzer [15] uses the terminology “J(D)-colored” rather than
“J(D)-labeled” but here by a “coloring” we shall mean a particular quasi-
coloring, which goes back to Czédli [2]. According to our terminology, the
map in (2.1) is not a coloring in general. If p ∈ Prime(C), then lab(p) is the
label of the edge p. Given a J(D)-labeled chain 〈C, lab, D〉, we define a map
denoted by erep from the set Intv(C) of all intervals of C onto D as follows:
for I ∈ Intv(C), let

erep(I) :=
∨

p∈Prime(I)

lab(p) ; (2.2)

the join is taken in D and erep(I) is called the element represented by I. The
set

SRep(C, lab, D) := {erep(I) : I ∈ Intv(C)} (2.3)

will be called the set represented by the J(D)-labeled chain 〈C, lab, D〉.
Clearly, SRep(C, lab, D) is a candidate subset of D in this case. A candidate
subset Q of D is said to be chain-representable if there exists a J(D)-labeled
chain 〈C, lab, D〉 such that Q = SRep(C, lab, D). Note that C need not be a
subchain of D.

If 1D ∈ J(D) and 〈C, lab, D〉 is J(D)-labeled chain, then we define a
larger J(D)-labeled chain 〈C∗, lab∗, D〉 as follows:

we add a new largest element 1C∗ to C to obtain C∗ = C ∪{1C∗}
and we extend lab to lab∗ such that lab∗([1C , 1C∗ ]) = 1D.

(2.4)

For elements x, y and a prime interval p of a lattice L, conL(x, y) and conL(p)
denote the congruence generated by 〈x, y〉 and 〈0p, 1p〉, respectively. The
subscript is often dropped and we write con(x, y) and con(p). A lattice
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L will be called {0, 1}-separating if for every x ∈ L \ {0, 1}, con(0, x) =
con(x, 1) is 1Con(L), the largest congruence of L. The following result is due
to Grätzer [15]; note that its part (iii) is implicit in [15], but the reader can
find it by analyzing the construction given in [15]. For a different approach,
see the proof of Theorem 2.2 here.

Theorem 2.1 (Grätzer [15]). Let D be a finite distributive lattice. If Q is
a candidate subset of D, that is, if J+ ⊆ Q ⊆ D, then the following two
statements hold.

(i) If Q ⊆ D is principal congruence representable, then it is chain-represen-
table.

(ii) If 1 = 1D is join-irreducible and Q ⊆ D is chain-representable, then
Q ⊆ D is principal congruence representable.

Furthermore, if Q ⊆ D is chain-representable and 1D ∈ J(D), then

(iii) for every J(D)-labeled chain 〈C, lab, D〉 representing Q ⊆ D, there exist
a finite {0, 1}-separating lattice L and an isomorphism ϕ : Con(L)→ D
such that
(a) ϕ(Princ(L)) = SRep(C, lab, D) = Q,
(b) C∗, defined in (2.4), is a filter of L,
(c) lab∗(p) = ϕ(conL(p)) holds for every p ∈ Prime(C∗), and
(d) for all x ∈ C∗ and y ∈ L \C∗, if y ≺ x, then conL(y, x) = 1Con(L).

For the 1D ∈ J(D) case, we are going to generalize Theorem 2.1(iii) as
follows; note that if we did not care with Aut(L), then our lattice L would
often be smaller than the corresponding lattice constructed in Grätzer [15].

Theorem 2.2. Let D be a finite distributive lattice such that 1 = 1D is join-
irreducible and |D| > 1, let G be a finite group, and let Q be candidate subset
of D. If Q ⊆ D is chain-representable, then for every J(D)-labeled chain
〈C, lab, D〉 that represents Q, there exist a finite {0, 1}-separating lattice L
and an isomorphism ϕ : Con(L)→ D such that

(i) SRep(C, lab, D) = ϕ(Princ(L)) = Q,
(ii) C∗, which is defined in (2.4), is a filter of L,

(iii) lab∗(p) = ϕ(conL(p)) holds for every p ∈ Prime(C∗),
(iv) for all x ∈ C∗ and y ∈ L \C∗, if y ≺ x, then conL(y, x) = 1Con(L), and
(v) Aut(L) is isomorphic to G.

Remark 2.3. The proof will make it clear that Theorem 2.2 remains true if we
replace “finite group” and “finite {0, 1}-separating lattice L” by “group” and
“{0, 1}-separating lattice L of finite length”, respectively. No further details
of this fact will be given later.

3. From 1 ∈ J(D) to 1 /∈ J(D), a proof-by-picture approach

In this section, we outline our construction that derives the (iii) ⇒ (i) part
of Corollary 1.4 from Theorem 2.1. Since the 1 ∈ J(D) case follows from the
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Figure 1. D with two coatoms, K(α,β), and L that we construct

conjunction of Czédli [8, Proposition 1.6] and Grätzer [15], here we deal only
with the case where 1 = 1D is join-reducible. So, in this section, we assume
that D is a planar distributive lattice such that 1 = 1D is join-reducible. It
belongs to the folklore that

every element x of D covers at most two elements and
x is the join of at most two join-irreducible elements;

(3.1)

see, for example, Czédli [8, (2.1) and (2.3)] or Grätzer and Knapp [18]. We
assume conditions (iii) of Corollary 1.4; in particular, D has at most one
join-reducible coatom. Hence (3.1) yields that there are distinct p, q ∈ J(D)
such that 1D = p ∨ q and p ≺ 1; see Figure 1. (In Section 5, there will be
more explanation of this fact and other facts we are going to assert.) Also,
let Q ⊆ D such that J+(D) ⊆ Q. In the figure, Q consists of the grey-filled
and the large black-filled elements. Let us denote by D′ the principal ideal
↓p = {d ∈ D : d ≤ p}, and let Q′ = Q ∩D′. It will not be hard to show that

the filter ↑q = {d ∈ D : d ≥ q} is a chain, D is the disjoint
union of D′ and ↑q, and q is a maximal element of J(D),

(3.2)

as shown in the figure. Next, we focus on (Q ∩ ↑q) \ {q}; it consists of the
large black-filled elements in the figure. By the maximality of q in J(D), these
elements are join-reducible, whereby each of them is the join of q and another
join-irreducible element ai. In our case, (Q ∩ ↑q) \ {q} = {a1 ∨ q, a2 ∨ q}; in
general, it is {a1, . . . , ak} where k ≥ 0. We will show that

J(D′) ∩ ↓q has at most two maximal elements. (3.3)
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Let {e, f} be the set of maximal elements of J(D′) ∩ ↓q; note that e = f is
possible but causes no problem.

Since p = 1D′ is join-irreducible, D′ has only one coatom. Hence, we
know from Czédli [8, Proposition 1.6] that Q′ ⊆ D′ is represented by a J(D′)-
labeled chain 〈C0, lab′0, D

′〉. Let C1 be the chain of length 2k + 4 = 8 whose
edges, starting from below, are colored by p, e, p, f, p, a1, p, a2. The

glued sum C := C0 +̇C1 is obtained from their sum-
mands by putting C1 atop C0 and identifying the top
element of C0 with the bottom element of C1.

(3.4)

In this way, we have obtained a J(D′)-labeled chain 〈C, lab′, D′〉. It will be
easy to show that

〈C, lab′, D′〉 also represents Q′ ⊆ D′. (3.5)

Therefore, Theorem 2.1 yields a finite lattice L′ and a lattice isomorphism
ϕ′ : Con(L′) → D′ such that 2.1(iii) holds with 〈Q′, D′, C, L′, ϕ′〉 instead of
〈Q,D,C,L, ϕ〉. In particular,

ϕ′(Princ(L′)) = Q′. (3.6)

In the figure, L′ is represented by the grey-filled area on the right. In C,
there is a unique element w such that C0 = ↓w and C1 = ↑w (understood
in C, not in L′). Only ↑w, which is a filter of L′ and also a filter of C∗, see
(2.4), is indicated in the figure. Since p = 1D′ , the top edge of ↑L′w (the filter
understood in L′) is p-labeled. Some elements outside C∗ that are covered
by elements of ↑L′w are also indicated in the figure; the covering relation in
these cases are shown by dashed lines; 2.1(iiid) and p = 1D′ motivate that
these edges are labeled by p.

