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COMPOSITION SERIES IN GROUPS AND THE STRUCTURE

OF SLIM SEMIMODULAR LATTICES

GÁBOR CZÉDLI AND E.TAMÁS SCHMIDT

Abstract. Let ~H and ~K be finite composition series of a group G. The

intersections Hi ∩Kj of their members form a lattice Lat( ~H, ~K) under set in-
clusion. Improving the Jordan-Hölder theorem, G. Grätzer, J. B. Nation and

the present authors have recently shown that ~H and ~K determine a unique

permutation π such that, for all i, the i-th factor of ~H is “down-and-up pro-

jective” to the π(i)-th factor of ~K. In this paper we prove that π determines

the lattice Lat( ~H, ~K). More generally, we describe slim semimodular lattices,
up to isomorphism, by permutations, up to an equivalence relation called “sec-
tionally inverse or equal”. As a consequence, we prove that the abstract class of

all Lat( ~H, ~K) coincides with the class of duals of all slim semimodular lattices.

1. Introduction

1.1. Composition series and lattices. Let ~H : {1} = H0 ⊳ H1 ⊳ · · · ⊳ Hn = G

and ~K : {1} = K0 ⊳ K1 ⊳ · · · ⊳ Kn = G be composition series of a group G. Denote
{

Hi ∩Kj : i, j ∈ {0, . . . , n}
}

by Lat( ~H, ~K). Clearly,

Lat( ~H, ~K) =
(

Lat( ~H, ~K);⊆
)

is a lattice, not just an order. (Orders are also called posets, that is, partially
ordered sets.) As usual, the relation “subnormal subgroup” is the transitive closure
of the relation “normal subgroup”. For subnormal subgroups A ⊳ B and C ⊳ D of
G, the quotient B/A will be called subnormally down-and-up projective to D/C, if
there are subnormal subgroups X ⊳ Y of G such that

(1.1) AY = B, A ∩ Y = X, CY = D, C ∩ Y = X .

Clearly, B/A ∼= D/C in this case, because both groups are isomorphic with Y/X .
Since G is of finite composition length, its subnormal subgroups form a sublattice
NSubG = (NSubG;⊆) of the lattice of all subgroups by a classical result of H.
Wielandt [27]; see also R. Schmidt [24, Theorem 1.1.5] and the remark after its
proof, or M. Stern [26, p. 302].

It is not hard to see that NSubG is dually semimodular (also called lower semi-

modular); see [24, Theorem 2.1.8], or the proof of [26, Theorem 8.3.3], or the proof
of J. B. Nation [23, Theorem 9.8]. Since this property depends only on the meet op-

eration and Lat( ~H, ~K) is a meet-semilattice of NSubG, we conclude that Lat( ~H, ~K)
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modularity, planar lattice, permutation.
This research was supported by the NFSR of Hungary (OTKA), grant numbers K77432 and
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2 G. CZÉDLI AND E.T. SCHMIDT

is a dually semimodular lattice. Note, however, that Lat( ~H, ~K) is not a sublattice
of NSubG in general; this is witnessed by the eight-element elementary 2-group
(Z2; +)3.

A lattice is said to be dually slim if it is finite and it has no three pairwise
incomparable meet-irreducible elements. Since each meet-irreducible element of

Lat( ~H, ~K) occurs in ~H or ~K, it follows that Lat( ~H, ~K) is a dually slim lattice.
We proved the following result in [8].

Theorem 1.1. There exists a unique permutation π of the set {1, . . . , n} such that

Hi/Hi−1 is subnormally down-and-up projective to Kπ(i)/Kπ(i)−1, for i = 1, . . . , n.

This permutation will be described later in Remark 2.8. Note that, as opposed to
π, the subnormal subgroups X and Y occurring in (1.1) are not unique, in general,

and they need not belong to Lat( ~H, ~K). Note also that even the statement on the
existence of π, due to G. Grätzer and J. B. Nation [18], strengthens the classical
Jordan-Hölder Theorem, see C. Jordan [21] and O. Hölder [20].

One of our goals is to show that π determines the lattice Lat( ~H, ~K), see Corol-

lary 3.4. We will also show that the lattices of the form Lat( ~H, ~K) are characterized
as duals of slim semimodular lattices, see Corollary 3.5. These results follow from
our main result, which is purely lattice theoretic.

1.2. Slim semimodular lattices and matrices. A slim lattice is a finite lattice
M such that Ji0M , the order of its join-irreducible elements (including 0), contains
no three-element antichain. This concept is due to G. Grätzer and E. Knapp [14].
By R.P. Dilworth [11], a finite latticeM is slim iff Ji0M is the union of two chains.

By [8, Lemma 6], slim lattices are planar. So they are easy objects to under-
stand. Slim semimodular lattices come up in proving Theorem 1.1 and also in the
finite congruence lattice representation problem; see, for example, G. Czédli [4], G.
Grätzer and E. Knapp [16] and [17], and E.T. Schmidt [25]. Several ways of de-
scribing slim semimodular lattices were developed. Two visual (recursive) methods
of constructing slim semimodular lattices were given in [9]. Furthermore, these lat-
tices were characterized by matrices in [3]. Based on this matrix characterization,
G. Czédli, L. Ozsvárt and B. Udvari [5] succeeded in calculating the number ♯(h)
of (isomorphism classes) of slim semimodular lattices of a given length h; the value
of ♯(h) has been computed up to h = 100.

The matrices in [3] correspond to bijective partial maps. Although they yield an
optimal description in some sense, their definition is a bit complicated. Our goal is
to describe slim semimodular lattices by (totally defined) bijective maps; namely,
by permutations. The fact that three different ideas lead to the same permutations
indicate that these permutations are natural objects. As opposed to the matrices,
our permutations say something interesting of the magnitude of ♯(h); indeed, our
main theorem trivially yields that h! is an upper bound for ♯(h). Furthermore, the
present approach yields Corollaries 3.4 and 3.5, while the matrix approach does
not.

1.3. Planar diagrams. To avoid ambiguity, we have to distinguish between pla-
nar lattices and their diagrams. Let M∗ be a planar diagram of a finite (planar)
latticeM . For u ≤ v ∈M , let [u, v]∗ denote the unique diagram of the interval [u, v]
determined by M∗. The edges of M∗ divide the plane into regions; the minimal re-
gions are called cells. By a covering square we mean a four-element cover-preserving
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sublattice of length two. Cells that are covering squares are called 4-cells. The left

boundary chain, the right boundary chain and the boundary of M∗ are denoted by
BCleft(M

∗), BCright(M
∗) and Bnd(M∗) = BCleft(M

∗) ∪ BCright(M
∗), respectively.

Next, let M▽ also be a planar diagram of M . Then M∗ and M▽ are called
boundarily similar diagrams of M , if BCleft(M

∗) = BCleft(M
▽) and BCright(M

∗) =
BCright(M

▽). (Notice that if two diagrams are similar in the sense of D. Kelly and
I. Rival [22], then they are boundarily similar, but not conversely.) More generally,
if Mi

∗ is a planar diagram of Mi, then M1
∗ is boundarily similar to M2

∗ if there
is a lattice isomorphism γ : M1 →M2 such that γ(BCleft(M1

∗)) = BCleft(M2
∗) and

γ(BCright(M1
∗)) = BCright(M2

∗). We will consider diagrams only up to boundary
similarity.