Next, by adding 2k + 9 = 13 new elements to L′, we obtain a larger
lattice L, as indicated in Figure 1. For a congruence γ ∈ Con(L′), let conL(γ)
denote the congruence of L that is generated by the relation γ ⊆ L2. Each
of the edges labeled by q generate the same congruence, which we denote by
q̂ ∈ Con(L). Consider the lattice K(α,β) in the middle of Figure 1. For later
reference, note that the only property of this lattice that we will use is that

K(α,β) has exactly one nontrivial congruence, (3.7)

α, whose blocks are indicated by dashed ovals. Hence, if this lattice is a
sublattice of L, then any of its α-colored edge generates a congruence that
is smaller than or equal to the congruence generated by a β-colored edge.
Copies of this lattice ensure the following two “comparabilities”

conL(ϕ′−1(e)) ≤ q̂ and conL(ϕ′−1(f)) ≤ q̂. (3.8)

For x ‖ y ∈ L, if x and y cover their meet and are covered by their join, then
{x ∧ y, x, y, x ∨ y} is a covering square of L. For i ∈ 1, . . . , k = {1, 2},

the covering square with ai, q, ai, q-labeled edges guarantees
that conL(ϕ′−1(ai)) ∨ q̂ is a principal congruence of L.

(3.9)
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The map ϕ : Con(L)→ D we are going to define will satisfy the rule

ϕ(conL(ϕ′−1(x))) = x for x ∈ D′ and ϕ(q̂) = q. (3.10)

It will be easy to see that (3.10) determines ϕ uniquely and that our con-
struction yields all comparabilities and principal congruences that we need.
We will rigorously prove that we do not get more comparabilities and prin-
cipal congruences than those described in (3.8) and (3.9). Thus, it will be
straightforward to conclude the (iii) ⇒ (i) part of Corollary 1.4

4. Quasi-colored lattices

Reflexive and transitive relations are called quasiorderings, also known as
preorderings. If ν is a quasiordering on a set A, then 〈A; ν〉 is said to be a
quasiordered set. For H ⊆ A2, the least quasiordering of A that includes H
will be denoted by quoA(H), or simply by quo(H) if there is no danger of
confusion. For H = {〈a, b〉}, we will of course write quo(a, b). Quite often,
especially if we intend to exploit the transitivity of ν, we write a ≤ν b or
b ≥ν a instead of 〈a, b〉 ∈ ν. Also, a =ν b will stand for {〈a, b〉, 〈b, a〉} ⊆ ν.
The set of all quasiorderings on A form a complete lattice Quo(A) under
set inclusion. For ν, τ ∈ Quo(A), the join ν ∨ τ is quo(ν ∪ τ). Orderings are
antisymmetric quasiorderings, and a set with an ordering is an ordered set,
also known as a poset. Following Czédli [2], a quasi-colored lattice is a lattice L
of finite length together with a surjective map γ, called a quasi-coloring, from
Prime(L) onto a quasiordered set 〈H; ν〉) such that for all p, q ∈ Prime(L),

(C1) if γ(p) ≥ν γ(q), then con(p) ≥ con(q), and
(C2) if con(p) ≥ con(q), then γ(p) ≥ν γ(q).

The values of γ are called colors (rather than quasi-colors). If γ(p) = b, then
we say that p is colored by b. In figures, the colors of (some) edges are in-
dicated by labels. Note the difference: even if the colors are often given by
labels, a labeling like (2.1) need not be a quasi-coloring. If 〈H; ν〉 happens
to be an ordered set, then γ above is a coloring, not just a quasi-coloring.
The map γnat from Prime(L) to J(Con(L)) = 〈J(Con(L));≤〉, defined by
γnat(p) := con(p), is the so-called natural coloring of L. The relevance of
quasi-colorings of a lattice L of finite length lies in the fact that they de-
termine Con(L); see Czédli [2, (2.8)]. Even if we will use quasi-colorings in
our stepwise constructing method, we need only the following statement. For
convenience, we present its short proof here rather than explaining how to
extract the statement from Czédli [2].

Lemma 4.1. Let L and D be a finite lattice and a finite distributive lattice,
respectively. If γ̂ : Prime(L)→ J(D) is a coloring, then the map

µ : 〈J(Con(L));≤〉 → 〈J(D);≤〉, defined by con(p) 7→ γ̂(p)

where p ∈ Prime(L), is an order isomorphism.
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Proof. It is well known that

J(Con(L)) = {con(p) : p ∈ Prime(L)}. (4.1)

We obtain from (C2) that µ is well defined, that is, if con(p) = con(q),
then γ̂(p) = γ̂(q). Furthermore, (C2) gives that µ is order-preserving. It is
surjective since so is γ̂. We conclude from (C1) that µ(con(p)) ≤ µ(con(q))
implies that con(p) ≤ con(q). This also yields that µ is injective. �

Next, assume that 〈A1; ν1〉 and 〈A2; ν2〉 are quasiordered sets. By a
homomorphism δ : 〈A1; ν1〉 → 〈A2; ν2〉 we mean a map δ : A1 → A2 such that
δ(ν1) ⊆ ν2, that is, 〈δ(x), δ(y)〉 ∈ ν2 holds for all 〈x, y〉 ∈ ν1. Following Czédli
and Lenkehegyi [10],

~Ker(δ) :=
{
〈x, y〉 ∈ A2

1 :
(
g(x), g(y)

)
∈ ν2

}
(4.2)

is called the directed kernel of δ. Clearly, it is a quasiordering on A1 for an
arbitrary map δ : A1 → A2, which need not be a homomorphism. Note that

δ is a homomorphism if and only if ~Ker(δ) ⊇ ν1. The following lemma, which
we need later, is Lemma 2.1 in Czédli [2]. Note that we compose maps from
right to left.

Lemma 4.2 ([2]). Let M be a finite lattice, and let 〈Q; ν〉 and 〈P ;σ〉 be qua-
siordered sets. Let γ0 : Prime(M)→ 〈Q; ν〉 be a quasi-coloring. Let us assume

that δ : 〈Q; ν〉 → 〈P ;σ〉 is a surjective homomorphism such that ~Ker(δ) ⊆ ν.
Then the composite map δ ◦ γ0 : Prime(M)→ 〈P ;σ〉 is a quasi-coloring.

The advantage of quasi-colorings over colorings is that, as opposed to
orderings, quasiorderings form a lattice; see Czédli [2, p. 315] for more moti-
vation. We are going to prove and use the following lemma, which gives even
more motivation. If L1 is an ideal and L2 is a filter of a lattice L such that
L1∪L2 = L and L1∩L2 6= ∅, then L is the (Hall–Dilworth) gluing of L1 and
L2 over their intersection.

Lemma 4.3. Let L be a lattice of finite length such that it is the Hall–Dilworth
gluing of L1 and L2 over L1∩L2. For i ∈ {1, 2}, let γi : Prime(Li)→ 〈Hi; νi〉
be a quasi-coloring, and assume that

H1 ∩H2 ⊆ {γ1(p) : p ∈ Prime(L1 ∩ L2) and γ1(p) = γ2(p)}. (4.3)

Let H := H1 ∪H2, and define γ : Prime(L)→ H by the rule

γ(p) =

{
γ1(p) for p ∈ Prime(L1),

γ2(p) for p ∈ Prime(L) \ Prime(L1).
(4.4)

Let

ν = quo
(
ν1∪ν2∪{〈γj(p), γ3−j(p)〉 : p ∈ Prime(L1∩L2), j ∈ {1, 2}}

)
. (4.5)

Then γ : Prime(L)→ 〈H; ν〉 is a quasi-coloring.
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Note the following three facts. In (4.4), the subscripts 1 and 2 could
be interchanged and even a “mixed” definition of γ(p) would work. Even if
γ1 and γ2 are colorings, γ in Lemma 4.3 is only a quasi-coloring in general.
The case where |L1| = |L2| = 2 = |L| − 1 and H1 = H2 exemplifies that the
assumption (4.3) cannot be omitted.

Before proving the lemma, we recall a useful statement from Grätzer [13].
For i ∈ {1, 2}, let pi = [xi, yi] be a prime interval of a lattice L. We say that p1

is prime-perspective down to p2, denoted by p1
p-dn→ p2 or 〈x1, y1〉

p-dn→ 〈x2, y2〉,
if y1 = x1 ∨ y2 and x1 ∧ y2 ≤ x2; see Figure 2, where the solid lines indicate
prime intervals while the dotted ones stand for the ordering relation of L.

We define prime-perspective up, denoted by p1
p-up→ p2, dually. The reflexive

transitive closure of the union of
p-up→ and

p-dn→ is called prime-projectivity.

Figure 2. Prime perspectivities

Lemma 4.4 (Prime-Projectivity Lemma; see Grätzer [13]). Let L be a lattice
of finite length, and let r1 and r2 be prime intervals in L. Then we have
that con(r1) ≥ con(r2) if and only if there exist an n ∈ N0 and a sequence
r1 = p0, p1, . . . , pn = r2 of prime intervals such that for each i ∈ {1, . . . , n},
pi−1

p-dn→ pi or pi−1
p-up→ pi.

Proof of Lemma 4.3. In order to prove (C1), let p and q be prime intervals
of L such that γ(p) ≥ν γ(q). By the definition of ν, there is a sequence
γ(p) = h0, h1, h2, . . . , hk = γ(q) in H such that, for each i, hi−1 ≥ν1 hi, or
hi−1 ≥ν2 hi, or 〈hi−1, hi〉 = 〈γj(ri−1), γ3−j(r

′
i)〉 for some j = j(i) ∈ {1, 2}

and ri−1 = r′i ∈ Prime(L1 ∩ L2) = Prime(L1) ∩ Prime(L2). In the first case,
by the surjectivity of γ1 and the satisfaction of (C1) in L1, we can pick
prime intervals ri−1, r

′
i ∈ Prime(L1) such that γ1(ri−1) = hi−1, γ1(r′i) =

hi, and conL1
(ri−1) ≥ conL1

(r′i). In the second case, we obtain similarly
that γ2(ri−1) = hi−1, γ2(r′i) = hi, and conL2(ri−1) ≥ conL2(r′i) for some
ri−1, r

′
i ∈ Prime(L2). In the third case, both conL1(ri−1) ≥ conL1(r′i) and

conL2
(ri−1) ≥ conL2

(r′i) trivially hold, since ri−1 = r′i.
Hence, for for every i in {1, . . . , k}, Lemma 4.4 gives us

a “prime-projectivity sequence” from ri−1 to r′i. (4.6)

Since Prime(L1) ⊆ Prime(L) and Prime(L2) ⊆ Prime(L), this sequence is in
Prime(L). We claim that, for each i ∈ {1, . . . , k},

there is a prime-projectivity sequence from r′i to ri. (4.7)
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In order to verify this, note that hi is the color of ri with respect to γ1 or
γ2, and it is also the color of r′i with respect to γ1 or γ2. Assume first that
γ1(r′i) = hi = γ1(ri). Then γ1(r′i) ≥ν1 γ1(ri) and the validity of (C1) for γ1
imply that conL1

(r′i) ≥ conL1
(ri), whereby (4.7) follows from Lemma 4.4. The

case γ2(r′i) = hi = γ2(ri) is similar. Hence, we can assume that γj(r
′
i) = hi =

γ3−j(ri) for some j ∈ {1, 2}. Clearly, hi is in H1∩H2, since it is in the range of
γj and that of γ3−j . By (4.3), we can pick a prime interval r′′i ∈ Prime(L1∩L2)
such that γj(r

′′
i ) = hi = γ3−j(r

′′
i ). Applying (C1) to γj and Lemma 4.4, we

obtain that there is a prime-projectivity sequence from r′i to r′′i . Similarly,
we obtain a prime-projectivity sequence from r′′i to ri. Concatenating these
two sequences, we obtain a prime-projectivity sequence from r′i to ri. This
shows the validity of (4.7). Finally, concatenating the sequences from (4.6)
and those from (4.7), we obtain a prime-projectivity sequence from p = r0
to q = rk. So the easy direction of Lemma 4.4 implies that con(p) ≥ con(q),
proving that L satisfies (C1).

Observe that

for all i ∈ {1, 2} and r ∈ Prime(Li), γi(r) =ν γ(r); (4.8)

this is clear either because r /∈ Prime(L3−i) and (4.4) applies, or because r
belongs to Prime(L1 ∩ L2), γ(r) = γ1(r) by (4.4), and we have by (4.5) that
{〈γ1(r), γ2(r)〉, 〈γ2(r), γ1(r)〉} ⊆ ν.

Next, in order to prove that L satisfies (C2), assume that p, q ∈ Prime(L)
such that con(p) ≥ con(q). We need to show that γ(p) ≥ν γ(q). This is clear
if p = q. Since ν is transitive, Lemma 4.4 and duality allow us to assume that

p
p-up→ q. We are going to deal only with the case p ∈ Prime(L1) \ Prime(L2)

and q ∈ Prime(L2) \ Prime(L1), since the cases {p, q} ⊆ Prime(L1) and
{p, q} ⊆ Prime(L2) are much easier while the case p ∈ Prime(L2)\Prime(L1)
and q ∈ Prime(L1) \Prime(L2) is excluded by the upward orientation of the
prime-perspectivity. So p = [x1, y1] = [y1 ∧ x2, y1] and q = [x2, y2] with
y2 ≤ y1 ∨ x2; see Figure 2. Clearly, x1, y1 ∈ L1 \ L2 and x2, y2 ∈ L2 \ L1.
By the description of the ordering relation in Hall–Dilworth gluings, we
can pick an x3 ∈ L1 ∩ L2 such that x1 ≤ x3 ≤ x2. Let y3 := y1 ∨ x3.
It is in L1 ∩ L2 since L1 is a sublattice and L2 is a filter in L. Since
x3 ∨ x2 = x2 ≤ y2 ≤ y1 ∨ x2 = y1 ∨ (x3 ∨ x2) = (y1 ∨ x3) ∨ x2 = y3 ∨ x2,
we have that con(q) = con(x2, y2) ≤ con(x3, y3). Combining this inequality,
(4.1), the distributivity of Con(L), the well-known rule that

in every finite distributive lattice D,
(a ∈ J(D) and a ≤ b1 ∨ . . . ∨ bn) =⇒ (∃i)(a ≤ bi),

(4.9)

and con(x3, y3) =
∨
{con(r) : r ∈ Prime([x3, y3])}, we obtain a prime inter-

val r ∈ Prime([x3, y3]) ⊆ Prime(L1 ∩ L2) such that con(q) ≤ con(r). Since
con(p) = con(x1, y1) collapses 〈x3, y3〉 = 〈x1 ∨ x3, y1 ∨ x3〉, it collapses r.
Hence, con(p) ≥ con(r). Since γ1 is a quasi-coloring, this inequality, (C2),
and (4.8) yield that γ(p) = γ1(p) ≥ν1 γ1(r) =ν γ(r). Hence, γ(p) ≥ν γ(r).
Since γ2 is also a quasi-coloring, the already established con(r) ≥ con(q)
leads to γ(r) = γ2(r) ≥ν2 γ2(q) =ν γ(q) similarly, whereby γ(r) ≥ν γ(q).
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Thus, transitivity gives that γ(p) ≥ν γ(q), showing that L satisfies (C2).
This completes the proof of Lemma 4.3. �

5. Proving the (iii) ⇒ (i) part of Corollary 1.4

Although Corollary 1.4 will be a consequence of Theorem 1.3, here we are
going to derive the (iii)⇒ (i) part of this corollary from Theorem 2.1. In this
way, this section serves as a part of the proof of Theorem 1.3.