Let DgrM denote the set of all planar diagrams of M . Then DgrM is a finite
set since boundarily similar diagrams are considered equal. Sometimes we need a
notation, Dlat, which is the lattice Dlat from its diagram D. Note thatM = (M∗)lat

for every planar lattice M and any M∗ ∈ DgrM .
Let L be a slim semimodular lattice of length n. Although it is L we want to

characterize by permutations, in this section, we work with a fixed diagram L∗ of
L. The elements of Bnd(L∗) will be denoted as follows:

BCleft(L
∗) = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1},

BCright(L
∗) = {0 = d0 ≺ d1 ≺ · · · ≺ dn = 1}.

(1.2)

An element of L is called a narrows if it is comparable with all elements of L. This
terminology is from G. Grätzer and R.W. Quackenbush [19]; however, as opposed
to [19], we define 0 and 1 as narrows of L. The set of narrows is denoted by Nar(L).
The elements of Nar(L) \ {0, 1} are called nontrivial narrows of L. For L∗ ∈ DgrL,
we define Nar(L∗) := BCleft(L

∗) ∩ BCright(L
∗); clearly, Nar(L∗) = Nar(L). Note

that Nar(L) is a chain. A finite lattice M is called (glued sum) indecomposable if
|M | = 1 or 2 = |Nar(M)| < |M |.

The set of all meet-irreducible elements (including 1) is denoted by Mi1M . Let
JiM = Ji0M \ {0} and MiM = Mi1M \ {1}. [9, Lemma 7] asserts that Bnd(L∗)
is the same for all L∗ ∈ DgrL. Hence we can define Bnd(L) as Bnd(L∗), where
L∗ ∈ DgrL. By G. Grätzer and E. Knapp [14, Lemma 4],

(1.3) every element of L is covered by at most two elements.

By [14, Lemma 8], L is a so-called 4-cell lattice; this means that all cells of every
L∗ ∈ DgrL are 4-cells. Furthermore, by [9, Lemma 6] and [8, Lemma 7]

Ji0 L ⊆ Bnd(L),(1.4)

the 4-cells of L∗ and the covering squares of L are the same.(1.5)

As usual, the set of permutations acting on {1, . . . , n} is denoted by Sn. The
ordering 1 < · · · < n of the underlying set will be important.

2. Three ways to associate a permutation with a planar diagram

Definition 2.1. Let L be a slim semimodular lattice. For a diagram L∗ ∈ DgrL,
we use the notation introduced in (1.2). We associate a permutation π1 ∈ Sn with
L∗ as follows; see Figure 1 for an illustration. Let i ∈ {1, . . . , n}. Take the prime
interval I0 := [ci−1, ci] on the left boundary. If It is defined and it is on the left
boundary of a 4-cell, then let It+1 be the opposite edge of this 4-cell. Otherwise, It+1
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Figure 1. Three ways to define a permutation

is undefined. The sequence I0, I1, . . . Im of all the defined It-s is called a trajectory.
It goes from left to right, and it stops at the right boundary. Let Im = [dj−1, dj ].
We define π1(i) := j. For L∗ on the left of Figure 1, i = 5, andm = 3, the trajectory
in question consists of the thick edges.

We consider L∗ up to boundary similarity, and only BCleft(L
∗) and BCright(L

∗)
are fixed. Hence it is not so clear how the trajectory goes in the “unknown interior”
of L∗. However, based on (1.5), it was proved in [8] that π1 is a uniquely defined
map and it is a permutation. In fact, [8] proves an appropriate uniqueness result
for any two maximal chains without assuming slimness.

The definition of π1 is quite visual. The next one is less visual but conceptually
simpler. As usual, ↓u stands for {x ∈ L : x ≤ u}, and ↑u is defined dually.

Definition 2.2. We associate a permutation π2 ∈ Sn with L∗ as follows; see
Figure 1 again for an illustration. Let i ∈ {1, . . . , n}. Take a meet-irreducible
element u ∈ L such that ci is the smallest element of BCleft(L

∗) \ ↓u. Let dj be the
smallest element of BCright(L

∗) \ ↓u. We define π2(i) := j.

Lemma 2.3. π2 is uniquely defined and belongs to Sn. Furthermore, the element u
in Definition 2.2 is uniquely determined.

Proof. Let Bi = ↑ci−1 \ ↑ci. It is not empty since it contains ci−1. By (1.4), each
element of Bi is of the form cs ∨ dt, and we can clearly assume that s = i − 1.
Since BCright(L

∗) is a chain, we conclude that Bi is also a chain. Let u be the
largest element of Bi. Obviously, u ∈ MiL, whence u satisfies the requirements
of Definition 2.2. Assume that so does v. Then v ∈ Bi ∩ MiL and v ≤ u. By
semimodularity, v = ci−1 ∨ v � ci ∨ v. Clearly, Bi 6∋ ci ∨ v 6≤ u, implying that
v = u∧(ci∨v). Hence v = u since v is meet-irreducible. This proves the uniqueness
of u in the definition. Therefore, π2 is a uniquely defined {1, . . . , n} → {1, . . . , n}
map. Since π2 depends only on the assignment of the left and right boundary chains
and on the meet operation, boundarily similar diagrams of L yield the same π2.
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Interchanging left and right in the definition, we obtain a uniquely defined map
σ : {1, . . . , n} → {1, . . . , n} analogously. That is, σ(j) = i iff there is a u ∈ MiL
such that dj and ci are the smallest elements of BCright(L

∗)\↓u and BCleft(L
∗)\↓u,

respectively. The uniqueness of u (both in the definition of π2 and that of σ) clearly
yields that the composite maps π2 ◦ σ and σ ◦ π2 are the identity maps. Thus, π2
is a permutation. �

The following corollary is evident by the second sentence of Lemma 2.3. It also
follows easily from known results on convex geometry, see R. P. Dilworwth [10] or
K. Adaricheva, V. A. Gorbunov and V. I. Tumanov [1, Theorem 1.7.(1-2)].

Corollary 2.4. For every slim semimodular lattice K, |MiK| = lengthK.

The third way of defining a permutation is more complicated than the other two.
However, it will play the main role in the proof of Theorem 3.3. The prerequisites
below are taken from [6] and [3].

By a grid we mean the direct product of two finite chains. If these chains are of
the same size, then we speak of a square grid. If G is a square grid, then the elements
of its lower left boundary and those of the lower right boundary are denoted by

(2.1) C = {0 = c0 ≺ c1 ≺ · · · ≺ cn}, D = {0 = d0 ≺ d1 ≺ · · · ≺ dn},

respectively, and we say that G is the square grid of length 2n; see Figure 1 for
n = 8. Note that each element of the grid can be written uniquely in the form ci∨dj
where i, j ∈ {0, . . . , n}. For latticesM1 andM2, a join-(semilattice)-homomorphism
ϕ : M1 → M2 is called cover-preserving if x ≺ y implies that ϕ(x) � ϕ(y), for all
x, y ∈M1. Kernels of this sort of homomorphisms are called cover-preserving join-

congruences.
Let M be a slim semimodular lattice, and let u ∈M . If there is a unique 4-cell

whose top, resp. bottom, is u, then it is denoted by cell♦(u), resp. cell
♦(u). Take a

4-cell B = {0B = a∧ b, a, b, 1B = a∨ b} ofM . Then B = cell♦(0B) = cell♦(a∧ b) by
(1.3), but the notation cell♦(1B) is not always allowed. Consider a join-congruence
ααα of M . We say that B is an ααα-forbidden 4-cell if the ααα-classes a/ααα, b/ααα and
(a∧b)/ααα are pairwise distinct but either (a∨b)/ααα = a/ααα or (a∨b)/ααα = b/ααα. Recall
from [6] that, for any join-congruence ααα of M ,

(2.2) ααα is cover-preserving iff M does not have an ααα-forbidden 4-cell.