Proof of the (iii) ⇒ (i) part of Corollary 1.4. Let D be an arbitrary planar
distributive lattice with at most one join-reducible atom. We can assume that
|D| > 1.

First, assume that 1D ∈ J(D). We know from Czédli [8, Proposition
1.6] that for every Q, if J+(D) ⊆ Q ⊆ D, then the inclusion Q ⊆ D is
chain-representable. Hence, by Theorem 2.1(ii), it fully is principal congru-
ence representable, as required.

Second, assume that 1D /∈ J(D). Let Q be a subset of the lattice D such
that J+(D) ⊆ Q. In order to obtain a lattice L that witnesses the principal
congruence representability of Q ⊆ D, we do the same as in Section 3 but,
of course, now we cannot assume that k = 2 and we are going to give more
details. By 1D /∈ J(D) and (3.1), there are exactly two coatoms. At least
one of them is join-irreducible; we denote it by p. Since 1D is a join of join-
irreducible element, J(D) * ↓p. Thus, we can pick a maximal element q in
(the nonempty set) J(D) \ ↓p such that 1D = p∨ q. Clearly, both p and q are
maximal elements of J(D). Since D is a planar distributive lattice, we know
from the folklore or, say, from Czédli and Grätzer [9] that

J(D) is the union of two chains. (5.1)

So we have two chains C1 and C2 such that J0(D) = C1∪C2 and 0 ∈ C1∩C2.
Let, say, q ∈ C2. If x ∈ ↑q and x 6= q, then x = y1 ∨ y2 for some y1 ∈ C1 and
y2 ∈ C2. Since q is a maximal element of J(D) and so also of C2, y2 ≤ q and
x = y1 ∨ q. For x = q, we can let y1 = 0 ∈ C1. Hence, ↑q ⊆ {z ∨ q : z ∈ C1}.
Since C1 is a chain, so are {z∨q : z ∈ C1} and its subset ↑q. Finally, D′ := ↓p
is disjoint from ↑q since p ‖ q. The facts established so far prove (3.2).

Observe that (5.1) implies (3.3). Note that even if e = f , we will
construct L as given on the right of Figure 1. This will cause no problem
since then f can be treated as an alter ego of e, similarly to the alter egos
p1, . . . , pk+3, see later, of p.

In order to verify (3.5), observe that Intv(C0) ⊆ Intv(C) implies that
the inclusion SRep(C0, lab′0, D

′) ⊆ SRep(C, lab′, D′) holds; see (2.3) for the
notation. To see the converse inclusion, let I ∈ Intv(C). If length(I) ≤ 1, then
erep(I) ∈ J0(D′) ⊆ SRep(C0, lab′0, D

′) is clear. If length(I) ≥ 2, then either
I ∈ Intv(C0) and erep(I) ∈ SRep(C0, lab′0, D

′) is obvious, or I /∈ Intv(C0)
and we have that erep(I) = p ∈ J0(D′) ⊆ SRep(C0, lab′0, D

′). Therefore,
(3.5) holds.
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Figure 3. Sk for k = 2, 〈Hk;≤〉, and K(α,β,M); the ele-
ments a1, . . . , ak are defined after (3.2)

Figure 4. Elementary steps towards (5.3)

It is straightforward to check that K(α,β) is colored (not only quasi-
colored) by the two-element chain {α < β}, as indicated in Figure 1. Of
course, we can rename the elements of this chain. For later reference, let M
be a simple lattice, and let K(α,β,M) denote the colored lattice we obtain
from K(α,β) so that we replace its thick prime interval, see Figure 1, by M
as indicated in Figure 3; all edges of M are colored by α. In Section 7, we
will rely on the obvious fact that

whatever we do with K(α,β) in this section, we
could do it with K(α,β,M1), K(α,β,M2), . . . ,
where M1, M2,. . . are finite simple lattices.

(5.2)
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Let Sk be the lattice defined by Figure 3. Also, this figure defines an
ordered set 〈Hk;≤〉. Let γ̃k : Prime(Sk) → Hk be given by the labeling; we
claim that

γ̃k : Prime(Sk)→ 〈Hk;≤〉 is a coloring; see Figure 3. (5.3)

Note that the colors, see (5.3), of the edges of the chain [w, i] of Sk are
the same as the labels, see (2.4), of the edges of the corresponding filter of
C∗. We obtain (5.3) by applying Lemma 4.3 repeatedly; the first three steps
are given if Figure 4; the rest of the steps are straightforward. In Figure 4,
going from left to right, we construct larger and larger quasi-colored (in fact,
colored) lattices by Hall-Dilworth gluing. The colors are given by labeling and
their ranges by small diagrams in which the elements are given by half-sized
little circles. The action of gluing is indicated by “} ⇒”. Now that we have
decomposed the task into elementary steps, we can conclude (5.3) easily.

Next, let γ′nat : Prime(L′) → J(Con(L′)) be the natural coloring of L′,
that is, for p ∈ Prime(L′), we have that γ′nat(p) = conL′(p). Using that
ϕ′ : Con(L′)→ D′ is a lattice isomorphism, see after (3.5), we conclude that
its restriction ψ′ := ϕ′eJ(Con(L′)) is an order isomorphism from J(Con(L′))
onto J(D′). Therefore, the composite map γ1 := ψ′ ◦ γ′nat is a coloring
γ1 : Prime(L′)→ 〈J(D′);≤〉. For later reference, note that

ψ′(conL′(p)) = ψ′(γ′nat(p)) = (ψ′ ◦ γ′nat)(p) = γ1(p). (5.4)

By 2.1(iiib), C∗ is a filter of L′, whereby the filter ↑L′w is a chain. Hence,
L is the Hall–Dilworth gluing of L′ and Sk; compare Figures 1 and 3. As a
preparation to the next application of Lemma 4.3, we denote the ordered sets
〈J(D′);≤〉 and 〈Hk;≤〉 also by 〈J(D′); ν1〉 and 〈Hk; ν2〉, respectively. We let
γ2 = γ̃k; see (5.3). Finally, L′ and Sk will also be denoted by L1 and L2,
respectively. With these notations, let γ be the map defined in (4.4). On the
set H := J(D′) ∪ Hk, we define a quasiordering ν according to (4.5); note
that the pairs 〈a1, a1〉, . . . , 〈ak, ak〉 required by (4.5) can be omitted. This
means that

ν = quo
(
ν1 ∪ ν2 ∪ {〈p, p1〉, 〈p1, p〉,〈p, p2〉, 〈p2, p〉, . . . ,

〈p, pk+3〉, 〈pk+3, p〉}
)
.

(5.5)

We conclude from Lemma 4.3 that

γ : Prime(L)→ 〈H; ν〉 is a quasi-coloring. (5.6)

Let δ : 〈H; ν〉 → 〈J(D);≤〉 be the map defined by

δ(x) =

{
p, if x ∈ {p1, p2, . . . , pk+3},
x, otherwise.

(5.7)

Observe that if 〈x, y〉 ∈ ν1 ∪ ν2 or x, y ∈ {p, p1, . . . , pk+3}, then δ(x) ≤ δ(y).

Hence, the set generating ν in (5.5) is a subset of ~Ker(δ); see (4.2) and

thereafter. This implies that ν ⊆ ~Ker(δ) since ~Ker(δ) is a quasiordering. The
inclusion just obtained means that δ is a homomorphism. In order to verify
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the converse inclusion, ~Ker(δ) ⊆ ν, assume that x 6= y and 〈x, y〉 ∈ ~Ker(δ),
that is, δ(x) ≤ δ(y) in J(D). There are four cases to consider.

First, assume that x, y ∈ J(D′). Then x = δ(x) ≤ δ(y) = y in J(D).
But J(D′) is a subposet of J(D), whereby 〈x, y〉 ∈ ν1 ⊆ ν, as required.

Second, assume that {x, y} ∩ J(D′) = ∅. Since x, y ∈ {p1, . . . , pk+3, q},
x 6= y, {δ(x), δ(y)} ⊆ {p, q}, p ‖ q, and δ(x) ≤ δ(y), we conclude that x and
y belong to {p1, . . . , pk+3}, whereby the required containment 〈x, y〉 ∈ ν is
clear by (5.5).

Third, assume that x ∈ J(D′) but y /∈ J(D′). If y ∈ {p1, . . . , pk+3}, then
the required 〈x, y〉 ∈ ν follows from 〈x, p〉 ∈ ν1 ⊆ ν and 〈p, y〉 ∈ ν. Otherwise,
y = q, and x = δ(x) ≤ δ(q) = q gives that 〈x, e〉 ∈ ν1 ⊆ ν or 〈x, f〉 ∈ ν1 ⊆ ν.
Since 〈e, q〉, 〈f, q〉 ∈ ν2 ⊆ ν, the required 〈x, y〉 ∈ ν follows by transitivity.

Fourth, assume that x 6∈ J(D′) but y ∈ J(D′). Since δ(x) ∈ {p, q}
and δ(x) ≤ δ(y) = y ∈ J(D′), the only possibility is that δ(x) = p, x is
in {p1, . . . , pk+3}, and y = p, whereby (5.5) yields the required 〈x, y〉 ∈ ν.

Therefore, ~Ker(δ) ⊆ ν. Thus, it follows from (5.6) and Lemma 4.2 that the
map

γ̂ = δ ◦ γ : Prime(L)→ 〈J(D);≤〉, defined by r 7→ δ(γ(r)), (5.8)

is a coloring; this coloring is the same what the labeling in Figure 1 suggests.
By Lemma 4.1, the map µ : 〈J(Con(L));≤〉 → 〈J(D);≤〉 described in the
lemma is an order isomorphism. By the well-known structure theorem of finite
distributive lattices, µ extends to a unique isomorphism ϕ : Con(L)→ D. We
claim that

an element x of D belongs to ϕ(Princ(L)) if and
only if there is a chain u0 ≺ u1 ≺ · · · ≺ un in L such
that x = γ̂([u0, u1]) ∨ · · · ∨ γ̂([un−1, un]).

(5.9)

We are going to derive this fact only from the assumption that γ̂ is a coloring
and ϕ is the isomorphism what γ̂ determines by Lemma 4.1; see between
(5.8) and (5.9).

In order to prove (5.9), assume that there is such a chain. Then, applying
Lemma 4.1 at the second equality below,

x = γ̂([u0, u1]) ∨ · · · ∨ γ̂([un−1, un])

= µ(con(u0, u1)) ∨ · · · ∨ µ(con(un−1, un))

= ϕ(con(u0, u1)) ∨ · · · ∨ ϕ(con(un−1, un))

= ϕ(con(u0, u1) ∨ · · · ∨ con(un−1, un)) = ϕ(con(u0, un)),

(5.10)

which implies that x ∈ ϕ(Princ(L)). Conversely, assume x ∈ ϕ(Princ(L)),
that is, x = ϕ(con(a, b)) for some a ≤ b ∈ L. Let us pick a maximal chain
a = u0 ≺ u1 ≺ · · · ≺ un = b in the interval [a, b], then (5.10) shows that x is
of the required form. This proves the validity of (5.9).

We say that a (5.9)-chain u0 ≺ u1 ≺ · · · ≺ un produces x if the equality
in (5.9) holds. In order to show that Q = ϕ(Princ(L)), we need to show
that an element x ∈ D is produced by a (5.9)-chain iff x ∈ Q. It suffices to
consider join-reducible elements and chains of length at least two, because
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chains of length 1 produce join-irreducible elements that are necessarily in
Q and, in addition, every join-irreducible x is produced by a (5.9)-chain of
length 1 since γ̂ is surjective.

First, assume that x ∈ Q \ J0(D). If x ∈ Q \ ↓p, then x is of the form
x = ai∨q, and we can clearly find a chain of length 2 in Sk ⊆ L with γ̂-colors
ai and q, and this is a (5.9)-chain that produces x. Otherwise, x ∈ Q′ =
Q ∩ ↓p. We obtain from (5.4) that the coloring γ1 : Prime(L′) → 〈J(D′);≤〉
determines the order isomorphism ψ′ : J(Con(L′) → 〈J(D′);≤〉 in the same
way as the coloring in Lemma 4.1 determines µ. By the structure theorem of
finite distributive lattices, ψ′ has exactly one extension to a Con(L′) → D′

isomorphism; this extension is ϕ′ since ψ′ = ϕ′eJ(Con(L′)); see the paragraph
above (5.4). Thus,

γ1 determines ϕ′ in the same way as γ̂
determines ϕ; see between (5.8) and (5.9).

(5.11)

From (4.4), the paragraph preceding (5.4), and (5.6) we see that γ extends
γ1. So, since δ defined in (5.7) acts identically on J(D′), γ̂ defined in (5.8)
also extends γ1. Combining this fact with (5.11), we obtain that

ϕ and γ̂ extend ϕ′ and γ1, respectively. (5.12)

By the choice of ϕ′ : Con(L′) → D′, we have that x ∈ Q′ = ϕ′(Princ(L′)).
Therefore, (5.9) applied to 〈D′, L′, ϕ′, γ1〉 rather than to 〈D′, L′, ϕ′, γ̂〉, the
sentence after (5.9), (5.11), and (5.12) imply that there exists a (5.9)-chain
in D (in fact, even within D′) that produces x.

Second, assume that x is produced by a (5.9)-chain W of length at least
2. If W has a p-colored edge with respect to γ̂, then ↑p ⊆ Q implies that
x ∈ Q. Hence, with respect to γ̂,

we can assume that no edge of W is colored by p. (5.13)

If W is a chain in L′, then applying (5.9) to 〈D′, L′, ϕ′, γ1〉 rather than to
〈D,L, ϕ, γ̂〉 and using (3.6) and (5.12), we obtain that the element x belongs
to ϕ′(Princ(L′)) = Q′ ⊆ Q. If W had an edge both inside L′ and outside
L′, that is, if ∅ 6= Prime(W ) ∩ Prime(L′) 6= Prime(W ), then W would have
an edge [uj−1, uj ] such that uj−1 ∈ L′ \ C∗ but uj ∈ C∗, since L is a Hall-
Dilworth gluing of L′ and Sk. In Figure 1, [uj−1, uj ] is one of the dashed lines.
It would follow from Theorem 2.1(iiid) and (5.12) that γ̂([uj−1, uj ]) = 1D′ =
p, which would contradict (5.13). Thus, W cannot have an edge both inside
L′ and outside L′. We are left with the case where W is a chain in Sk. In
Sk, any two edges of W with distinct γ̂k-colors outside {p1, . . . , pk+3, q} are
separated by an edge of W whose γ̂k-color is in {p1, . . . , pk+3, q}; see Figure 3.
Formulating this within L with γ̂ rather than γ2 = γ̂k, any two edges of W
with distinct γ̂-colors not in {p, q} are separated by an edge of W whose γ̂-
color is in {p, q}; see Figure 1. Hence, the structure of Sk, see Figures 1 and 3,
and (5.13) imply that x is one of the elements e = e∨ e, f = f ∨ f , e∨ q = q,
f ∨ q = q, and ai ∨ q for i = 1, . . . k + 3, and these elements belong to Q.
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Hence, x ∈ Q for every W . Consequently, Q = ϕ(Princ(L)). This completes
the proof of the (iii) ⇒ (i) part of Corollary 1.4. �

6. A new approach to Grätzer’s Theorem 2.1

Part 2.1(i) is proved in Grätzer [15]; we do not have anything to add. Part
2.1(ii) is an evident consequence of (the more general but technical) part
2.1(iii). This section is devoted to the proof of part 2.1(iii). Our approach
includes a lot of ingredients from Grätzer [15].