If {a, b} ⊆ (a ∨ b)/ααα 6∋ a ∧ b, then B is called a source cell of ααα. The set of source
cells of ααα is denoted by SC(ααα). The source cells are usually shaded grey. We are
now ready to formulate

Definition 2.5. We associate a permutation π3 ∈ Sn with L∗ as follows; see
Figure 1 for an illustration. Let G = BCleft(L

∗) × BCright(L
∗). Let us agree that

BCleft(L
∗) and BCright(L

∗) are (identified with) the lower left boundary and the
lower right boundary of G, respectively. Using the notation (1.2), the kernel of the
join-homomorphism η : G → L, ci ∨G dj → ci ∨L dj , will be denoted by βββL∗ . For
i ∈ {1, . . . , n}, we define j = π3(i) by the property that cell♦(ci ∨G dj) ∈ SC(βββL∗).

Lemma 2.6. π3 is uniquely defined and belongs to Sn.

Proof. Note that the quotient join-semilattice G/βββL∗ is actually a lattice since it is
a finite join-semilattice with 0. Note also that G/βββL∗

∼= L by the Homomorphism
Theorem, see S. Burris and H.P. Sankappanavar [2, Thm. 6.12]. Since η acts
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identically on BCleft(L
∗), the βββL∗-classes ci/βββL∗ , i = 0, . . . , n, are pairwise distinct.

We know from [6, proof of Cor. 2] that βββL∗ is cover-preserving. (Note that we know
that L is a cover-preserving join-homomorphic image of a grid also from G. Grätzer
and E. Knapp [15] and M. Stern [26].) Hence we conclude that

c0/βββL∗ ≺ c1/βββL∗ ≺ · · · ≺ cn/βββL∗ ,

d0/βββL∗ ≺ d1/βββL∗ ≺ · · · ≺ dn/βββL∗ .
(2.3)

Taking into account that length(G/βββL∗) = lengthL = n, we obtain that

(2.4) (ci ∨ dn)/βββL∗ = (cn ∨ dj)/βββL∗ = 1/βββL∗ , for all i, j ∈ {0, . . . , n}.

Consider the sequence

[ci−1 ∨ d0, ci ∨ d0], [ci−1 ∨ d1, ci ∨ d1], . . . , [ci−1 ∨ dn, ci ∨ dn]

of prime intervals of G. By (2.4) and (2.3), the last member of this sequence is
collapsed while the first one is not collapsed by βββL∗ . Hence there is a j ∈ {1, . . . , n}
such that (ci−1 ∨ dj−1, ci ∨ dj−1) /∈ βββL∗ but (ci−1 ∨ dj , ci ∨ dj) ∈ βββL∗ . In fact, there
is exactly one j since, for t = j + 1, . . . , n,

(2.5) (ci−1 ∨ dj , ci ∨ dj) ∈ βββL∗ implies that (ci−1 ∨ dt, ci ∨ dt) ∈ βββL∗ .

By (2.2), G has no βββL∗-forbidden square. Hence we conclude that cell♦(ci ∨ dj) ∈
SC(βββL∗), and this j is unique by (2.5). By the left-right symmetry, for each j ∈
{1, . . . , n} there is exactly one i ∈ {1, . . . , n} such that cell♦(ci ∨ dj) ∈ SC(βββL∗).
Hence π3 is a uniquely defined permutation on {1, . . . , n}. �

Proposition 2.7. Let π1, π2, and π3 denote the permutations associated with L∗

in Definitions 2.1, 2.2, and 2.5, respectively. Then π1 = π2 = π3.

For π1 = π2 = π3, we use the notation π = πL∗ .

Proof of Proposition 2.7. Assume that j = π3(i), that is, cell♦(ci ∨G dj) ∈ SC(βββL∗).
Let u := ci−1 ∨L dj−1 and v := ci ∨L dj (in L). By the definition of η and βββL∗ , this
means that

(2.6) u 6= v = ci−1 ∨L dj = ci ∨L dj−1.

Assume that x ∈ L such that u < x. We know from (1.4) that x is of the form
cs ∨L dt. Since x = u ∨L x, we can assume that i − 1 ≤ s and j − 1 ≤ t. Hence
(2.6) yields that v ≤ x. This means that v is the only cover of u, whence u ∈ MiL.
If ci ≤ u, then

u = ci ∨L u = ci ∨L ci−1 ∨L dj−1 = ci ∨L dj−1

contradicts (2.6). Therefore, ci is the smallest element of BCleft(L
∗) \ ↓u. Similarly,

dj is the smallest element of BCright(L
∗) \ ↓u. Hence j = π2(i). Thus, π2 equals π3.

Next, assume that j = π1(i). Consider the trajectory I0, . . . , Im as in Defini-
tion 2.1. For t = 0, . . . ,m, let xt and yt denote the bottom and the top of It, respec-
tively. That is, It = [xt, yt]. By [8, Lemmas 11 and 12], there is a k ∈ {0, . . . ,m}
such that

(2.7) yk = ci ∨ xk, ci−1 = ci ∧ xk, yk = dj ∨ xk, dj−1 = dj ∧ xk.

We claim that xk is meet-irreducible. If m = 0, then [ci−1, ci] = [di−1, di] =
[xk, yk] ⊆ Nar(L), whence xk ∈ MiL. Hence we can assume that m ≥ 1. Observe
that yk is join-reducible by (2.7). If k ∈ {0,m}, then Ik is on the boundary of L,
and the join-reducibility of yk together with [9, Lemma 4] yields that xk ∈ MiL.
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Hence we can assume that k ∈ {1, . . . ,m−1}. Then, by (1.5), we have two adjacent
4-cells: B′ = {xk−1, yk−1, xk, yk} and B′′ = {xk, yk, xk+1, yk+1}. Suppose that xk
is meet-reducible. Then it has a cover v that is distinct from yk. Clearly, v /∈ ↓yk.
In the diagram L∗, let Xa = BCleft(↓yk) and Xb = BCright(↓yk). Fix a maximal
chain X0 in ↑yk. Then Ya := Xa ∪ X0 and Yb := Xb ∪ X0 are maximal chains of
L∗. For each maximal chain Y and each y ∈ Y , exactly one of the following three
possibilities holds: y is strictly on the left of Y , or y is strictly on the right of Y ,
or y ∈ Y .

Since v /∈ Ya∪Yb, v is either strictly on the left or strictly on the right of Ya, and
the same holds for Yb. If v is both strictly on the right of Ya and strictly on the left
of Yb, then v ∈ ↓yk is a contradiction. Hence, by the left-right symmetry, we can
assume that v is strictly on the right of Yb. However, xk is strictly on the left of
Yb since B′ and B′′ are adjacent 4-cells. Therefore, see D. Kelly and I. Rival [22,
Lemma 1.2], there is a w ∈ Yb such that xk < w < v. This contradicts that xk ≺ v,
proving that xk is meet-irreducible.

Finally, (2.7) implies that ci and dj are the smallest elements of BCleft(L
∗) \ ↓xk

and BCright(L
∗) \ ↓xk, respectively. Hence j = π2(i), proving that π1 equals π2. �

The dual
(

Lat( ~H, ~K);⊇
)

of the lattice Lat( ~H, ~K) =
(

Lat( ~H, ~K);⊆
)

will be

denoted by Lat( ~H, ~K)δ. By [8], or by Lemma 4.6(iii), there is a unique diagram
(

Lat( ~H, ~K)δ
)

▽ in Diag
(

Lat( ~H, ~K)δ
)

whose left boundary chain and right boundary

chain are ~H and ~K, respectively. Since π = π1, the following remark is evident by
[8].

Remark 2.8. The unique permutation that establishes a down-and-up projective

matching between the composition series ~H and ~K mentioned in the Introduction

is the permutation associated with
(

Lat( ~H, ~K)δ
)

▽.

3. The main result

Assume that L is a slim semimodular lattice and L∗ ∈ DgrL. Let u ≤ v be
narrows. If we reflect [u, v]∗ vertically while keeping the rest of the diagram L∗

unchanged, we obtain, as a rule, another planar diagram of L that determines
a different permutation. In particular, if u = 0 and v = 1, then we obtain the
permutation π−1. Hence we cannot associate a single well-defined partition with an
abstract slim semimodular lattice L, in general. That is why we need the following
concept.

Let σ ∈ Sn, and let I = [u, v] = {u, . . . , v} be an interval of the chain {1 < · · · <
n}. If σ(i) ∈ I holds for all i ∈ I, then we say that I is closed with respect to σ.
The empty subset is also called closed. If each of {1, . . . , u−1}, I and {v+1, . . . , n}
is closed with respect to σ and I 6= ∅, then I is called a section of σ. Sections
that are minimal with respect to set inclusion are called segments of σ. For brevity,
sections and segments of σ are often called σ-sections and σ-segments. Let Seg(σ)
denote the set of all σ-segments. We will prove soon that Seg(σ) is a partition on
{1, . . . , n}. For i ∈ {1, . . . , n}, the unique segment that contains i is denoted by
Seg(σ, i). For example, if

(3.1) σ =

(

1 2 3 4 5 6 7 8 9
1 7 4 5 3 6 2 9 8

)

= (27)(345)(89),
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then Seg(σ) =
{

{1}, {2, 3, 4, 5, 6, 7}, {8, 9}
}

and Seg(σ, 8) = {8, 9}. The restriction
of σ to a subset I of {1, . . . , n} will be denoted by σ⌉I .

Next, we define a binary relation on Sn. Let σ, µ ∈ Sn; we say that σ and µ are
sectionally inverse or equal, in notation (σ, µ) ∈ ̺̺̺ie, if Seg(σ) = Seg(µ) and, for all
I ∈ Seg(σ), µ⌉I ∈ {σ⌉I , (σ⌉I)

−1}. (The letters ̺̺̺, i and e in the notation ̺̺̺ie come
from “relation”, “inverse”, and “equal”, respectively.) To shed more light on these
concepts, we present an easy lemma.

Lemma 3.1. Let σ, µ ∈ Sn.

(i) Seg(σ) is a partition on {1, . . . , n}.
(ii) The intersection of any two σ-sections is either a σ-section, or empty.

(iii) σ-sections are the same as (non-empty) intervals that are unions of σ-segments.

(iv) (σ, µ) ∈ ̺̺̺ie if and only if there are pairwise disjoint σ-sections J1, . . . , Jt such
that J1 ∪ · · · ∪ Jt = {1, . . . , n} and, for i = 1, . . . , t, µ⌉Ji

∈ {σ⌉Ji
, (σ⌉Ji

)−1}.
(v) ̺̺̺ie is an equivalence relation on Sn.

For σ ∈ Sn, the ̺̺̺
i
e-class of σ will be denoted by σ/̺̺̺ie. For example, if σ is the

permutation given in (3.1), then σ/̺̺̺ie = {σ, σ−1}. Another example: if n = 7, then
(123)(567)/̺̺̺ie =

{

(123)(567), (132)(567), (123)(576), (132)(576)
}

. The quotient set
{

σ/̺̺̺ie : σ ∈ Sn

}

will of course be denoted by Sn/̺̺̺
i
e.

The class of slim semimodular lattices of length n will be denoted by SlimSem(n).
Let ̺̺̺∼= denote isomorphism as a binary relation. For a lattice L, let I(L) be the
class of lattices isomorphic to L. The quotient set

SlimSem
∼=(n) := SlimSem(n)/̺̺̺∼= =

{

I(L) : L ∈ SlimSem(n)
}

is called the set of isomorphism classes of slim semimodular lattices of length n.
Our goal is to establish a bijective correspondence between SlimSem

∼=(n) and Sn/̺̺̺
i
e.

This way, since we are interested in lattices only up to isomorphism, slim semimod-
ular lattices will be described by permutations.

To accomplish our goal, we define four maps. First of all, we need some notation.
Consider the square grid G, see (2.1). When there is no danger of confusion,
we will simply write ∨ and ∧ instead of ∨G and ∧G. For i, j ∈ {1, . . . , n} and
u = ci ∨ dj , let ϑϑϑ(u) = ϑϑϑ(ci ∨ dj) denote the smallest join-congruence of G that
collapses {ci−1 ∨ dj , ci ∨ dj−1, ci ∨ dj}. Let

SlimSem(n)∗ :=
⋃

L∈SlimSem(n)

DgrL.

(It is a finite set since SlimSem
∼=(n) is finite.) Our maps are defined as follows.

Definition 3.2. Let n ∈ N = {1, 2, . . .}.

(i) For π ∈ Sn, let βββπ :=
∨n

i=1ϑϑϑ(ci ∨ dπ(i)), in the congruence lattice of (G;∨).
Then G/βββπ is a lattice (not just a join-semilattice). By the canonical diagram
of G/βββπ we mean its planar diagram (G/βββπ)

⋄ such that

BCleft((G/βββπ)
⋄) = {ci/βββπ : 0 ≤ i ≤ n},

BCright((G/βββπ)
⋄) = {di/βββπ : 0 ≤ i ≤ n}.

(We will soon show that this makes sense.) Let ϕ0(π) = (G/βββπ)
⋄. This defines

a map ϕ0 : Sn → SlimSem(n)∗.
(ii) We define a map ψ0 : SlimSem(n)∗ → Sn, L

∗ 7→ πL∗ .
(iii) Let ϕ : Sn/̺̺̺

i
e → SlimSem

∼=(n), π/̺̺̺ie 7→ I((ϕ0(π))
lat).
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(iv) Let ψ : SlimSem
∼=(n) → Sn/̺̺̺

i
e, I(L) 7→ ψ0(L

∗)/̺̺̺ie = πL∗/̺̺̺ie, where L
∗ denotes

an arbitrarily chosen planar diagram of L.

Since |S0| = |S0/̺̺̺
i
e| = |SlimSem(0)∗| = |SlimSem

∼=(0)| = 1, the meaning of these
maps for n = 0 is obvious.