Proof of 2.1(iii). Assume that Q is a chain-representable subset of a finite
distributive lattice D; see Figure 5, where Q consists of the grey-filled ele-
ments. The largest elements of D will be denoted by 111, it belongs to J(D)
by our assumption. Let 〈C, lab, D〉 be a J(D)-labeled chain representing Q.
We need to find a lattice L and an isomorphism ϕ : Con(L)→ D that satisfy
the requirements of 2.1(iii).

Figure 5. An example for Q ⊆ D and the first steps to-
wards its representation

The ordering of J(D) will often be denoted by κ′. Take a list

〈C0;κ′0〉, . . . , 〈Ct−1;κ′t−1〉
of chains in J(D); here κ′i denotes the restriction of κ′ to Ci, for i < t. Assume
that this list of chains is taken so that J(D) \ {1D} =

⋃
i<t Ci, and

quo
(
(J(D)× {111}) ∪

⋃
i<t

κ′i
)

= κ′, that is, (J(D)× {111}) ∨
∨
i<t

κ′i = κ′ (6.1)
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in Quo(J(D)). Note that although we can always take the list of all chains
{a, b} with a ≺J(D) b, we often get a much smaller lattice L by selecting fewer
chains. For example, for the lattice D given in Figure 5, we can let t = 3,
C0 = {a1 < a2 < a3}, C1 = {b1 < b2 < b3}, and C2 = {b2 < a3}. For each of
the chains Ci = {x1 < x2 < · · · < xmi

} = 〈Ci;κ′i〉 such that mi > 1, let

Hi = {x(i)1 < x
(i)
2 < · · · < x(i)mi

} = 〈Hi;κi〉 (6.2)

be an alter ego of Ci; see Figure 5 again. Each of the 〈Hi;κi〉, for i < t,
determines a snake lattice, which is obtained by gluing copies of K(α,β) so
that there is a coloring σi from the set of prime intervals of the snake lattice
onto 〈Hi;κi〉. For example, if 〈Hi;κi〉 had been {p < q < r < s < u < v < x},
then the snake lattice would have been the one given on the top right of
Figure 5. For our example, this exemplary snake lattice is not needed; what
we need for our D are the Si and the colorings σi : Prime(Si) → 〈Hi;κi〉,
indicated by labels in the figure, for i < t. (By space considerations, not all
edges are labeled.) The purpose of the alter egos is to make our chains Hi

pairwise disjoint. If mi = |Ci| = 1, then Si is the two-element lattice and
the coloring σi is the unique map from the singleton Prime(Si) to 〈Hi;κi〉 :=
〈{xi1};κi〉, where κi is the only ordering on the singleton set Hi.

Figure 6. The frame lattice F for the example given in
Figure 5 and St+4 = S4

Next, we turn 〈C, lab, D〉, see Figure 5, to a colored lattice St as follows.
Before its formal definition, note that in our example, St = S3 is given in
Figure 5. As a lattice, St := C. For x ∈ J(D), let h(x) = |{p ∈ Prime(C) :
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lab(p) = x}|; note that h(x) ≥ 1 since lab is a surjective map. Let

Ht :=
⋃

x∈J(D)

{x(−1), . . . , x(−h(x))} and κt := {〈y, y〉 : y ∈ Ht}; (6.3)

then 〈Ht;κt〉 is an antichain, which is not given in the figure. Define the map

σt : Prime(St) → Ht by the rule p 7→ x(−i) iff lab(p) = x and,
counting from below, p is the i-th edge of C labeled by x.

(6.4)

Less formally, we make the labels of St = C pairwise distinct by using neg-
ative superscripts; see Figure 5. (The superscripts are negative, because the
positive ones have been used for another purpose in (6.2).) The new labels
with negative superscripts form an antichain Ht, and the new labeling σt
becomes a coloring.

The colored lattices Si, i ≤ t, with their colorings σi : Prime(Si) →
〈Hi;κi〉 will be referred to under the common name branches. So the i-th
branch is a snake lattice or the two-element lattice for i < t, and it is the
colored chain St with the coloring given in (6.4) for i = t.

Figure 7. 〈H;κ〉

Next, let 〈Ht+1;κt+1〉 be the one-element ordered set Ht+1 = {111}, and

let St+1 be an arbitrary simple lattice with |St+1| ≥ 3. (6.5)

In Figure 6, St+1 consists of the elements given by a bit larger and grey-filled
circles. We have chosen this simple lattice because it is easy to draw. The
zero and the unit of St+1 will be denoted by 0̂ and 1̂, respectively. Note the

notational difference: while 0̂ and 1̂ are in St+1 and they will be in the lattice
L we are going to construct, 111 and 000 are in D and H, and they will correspond
to congruences of L. The unique map Prime(St+1) → 〈Ht+1;κt+1〉 will be
denoted by σt+1; it is a coloring. All the lattices and ordered sets mentioned
so far in this section are assumed to be pairwise disjoint. Let F be the lattice
we obtain from St+1 by inserting all the Si for i ≤ t as intervals such that for

every i, j ∈ {0, . . . , t}, xi ∈ Si, xj ∈ Sj and yt+1 ∈ St+1 \ {0̂, 1̂}, we have that

xi ∨ yt+1 = 1̂, xi ∧ yt+1 = 0̂, and if i 6= j, then we also have that xi ∨ xj = 1̂

and xi ∧ xj = 0̂; see Figure 6, which gives F for our example of Q ⊆ D
given in Figure 5. Following Grätzer [15], we call F the frame or the frame
lattice associated with Q ⊆ D, but note that it depends also on the list of
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chains and the choice of St+1. The simplicity of St+1 guarantees that F is a

{0̂, 1̂}-separating lattice. In order to see this, let x ∈ L \ {0̂, 1̂}. If x ∈ St+1,

then con(0̂, x) = con(x, 1̂) = 1Con(F ) by the simplicity of F . If x /∈ St+1, then

x has a complement y in St+1, and con(0̂, x) = con(x, 1̂) = 1Con(F ) since the
same holds for y. Let

H :=
⋃

i<t+2

Hi, κ := (H × {111}) ∪
⋃

i<t+2

κi, and define

σ(p) =

{
σi(p), if p ∈ Prime(S0) ∪ · · · ∪ Prime(St),

111, otherwise.

(6.6)

Clearly, (6.6) above defines a quasiordered set 〈H;κ〉 together with a map
σ : Prime(F ) → 〈H;κ〉. In case of our example, σ and 〈H;κ〉 are given by
Figures 6 and 7, respectively. Clearly, κ is always an ordering. Using that
F is {0̂, 1̂}-separating and arguing similarly to Grätzer [15], it is easy to see
that σ is a coloring. For i < t + 1, the subsets Hi are called the legs of H.
For i < t, the i-th leg Hi is a chain, and it is an antichain for i = t.

Figure 8. Equalizing the colors g and h

Each element of J(D)\{111} has at least one alter ego in H, but generally
it has many alter egos; they differ only in their superscripts. The alter egos
of an element x ∈ J(D) with positive superscripts belong to distinct legs.
Note at this point that for x ∈ J(D) and −1 ≥ −s ≥ −h(x), see (6.3), x(−s)

is also called an alter ego of x. Note also that 111 also has alter egos, usually
many alter egos, in St. It is neither necessary, nor forbidden that 111 has alter
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egos in S0 ∪ · · · ∪ St−1. Next, let

ε = {〈g0, h0〉, 〈h0, g0〉,〈g1, h1〉, 〈h1, g1〉, . . . ,
〈gm−1, hm−1〉, 〈hm−1, gm−1〉} ⊆ H2 (6.7)

be a symmetric relation such that the equivalence relation equ(ε) generated
by ε is the least equivalence on H that collapses every element with all of its
alter egos. Every “original color” x (that is, every x ∈ J(D)) has an alter ego
in Ht and also in some other leg Hi0 such that i0 < t. Quasi-colorings are
surjective by definition. Thus, since σ extends σi for i < t+ 1 by (6.6) and x
has only one alter ego in Hi0 for i0 < t, we can assume that

for every 〈g`, h`〉 ∈ ε, there are distinct branches Si and Sj
such that Si contains an edge pi with σ(pi) = σi(pi) = g` and
Sj contains an edge pj with σ(pj) = σj(pj) = h`.