We are now in the position of formulating our main result.

Theorem 3.3. Slim semimodular lattices, up to isomorphism, are characterized by

permutations, up to the equivalence relation “sectionally inverse or equal”. More

exactly, ϕ0, ϕ, ψ0 and ψ are well-defined maps, they are bijections, ψ0 = ϕ−1
0 , and

ψ = ϕ−1.

The case n = 0 is trivial. In what follows, we always assume that n ∈ N. The
following result is an evident consequence of Theorem 3.3, Remark 2.8, and the fact
that each lattice is determined by any diagram of its dual lattice.

Corollary 3.4. π from Theorem 1.1 determines the lattice Lat( ~H, ~K), that is
(

Lat( ~H, ~K);⊆
)

, up to lattice isomorphism.

Theorem 3.3 will make the proof of the next corollary quite easy.

Corollary 3.5. For each slim semimodular lattice L, there exist a finite cyclic

group G and composition series ~H and ~K of G such that L is isomorphic to the

lattice Lat( ~H, ~K)δ. Conversely, for all groups G with finite composition length and

for any composition series ~H and ~K of G, Lat( ~H, ~K)δ is a slim semimodular lattice.

Remark 3.6. Associated with a permutation π ∈ Sn, it is convenient to consider
the grid matrix A(π) := (G;π•) of π, where π• := {cell♦(ci ∨G dπ(i)) : 1 ≤ i ≤ n}.
That is, A(π) consists of the grid together with n 4-cells determined by π. In
Figure 1, the elements of π• are shaded grey. We can use grid matrices to clarify the
definition of ϕ0 as follows. For a 4-cell B of G, let ϑϑϑ(B) denote ϑϑϑ(1B). Equivalently,
ϑϑϑ(B) is the smallest join-congruence of G that collapses the upper edges of B. Then
βββπ =

∨

B∈π• ϑϑϑ(B) and ϕ0(π) = (G/βββπ)
⋄.

Remark 3.7. We can use π• also in connection with Definition 2.5. Indeed, for
L∗ ∈ SlimSem(n)∗, πL∗ = π3 is defined by the property πL∗

• = SC(βββL∗).

4. Auxiliary lemmas and the proof of the main result

Proof of Lemma 3.1. For an interval J = {u, . . . , v} of {1, . . . , n}, we define

(4.1) Jl = {1, . . . , u− 1} and Jr = {v + 1, . . . , n}.

Assume that I and I ′ are sections of σ. Then the sets I, Il, Ir, I
′, I ′l and I ′r are

σ-closed. Let J = I ∩ I ′, and suppose that it is non-empty. Since Jl ∈ {Il, I
′

l} and
Jr ∈ {Ir, I

′

r}, the sets J, Jl and Jr are σ-closed. Hence J is a section of σ, proving
part (ii).

To prove (i), let a ∈ {1, . . . , n}. By part (ii), there is a minimal σ-section
I = {u, . . . , v} such that a ∈ I. Suppose that I is not a σ-segment. Then there is
a σ-segment J = {u′, . . . , v′} such that a /∈ J ⊂ I. We know that u ≤ a ≤ v, but
a < u′ or v′ < a. We can assume that a < u′ since the case v′ < a can be treated
similarly. Let K = {u, . . . , u′ − 1}, and note that a ∈ K. Since intersections and
unions of σ-closed subsets are σ-closed, we conclude that K = I ∩ Jl, Kl = Il and
Kr = J ∪Jr are σ-closed. Hence K is a σ-section, which contradicts a ∈ K and the
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minimality of I. Consequently, each a ∈ {1, . . . , n} belongs to a σ-segment. Since
distinct σ-segments are obviously disjoint by part (ii), part (i) follows.

Part (iii) is an evident consequence of parts (i) and (ii).
The “only if” direction of part (iv) is obvious since we can choose {J1, . . . , Jt} :=

Seg(σ). To prove the “if” direction, assume that there are σ-sections J1, . . . , Jt
described in part (iv). Let I be a non-empty σ-closed subset of {1, . . . , n}. For every
i ∈ {1, . . . , t}, I ∩ Ji is σ-closed. Hence it is µ-closed since µ⌉Ji

∈ {σ⌉Ji
, (σ⌉Ji

)−1}.
So I = (I ∩ J1) ∪ · · · ∪ (I ∩ Jt) is µ-closed. This implies that σ-sections are also
µ-sections. In particular, J1, . . . , Jt are µ-sections, which makes the role of σ and µ
symmetric. Therefore, µ-sections are the same as σ-sections, and we conclude that
Seg(σ) = Seg(µ).

Next, let I ∈ Seg(σ) = Seg(µ). Then there is an i ∈ {1, . . . , t} such that I ∩ Ji
is non-empty. Since I ∩ Ji is a σ-section by part (ii) and I is a minimal σ-section,
I ⊆ Ji. Hence µ⌉I = (µ⌉Ji

)⌉I belongs to {σ⌉I , (σ⌉I)
−1}. Thus, (σ, µ) ∈ ̺̺̺ie, proving

part (iv).
Finally, part (v) is obvious. �

Lemma 4.1 ([3, (14)+Cor. 22]). Assume that i, j ∈ {1, . . . , n}, and let π ∈ Sn.

(i) Then (ci−1 ∨ dj , ci ∨ dj) ∈ βββπ iff π(i) ≤ j. Similarly, (ci ∨ dj−1, ci ∨ dj) ∈ βββπ
iff π−1(j) ≤ i.

(ii) Equivalently, (ci−1 ∨ dj , ci ∨ dj) ∈ βββπ iff cell♦(ci ∨ dt) ∈ π• for some t ∈
{1, . . . , j}. Similarly, (ci ∨ dj−1, ci ∨ dj) ∈ βββπ iff cell♦(ct ∨ dj) ∈ π• for some

t ∈ {1, . . . , i}.
(iii) In particular, (ci−1, ci) /∈ βββπ and (dj−1, dj) /∈ βββπ.

Lemma 4.2. If π ∈ Sn, then G/βββπ ∈ SlimSem(n).

Proof. Suppose that βββπ is not cover-preserving. Then, by (2.2), there are i, j ∈
{1, . . . , n} such that cell♦(ci∨dj) is a βββπ-forbidden 4-cell of G. By symmetry, we can
assume that (ci∨dj−1, ci∨dj) ∈ βββπ. By Lemma 4.1, π−1(j) ≤ i. Since cell♦(ci∨dj)
is βββπ-forbidden, (ci−1 ∨ dj−1, ci−1 ∨ dj) /∈ βββπ . Using Lemma 4.1 again, we obtain
that π−1(j) 6≤ i − 1. Hence π−1(j) = i, that is π(i) = j. Again by Lemma 4.1,
we infer that (ci−1 ∨ dj , ci ∨ dj) ∈ βββπ, which is a contradiction since cell♦(ci ∨ dj)
is a βββπ-forbidden 4-cell. This proves that βββπ is a cover-preserving join-congruence.
Since quotient lattices of finite semimodular lattices modulo cover-preserving join-
congruences are semimodular by G. Grätzer and E. Knapp [14, Lemma 16], it
follows that G/βββπ is semimodular. Obviously (see also [3, first paragraph of Section
2]), slimness is preserved under forming join-homomorphic images, whence G/βββπ
is slim. The rest of the proof is also based on Lemma 4.1. Since ci−1/βββπ 6= ci/βββπ,
di−1/βββπ 6= di/βββπ, and βββπ is cover-preserving,

(4.2) 0/βββπ = c0/βββπ ≺ · · · ≺ cn/βββπ, 0/βββπ = d0/βββπ ≺ · · · ≺ dn/βββπ.