(6.8)

Note that the smaller the ε is, the smaller the lattice L will be. Since ε is
symmetric,

the equivalence equ(ε) generated by ε is quo(ε). (6.9)

Hence, letting η := quo(κ ∪ ε), we have that equ(ε) ⊆ η. (6.10)

We claim that for every x, y ∈ J(D),

x ≤ y in J(D) iff there exist alter egos x′ and y′ of
x and y, respectively, such that x′ ≤η y′.

(6.11)

In order to see this, assume first that x ≤ y in J(D), that is, x ≤κ′ y. We can
assume that y 6= 111, because otherwise 〈x, y〉 ∈ κ by (6.6), whereby 〈x, y〉 ∈ η;
see (6.10). By (6.1), there is a sequence x = z0, z1, . . . , zn = y in J(D) \ {111}
such that 〈zj , zj+1〉 ∈

⋃
i<t κ

′
i for all j < n. So for every j < n, we can pick

an ij ∈ {0, . . . , t − 1} such that 〈zj , zj+1〉 ∈ κ′ij , that is, 〈z(ij)j , z
(ij)
j+1〉 ∈ κij .

Hence,

〈z(ij)j , z
(ij)
j+1〉 ∈ κij

(6.6)

⊆ κ
(6.10)

⊆ η hold for all j < n. (6.12)

For all j < n − 1, the elements z
(ij)
j+1 and z

(ij+1)
j+1 are alter egos of the same

zj+1, whereby (6.9) and (6.10) give that 〈z(ij)j+1, z
(ij+1)
j+1 〉 ∈ η. This fact, (6.12),

and the transitivity of η imply that 〈x′, y′〉 := 〈z(i0)0 , z
(in−1)
n 〉 ∈ η. That is,

there exist alter egos x′ and y′ of x and y, respectively, such that x′ ≤η y′.
Second, to prove the converse implication, assume that x′ ≤η y′ for alter

egos of x and y, respectively. Again, we can assume that y 6= 111. It suffices to
deal with the particular case x′ ≤κi y

′, because the case 〈x′, y′〉 ∈ ε causes no
problem and the general case follows from the particular one by (6.6), (6.10),
and transitivity. But x′ ≤κi

y′ means that x and y belong to the same chain
Ci and x ≤ y in this chain. Hence, x ≤ y in J(D), as required. Therefore,
(6.11) holds.

Next, we explain where the rest of the proof and that of the construction
go. Let δ : 〈H; η〉 → 〈J(D);≤〉, defined by δ(x) = y iff x is an alter ego of

y. Since ~Ker(δ) = η by (6.11), we conclude that δ is a homomorphism; see
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between (4.2) and Lemma 4.2. Assume that we can find a lattice L and a
map γ such that

γ : Prime(L)→ 〈H; η〉 is a coloring. (6.13)

Then, using that 〈J(D);≤〉 is an ordered set, not just a quasiordered one,
Lemma 4.2 will imply that the map γ̂ := δ ◦ γ is a coloring γ̂ : Prime(L) →
〈J(D);≤〉. In the next step, it will turn out by Lemma 4.1 that

µ : 〈J(Con(L));≤〉 → 〈J(D);≤〉, defined by
con(p) 7→ γ̂(p), in an order isomorphism.

(6.14)

Furthermore, (5.9) will be valid for L by the same reason as in Section 5;
see the sentence following (5.9). At present, by the choice of St and the
definition of F ,

the elements x ∈ D that are of the form described in (5.9),
with F instead of L, are exactly the elements of Q.

(6.15)

For ` ∈ {0, 1, . . . ,m}, see (6.7), let

ε` := {〈gj , hj〉 : j < `} ∪ {〈hj , gj〉 : j < `} and η` := quo(κ ∪ ε`). (6.16)

By (6.10), η0 = κ, εm = ε, and ηm = η. By induction, we are going to
find {0, 1}-separating lattices L0 = F , L1, . . . , Lm and quasi-colorings γ0 =
σ : Prime(L0) → 〈H; η0〉 and, for ` ∈ {1, . . . ,m}, γ` : Prime(L`) → 〈H; η`〉
such that “ the elements described in (5.9) remain the same”, that is, for
every ` in {1, . . . ,m} and x ∈ L`,

x = γ̂`([u0, u1]) ∨ · · · ∨ γ̂`([un−1, un]) for some elements
u0 ≺ u1 ≺ · · · ≺ un of L` iff the same equality holds for
some elements u0 ≺ u1 ≺ · · · ≺ un of C.

(6.17)

Roughly speaking, (6.17) says that (6.15) remains valid. Note that γ` will
extend γ`−1, for ` ∈ {1, . . . ,m}. Since γ0 = σ and L0 := F satisfy the
requirements, including (6.17), it is sufficient to deal with the transition from
L`−1 to L`, for 1 ≤ ` ≤ m.

So we assume that γ`−1 : Prime(L`−1)→ 〈H; η`−1〉 satisfies the require-
ments formulated in the induction hypothesis above, including (6.17). In or-
der to ease the notation in Figure 8, we denote 〈g`−1, h`−1〉 by 〈g, h〉. Then, as
it is clear from (6.16), η` = quo(η`−1∪{〈g, h〉}∪{〈h, g〉}). Hence, we shall add
an “equalizing flag” W to L`−1 such that this flag forces that the congruence
generated by a g-colored edge be equal to the congruence generated by an h-
colored edge. The term “flag” and its usage are taken from Grätzer [15]. Apart
from terminological differences, the argument about our flag is basically the
same as that in Grätzer [15]. (Note that our interval [ui, bi] in Figure 8 need
not be a chain; it is always a chain in Grätzer [15], but this fact is not ex-
ploited there.) By (6.8), there are distinct i, j ∈ {0, 1, . . . , t} such that we
can choose the g-colored edge and the h-colored edge mentioned above from
branches Si and Sj , respectively; see Figure 8. Since the role of g and h is
symmetric, we can assume that i < j.

In Figure 8, the flag is [u′i, b
′
i]∪ {e, f} ∪ [u′j , b

′
j ]. So the large black-filled

elements belong to the flag. Note that not all elements of the flag are indicated
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since neither [u′i, b
′
i], nor [u′j , b

′
j ] is a chain in general. In order to describe the

flag more precisely, let Si = [ui, vi] in L`−1, and let [ai, bi] ∈ Prime(Si) be
the interval chosen so that γ`−1([ai, bi]) = g. Take the direct product of the
dark-grey interval [ui, bi] and the two-element chain C2; this is the dark-grey
interval [u′i, bi] in the figure. Then for every x ∈ [ui, bi], there corresponds
a unique element x′ ∈ [u′i, b

′
i]; namely, we obtain x′ from x by changing the

“C2-coordinate” of x from 1C2 to 0C2 . We form the Hall–Dilworth gluing of
the direct product and Si = [ui, vi] to obtain the interval [u′i, vi]; see Figure 8.
In the next step, do exactly the same with j instead of i; see on the right of
Figure 8. Finally, add two more elements, e as a′i∨a′j and f as b′i∨b′j , as shown
in the figure. The lattice we obtain is L`. Note that Figure 8 contains only
a part of L`; there are more branches in general (indicated by three dots in
the figure) and there can be earlier flags with many additional elements; one
of these elements is indicated by z on the right of the figure. We extend γ`−1
to a map γ` : Prime(L`)→ 〈H; η`〉 as indicated by the figure. In particular, if
[x, y] ∈ Prime([ui, bi])∪Prime([uj , bj ]), then γ`([x

′, y′]) := γ`−1([x, y]). We let
γ`([e, f ]) := g. (Since i < j, γ`([e, f ]) is defined uniquely.) For the rest of the
new edges, their γ`-color is defined to be 111. Clearly, L` satisfies 2.1(iiib) and
2.1(iiid) since so does L`−1 by the induction hypothesis. By construction, for
every chain D of covering elements of L`, either D has an edge with γ`-color
111, or there is a chain D′ in L`−1 such that

{γ`(r) : r ∈ Prime(D)} = {γ`1(r) : r ∈ Prime(D′)}.