It follows from π−1(j) ≤ n that (cn∨dj−1)/βββπ = (cn∨dj)/βββπ for all j ∈ {1, . . . , n}.
By transitivity, cn/βββπ = (cn∨d0)/βββπ = (cn∨dn)/βββπ = 1/βββπ. Hence length(G/βββπ) =
n, and G/βββπ ∈ SlimSem(n). �

Lemma 4.3. For every k ∈ {1, . . . , n}, (ck, dk) ∈ βββπ iff k is the largest element of

Seg(π, k).

Proof. Assume that k is the largest element of Seg(π, k). Using the notation (4.1),
it follows that {1, . . . , k} = Seg(π, k) ∪

(

Seg(π, k)
)

l
is closed with respect to π and
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π−1. Hence, by Lemma 4.1, (ci−1 ∨ dk, ci ∨ dk) ∈ βββπ and (ck ∨ dj−1, ck ∨ dj) ∈ βββπ
for all i, j ∈ {1, . . . , k}. Thus, we conclude that (ck, dk) = (ck ∨ d0, c0 ∨ dk) ∈ βββπ by
transitivity.

Conversely, assume that (ck, dk) ∈ βββπ. Denote {1, . . . , k} by I. Since dk/βββπ is a
convex join-subsemilattice containing ck and ck∨dk, it follows from dk ≤ ci−1∨dk ≤
ci∨dk ≤ ck∨dk that (ci−1∨dk, ci∨dk) ∈ βββπ for all i ∈ I. This implies that π(i) ∈ I,
for all i ∈ I, by Lemma 4.1. That is, I is a π-closed subset of {1, . . . , n}. Since
then Ir = {1, . . . , n} \ I and Il = ∅ are also π-closed, I is a π-section. Hence
k, the largest element of I, is the largest element of Seg(π, k) by (i) and (iii) of
Lemma 3.1. �

Lemma 4.4. Bnd(G/βββπ) =
{

ci/βββπ : i ∈ {0, . . . , n}
}

∪
{

di/βββπ : i ∈ {0, . . . , n}
}

.

Proof. Let K :=
{

ci/βββπ : i ∈ {0, . . . , n}
}

∪
{

di/βββπ : i ∈ {0, . . . , n}
}

. The height of
an element y, that is, the length of [0, y], will be denoted by h(y).

To show that K ⊆ Bnd(G/βββπ), we prove by induction on i that

(Hi) ci/βββπ ∈ Bnd(G/βββπ), di/βββπ ∈ Bnd(G/βββπ).

Condition (H0) is obvious. Assume that 0 < i ≤ n and (Hi−1) holds. By
symmetry, it suffices to show that ci/βββπ ∈ Bnd(G/βββπ). We can assume that
ci/βββπ /∈ Ji (Bnd(G/βββπ)) since otherwise (1.4) applies. Hence, by (4.2), there ex-
ists an element cs ∨ dt ∈ G such that ci−1/βββπ ‖ (cs ∨ dt)/βββπ < ci/βββπ. Clearly,
s < i − 1. Hence ci/βββπ = ci−1/βββπ ∨ (cs ∨ dt)/βββπ = ci−1/βββπ ∨ dt/βββπ. Sup-
pose that t is minimal with respect to the property ci/βββπ = ci−1/βββπ ∨ dt/βββπ.
Clearly, t ≥ 1. Let x := ci−1 ∨ dt−1. By the minimality of t, we obtain the in-
equalities ci−1/βββπ ≤ x/βββπ = ci−1/βββπ ∨ dt−1/βββπ < ci/βββπ. Hence (4.2) yields that
x/βββπ = ci−1/βββπ .

Next, assume that z ∈ G such that ci−1/βββπ < z/βββπ . Then

z/βββπ = z/βββπ ∨ ci−1/βββπ = z/βββπ ∨ x/βββπ = (x ∨ z)/βββπ.

Since x/βββπ = ci−1/βββπ 6= (x ∨ z)/βββπ, we obtain that x < x ∨ z. Since ci ∨ dt−1

and ci−1 ∨ dt are the only covers of x, we conclude that ci−1 ∨ dt ≤ x ∨ z or
ci ∨ dt−1 ≤ x ∨ z. In the first case, ci/βββπ = (ci−1 ∨ dt)/βββπ ≤ (x ∨ z)/βββπ = z/βββπ.
In the second case, ci/βββπ = ci/βββπ ∨ ci−1/βββπ = ci/βββπ ∨ x/βββπ = (ci ∨ x)/βββπ =
(ci ∨ dt−1)/βββπ ≤ (x ∨ z)/βββπ = z/βββπ. This shows that ci/βββπ is the only cover of
ci−1/βββπ. Take a diagram (G/βββπ)

∗ ∈ Dgr (G/βββπ). By left-right symmetry and the
induction hypothesis (Hi−1), we can assume that ci−1/βββπ ∈ BCleft((G/βββπ)

∗). We
know that BCleft((G/βββπ)

∗) is a maximal chain. Hence ci/βββπ, which is the only cover
of ci−1/βββπ, belongs to BCleft((G/βββπ)

∗). Thus, ci/βββπ ∈ Bnd((G/βββπ)
∗) = Bnd(G/βββπ),

and (Hi) holds. Therefore, K ⊆ Bnd(G/βββπ).
To show the converse inclusion, let us assume that

x/βββπ ∈ Bnd(G/βββπ) = BCleft((G/βββπ)
∗) ∪ BCright((G/βββπ)

∗).

Let x/βββπ ∈ BCleft((G/βββπ)
∗); the other case is similar. Denote h(x/βββπ) by i. Assume

first that x/βββπ belongs also to BCright((G/βββπ)
∗). Then x/βββπ ∈ Nar(G/βββπ). Hence

x/βββπ is comparable with ci/βββπ. But h(ci/βββπ) = i = h(x/βββπ) by (4.2), whence
x/βββπ = ci/βββπ ∈ K.

Secondly, we assume that x/βββπ /∈ BCright((G/βββπ)
∗). Let y/βββπ be the unique ele-

ment of BCright((G/βββπ)
∗) with height i. Then x/βββπ and y/βββπ are the only elements
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of Bnd(G/βββπ) with height i, and they are distinct. Hence Nar(G/βββπ) has no ele-
ment with height i. Clearly, Ji (G/βββπ) ⊆ K. Hence ci/βββπ 6= di/βββπ since otherwise
ci/βββπ would belong to Nar(G/βββπ) and it would be of height i by (4.2). So K has
also two elements of height i, namely, ci/βββπ and di/βββπ. Since K ⊆ Bnd(G/βββπ), we
conclude that {ci/βββπ, di/βββπ} = {x/βββπ, y/βββπ}. Hence x/βββπ ∈ {ci/βββπ, di/βββπ} ⊆ K,
proving that Bnd(G/βββπ) ⊆ K. �

Lemma 4.5. Assume that I := {u+1, . . . , v} is a section of π ∈ Sn, and let σ = π⌉I
be the restriction of π to I. Then the subdiagram

[

cu/βββπ, cv/βββπ
]⋄

of (G/βββπ)
⋄ =

ϕ0(π) equals ϕ0(σ). Furthermore, cu/βββπ and cv/βββπ belong to Nar(ϕ0(π)).

Proof. Consider the interval B := [cu ∨ du, cv ∨ dv] of G. Then B is a square
grid, a subgrid of G. We infer from Lemma 3.1(i) and (iii) that v is the largest
element of v/̺̺̺ie, and the same holds for u if u > 0. By Lemma 4.3, this yields that
cu/βββπ = du/βββπ = (cu∨du)/βββπ and cv/βββπ = dv/βββπ = (cv∨dv)/βββπ . Hence Lemma 4.4
implies the last sentence of Lemma 4.5. Each element y/βββπ ∈

[

cu/βββπ, cv/βββπ
]

is of
the form x/βββπ for some x ∈ B since

y/βββπ =
(

y/βββπ ∨ (cu ∨ du)/βββπ
)

∧ (cv ∨ dv)/βββπ =
(

(y ∨ cu ∨ du) ∧ (cv ∨ dv)
)

/βββπ.

Hence, as in the Third Isomorphism Theorem in S. Burris and H.P. Sankap-
panavar [2, Thm. 6.18], it is straightforward to see that

[

cu/βββπ, cv/βββπ
]

is iso-
morphic to B/(βββπ⌉B) and x/βββπ 7→ x/(βββπ⌉B) is an isomorphism. This yields that
[cu/βββπ, cv/βββπ]

⋄ = (B/(βββπ⌉B))
⋄. Hence it suffices to show that βββπ⌉B = βββσ. In fact,

it suffices to show that βββπ⌉B and βββσ collapse exactly the same prime intervals of B.
But this is a straightforward consequence of Lemma 4.1. �

Lemma 4.6. Assume that t ∈ N = {1, 2, . . .}, M is a slim semimodular lattice with

Nar(M) = {0 = z0 < z1 < · · · < zt = 1}, M∗ ∈ DgrM , and U and V are maximal

chains in M such that U ∪ V = Bnd(M). Then the following four assertions hold.

(i) Nar(M) = U ∩ V . In particular, BCleft(M
∗) ∩ BCright(M

∗) = Nar(M).
(ii) If M is indecomposable, then {U, V } = {BCleft(M

∗),BCright(M
∗)}.

(iii) M has a planar diagram M▽ such that BCleft(M
▽) = U and BCright(M

▽) = V .

(iv) All planar diagrams of M can be obtained from M∗ in the following way. Take

a subset H of {1, . . . , t}, reflect the interval [zi−1, zi]
∗ of M∗ vertically for all

i ∈ H, and keep the other [zi−1, zi]
∗ unchanged. Furthermore, each subset H

of {1, . . . , t} yields a member of DgrM .

Proof. Suppose that z ∈ U ∩ V . Then z ∈ Nar(M) since z is comparable with all
elements of JiM by (1.4). Conversely, since every element of Nar(M) belongs to
all maximal chains, Nar(M) ⊆ U ∩ V . This proves (i).

Assume that M is indecomposable. For the elements of the boundary of M∗

we use the notation introduced in (1.2). Since all chains of M are of the same
length, we can write U and V in the form {0 = u0 ≺ u1 ≺ · · · ≺ un = 1} and
{0 = v0 ≺ v1 ≺ · · · ≺ vn = 1}, respectively. By (1.3) and symmetry, we can assume
that u1 = c1. We prove by induction on i that ui = ci and vi = di. The case
i ∈ {0, 1, n} is clear. Assume that 1 < i < n, ui−1 = ci−1, vi−1 = di−1 but, say
ui 6= ci. By part (i), there are exactly two elements in Bnd(M) whose height is i.
Therefore, ui = di, vi = ci and ci 6= di. Since distinct elements of the same height
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are incomparable,

ci−1 < ci−1 ∨ di−1 ≤ (ci−1 ∧ ui−1) ∨ (vi−1 ∧ di−1)

≤ (ci ∧ ui) ∨ (vi ∧ di) ≤ (ci ∧ di) ∨ (ci ∧ di) = ci ∧ di < ci.

This contradicts that ci−1 ≺ ci, proving part (ii) of the statement.
Part (ii) trivially implies part (iii) in the particular case when M is indecom-

posable, that is, when t ≤ 1. Otherwise, for i = 1, . . . , t, let Mi = [zi−1, zi],
Ui :=Mi∩U and Vi :=Mi∩V . Applying the particular case to each i ∈ {1, . . . , t},
we obtain part (iii).

Finally, consider a diagram M♮ ∈ DgrM . Let i ∈ {1, . . . , t}. Since [zi−1, zi]
is clearly indecomposable, part (ii) implies that [zi−1, zi]

♮ equals [zi−1, zi]
∗ or we

obtain [zi−1, zi]
♮ from [zi−1, zi]

∗ by a vertical reflection. This proves the first half
of part (iv). The rest is evident. �

Lemma 4.7. Let γγγ be a cover-preserving join-congruence of the square grid G
such that, for all i ∈ {1, . . . , n}, (ci−1, ci) /∈ γγγ and (di−1, di) /∈ γγγ. Then γγγ =
∨

B∈SC(γγγ)ϑϑϑ(B).

Proof. Denote
∨

B∈SC(γγγ)ϑϑϑ(B) by δδδ. It suffices to show that γγγ and δδδ collapses exactly

the same covering pairs of G. Let ci−1 ∨dj ≺ ci ∨dj be a covering pair. (The other
case, ci ∨ dj−1 ≺ ci ∨ dj , is similar.) We know from [3, (14)+Cor. 22] that

(4.3) (ci−1 ∨ dj , ci ∨ dj) ∈ δδδ iff cell♦(ci ∨ dt) ∈ SC(γγγ) for some t ∈ {1, . . . , j}.

Assume that (ci−1 ∨ dj , ci ∨ dj) ∈ δδδ. Then cell♦(ci ∨ dt) ∈ SC(γγγ) for some t ∈
{1, . . . , j} by (4.3), and (ci−1∨dj , ci∨dj) ∈ γγγ follows obviously. Conversely, assume
that (ci−1 ∨ dj , ci ∨ dj) ∈ γγγ. Take the minimal t such that (ci−1 ∨ dt, ci ∨ dt) ∈ γγγ.
Clearly, t ∈ {1, . . . , j}. Since cell♦(ci∨dt) cannot be a γγγ-forbidden 4-cell, it belongs
to SC(γγγ). By (4.3), this implies (ci−1 ∨ dj , ci ∨ dj) ∈ δδδ. �

The next lemma uses the notation of Remark 3.6.

Lemma 4.8. Let π ∈ Sn. Then SC(βββπ) = π•.

Proof. . For i ∈ {1, . . . , n}, we say that
{

cell♦(ci ∨ dt) : t ∈ {1, . . . , n}
}

is a
row of 4-cells. Obviously, for every join-congruence ααα of G, every row contains at
most one source cell of ααα. Hence |π•| = n ≥ |SC(βββπ)|. On the other hand, it is
straightforward to infer from Lemma 4.1(ii) that π• ⊆ SC(βββπ). �

Lemma 4.9. ϕ0 and ψ0 are well-defined, and they are reciprocal bijections.