Thus, since (6.17) holds for `−1 by the induction hypothesis, it holds also for

`. Since 0̂, 1̂, u′i, uj , and an arbitrarily chosen element of St+1 \ {0̂, 1̂} form

an M3 sublattice, con(0̂, u′i) = 1Con(L`), and similarly for con(0̂, u′j). Hence,
it is easy to see that L` is a {0, 1}-separating lattice.

Next, we are going to show that γ` is a quasi-coloring; the argument
runs as follows. Observe that whenever we have a quasi-coloring of a lattice
U , then it is straightforward to extend it to U×C2: the edges [x, y] and [x′, y′]
have the same color while all the [x′, x] edges have the same additional color.

Since L`−1 and L` are {0̂, 1̂}-separating, now the [x′, x] edges are 111-colored.
Apart from e and f , which are so much separated from the rest of L` that
they cannot cause any difficulty, we obtain the flag by two applications of the
Hall–Dilworth gluing construction. Hence, the argument given for Lemma 4.3
works here with few and straightforward changes. Only the most important
changes and cases are discussed here; namely, the following two.

First, we assume that [x1, y1] belongs to Prime(L`−1), [x2, y2] belongs

to Prime(L`) \ Prime(L`−1), and [x1, y1]
p-dn→ [x2, y2]; see Figure 8. We need

to show that the inequality γ`([x1, y1]) ≥η` γ`([x2, y2]) holds. The zigzag
structure of the flag implies that {x2, y2} is disjoint from {e, f}, and it follows
that {x2, y2} ⊆ [u′i, b

′
i] or {x2, y2} ⊆ [u′j , b

′
j ]. This allows us to assume that

{x2, y2} ⊆ [u′i, b
′
i]. Using that we have a Hall–Dilworth gluing (in the filter ↑u′i

of L`) and [u′i, bi]
∼= [ui, bi]× C2, we obtain a unique [x∗2, y

∗
2 ] ∈ Prime([ui, bi])

such that [x1, y1]
p-dn→ [x∗2, y

∗
2 ], (x∗2)′ = x2 and (y∗2)′ = y2. Since γ`−1 is a



Fully principal congruence representable distributive lattices 23

quasi-coloring by the induction hypothesis,

γ`([x1, y1]) = γ`−1([x1, y1]) ≥η`−1
γ`−1([x∗2, y

∗
2 ]) = γ`([x2, y2].

Since η`−1 ⊆ η`, this implies the required γ`([x1, y1]) ≥η` γ`([x2, y2]).
Second, assume that [x1, y1] and [x2, y2] are in Prime(L`)\Prime(L`−1),

and [x1, y1]
p-dn→ [x2, y2]. If none of γ`([x1, y1]) and γ`([x2, y2]) is 111, then

{γ`([x1, y1]), γ`([x2, y2])} ⊆ {g, h} and 〈γ`([x1, y1]), γ`([x2, y2])〉 belongs to
equ(ε`) ⊆ η−1` , as required. Otherwise, both γ`([x1, y1]) and γ`([x2, y2]) are
equal to 111, and we are ready by reflexivity. This proves 1.4(iii) ⇒ 1.4(i). �

7. Taking care of Aut(L)

A lattice M is automorphism-rigid if |Aut(M)| = 1. It is well-known from
several sources that

there exists an infinite set {M0,M1,M2,M3, . . . }
of pairwise non-isomorphic, at least 3-element,
automorphism-rigid, finite lattices;

(7.1)

see, for example, Czédli [5, Lemma 2.8], Freese [11] (see also Figure 3 in [20]),
Grätzer [17], Grätzer and Quackenbush [20], and Grätzer and Sichler [22] for
the validity of this statement or for the construction of a set mentioned
in (7.1).

The easiest way to convince ourselves that the lattice L constructed in
the preceding sections can be chosen to be automorphism-rigid is to replace
the “thick” prime intervals p1, p2, p3, . . . in L by M1, M2, M3, . . . from (7.1),
respectively, so that every edge of Mi inherits the color of pi; furthermore,
based on (6.5), we let St+1 := M0. This is why we have made (5.2) and (6.5)
reference points. (Note that instead of using M1,M2, . . . , there is a more
involved way that leads to a smaller lattice L: if an automorphism swaps two
distinct snake lattices, then it has to swap two prime intervals of St with
which these snakes are “equalized”, but this is impossible.)

As a particular case of the simultaneous representability of a finite dis-
tributive non-singleton lattice D and a finite group G with a finite lattice M
in the sense that D ∼= Con(M) and G ∼= Aut(M), it is also known that

for every finite group G, there exists a finite simple
lattice MG such that G ∼= Aut(MG) and |MG| ≥ 3.

(7.2)

This simultaneous representability is due to Baranskĭı [1] and Urquhart [24];
see also Grätzer and Schmidt [21] and Grätzer and Wehrung [23] for even
stronger results. Now it is clear how to modify our constructions to complete
the proofs.

Completing the proof of Theorem 2.2. First, do the same as in Section 6 but
we let St+1 := MG from (7.2). Then replace the “thick” prime intervals p1,
p2, p3, . . . in L by M1, M2, M3, . . . from (7.1), respectively. It follows from
(5.2), (6.5), the proof given for the implication 2.1(ii) ⇒ 2.1(iii) in Section 6,
and the introductory part of the present section that this method works. �
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Completing the proof of Theorem 1.3. Assume that D is a finite planar dis-
tributive lattice with at least two elements and at most one join-reducible
coatom, and let G be a finite group. Also, we can assume that 1D /∈ J(D),
because otherwise Theorem 2.2 applies.

We are going to follow the construction described in Section 3 and veri-
fied in Section 5, but now we shall use Theorem 2.2 rather than Theorem 2.1
to obtain L′. So let D′ = ↓p as before. Since |D′| > 1, we can choose an L′

that satisfies the requirements of Theorem 2.2. In particular, Aut(L′) ∼= G
and Con(L′) ∼= D′. The construction of L′ used some of the lattices listed
in (7.1); let i be the smallest subscript such that none of Mi and Mi+1 was
used.

Next, armed with L′, construct L as before; see Figure 1. Clearly, each
automorphism of L′ has a natural extension to an automorphism of L. How-
ever, L has two typical automorphisms that we do not want (and so, usu-
ally, many others obtained by composition): one of these two automorphisms
interchanges the two doubly irreducible elements that are the bottoms of
e-colored edges, while the other one does the same with f instead of e. To
get rid of these unwanted automorphisms, (5.2) allows us to replace the e-
colored thick edge and the f -colored thick edge in Figure 1 by Mi and Mi+1,
respectively. The new lattice we obtain in this way, which is also denoted by
L from now on, has only those automorphisms that are unique extensions of
automorphisms of L′. Hence, Aut(L) ∼= Aut(L′) ∼= G, as required. �

Completing the proof of Corollary 1.4. The implication (iii) ⇒ (ii) is what
Theorem 1.3 asserts, while (ii) ⇒ (i) is trivial. Finally, (i) ⇒ (iii) is the same
as Czédli [8, Theorem 1.3(ii)⇒(iii)].

In order to present an alternative way to derive that (i) implies (iii),
assume that D satisfies (i). By Theorem 2.1(i), D is fully chain-representable.
Thus, we obtain from Czédli [8, Proposition 1.6] that D satisfies (iii). �
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