Proof. We know from Lemma 4.2 that G/βββπ ∈ SlimSem(n). Therefore it follows
from Lemma 4.6(iii) and Lemma 4.4 that (G/βββπ)

⋄ is well-defined. Consequently,
ϕ0 is a well-defined Sn → SlimSem(n)∗ map. By Section 2 (for example, by
Proposition 2.7 combined with Lemma 2.3 or Lemma 2.6), ψ0 is a well-defined
SlimSem(n)∗ → Sn map.

Next, let L∗ ∈ SlimSem(n)∗, and denote (L∗)lat by L. Since η from Defini-
tion 2.5 is surjective by (1.4), L ∼= G/βββL∗ , and η̃ : G/βββL∗ → L, x/βββL∗ 7→ η(x) is
an isomorphism. Furthermore, π := π3 = ψ0(L

∗) = πL∗ is determined by SC(βββL∗).
Combining the definition of ϕ0 and Remark 3.7,

βββπ =

n
∨

i=1

ϑϑϑ(ci ∨ dπ(i)) =
∨

{ϑϑϑ(B) : B ∈ π•} =
∨

{ϑϑϑ(B) : B ∈ SC(βββL∗)}.
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Hence, by (2.3) and Lemma 4.7, βββπ = βββL∗ . Thus, L ∼= G/βββπ. Since η̃(ci/βββπ) =
η(ci) = ci, we obtain that η̃

(

BCleft((G/βββπ)
⋄)
)

= BCleft(L
∗). Similarly, we con-

clude that η̃
(

BCright((G/βββπ)
⋄)
)

= BCright(L
∗), whence it follows that ϕ0(ψ0(L

∗)) =
ϕ0(π) = L∗.

Next, let π ∈ Sn. Let G be the corresponding square grid of length 2n. We use
the notation introduced in (2.1). Let G/βββπ, (G/βββπ)

⋄, ci/βββπ, and dj/βββπ be denoted
by L, L∗, c′i, and d′j , respectively. Observe that BCleft(L

∗) = {c′i : 1 ≤ i ≤ n}

and BCright(L
∗) = {d′j : 1 ≤ j ≤ n}. Let G′ be their direct product. We identify

the lower left boundary and the lower right boundary of G′ with BCleft(L
∗) and

BCright(L
∗), respectively. Hence G′ =

{

c′i ∨G′ d′j : i, j ∈ {1, . . . , n}
}

.

We have to consider the following three join-homomorphisms. Let γ : G → G′,
ci ∨G dj 7→ c′i ∨G′ d′j be the first one. The second one is η′ : G′ → L, c′i ∨G′ d′j 7→

c′i ∨L d
′

j = ci/βββπ ∨L dj/βββπ = (ci ∨G dj)/βββπ . Let η := η′ ◦ γ be the third one, that is,

(4.4) η : G→ L, ci ∨G dj 7→ η′(γ(ci ∨G dj)
)

= (ci ∨G dj)/βββπ.

According to Definition 2.5, πL∗ is defined by the kernel of η′. Since the notation of
grid elements in Definition 2.5 is irrelevant and γ is an isomorphism, Definition 2.5
applied to η yields the same permutation. By (4.4), Ker η, the kernel of η, is βββπ.
Hence we obtain from Remark 3.7 that ψ0(L

∗) = πL∗ is the unique permutation
that satisfies the equation

(

ψ0(L
∗)
)

• = SC(Ker η) = SC(βββπ). By Lemma 4.8, this

is equivalent with
(

ψ0(L
∗)
)

• = π•. Since π instead of ψ0(L
∗) also satisfies this

equation, we obtain that ψ0(L
∗) = π. Thus, π = ψ0(L

∗) = ψ0(ϕ0(π)). Therefore,
ϕ0 and ψ0 are reciprocal bijections. �

Proof of Theorem 3.3. Clearly, if L1, L2 ∈ SlimSem(n) and L1
∼= L2, then DgrL1 =

DgrL2. Hence, to show that ψ is well-defined, it suffices to consider two diagrams of
the same lattice. Assume that L ∈ SlimSem(n) and L∗, L▽ ∈ DgrL. Let Nar(L) =
{0 = z0 < z1 < · · · < zt = 1}, t ∈ N. The height of zi will be denoted by hi. It
follows trivially from Definition 2.2 or 2.1 that Ii := {hi−1 + 1, . . . , hi} is both a
πL∗ -section and a πL▽ -section. By Lemma 4.5,

(4.5) πL∗⌉Ii = π[zi−1,zi]∗ , πL▽⌉Ii = π[zi−1,zi]▽ .

It follows from, say, Definition 2.1 that if we interchange the left and the right
boundaries then we obtain the inverse permutation. For each i ∈ {1, . . . , t},
Lemma 4.6(iv) permits only two cases: [zi−1, zi]

▽ is obtained from [zi−1, zi]
∗ by

a vertical reflection or [zi−1, zi]
▽ = [zi−1, zi]

∗. In the first case, (4.5) implies
πL▽⌉Ii = (πL∗⌉Ii)

−1. In the second case, (4.5) yields that πL▽⌉Ii = πL∗⌉Ii . There-
fore, πL▽⌉Ii ∈ {πL∗⌉Ii , (πL∗⌉Ii)

−1} for i = 1, . . . , t. Consequently, we derive from
Lemma 3.1(iv) that

(

ψ0(L
∗), ψ0(L

▽)
)

= (πL∗ , πL▽) ∈ ̺̺̺ie. Thus, ψ is a well-defined
map.

Next, assume that π, σ ∈ Sn such that (π, σ) ∈ ̺̺̺ie. We know that π and σ have
the same segments. Let 0 = j0 < · · · < jt = n such that Seg(π) = Seg(σ) =
{

{jr−1 + 1, . . . , jr} : 1 ≤ r ≤ t
}

. Let µ ∈ {π, σ}. Then

(4.6) Nar(ϕ0(µ)) =
{

cjr/βββµ : 0 ≤ r ≤ t
}

by (4.2) and Lemmas 4.3 and 4.4. Consider an r ∈ {1, . . . , t}. For brevity, let I =
{jr−1+1, . . . , jr}, the r-th segment of π and σ. We know that σ⌉I ∈ {π⌉I , (π⌉I)

−1}.
We obtain from Lemma 4.5 that (

[

cjr−1
/βββµ, cjr/βββµ

]

)⋄ = ϕ0(µ⌉I). Hence if σ⌉I = π⌉I ,
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then (
[

cjr−1
/βββπ, cjr/βββπ

]

)⋄ = (
[

cjr−1
/βββσ, cjr/βββσ

]

)⋄, implying that

(4.7)
[

cjr−1
/βββπ, cjr/βββπ

]

∼=
[

cjr−1
/βββσ, cjr/βββσ

]

.

Otherwise, assume that σ⌉I = (π⌉I)
−1. Therefore, when Definition 3.2(i) is applied

to σ⌉I and π⌉I , the role of the ci and that of the di are interchanged. Consequently,
(
[

cjr−1
/βββσ, cjr/βββσ

]

)⋄ is obtained from (
[

cjr−1
/βββπ, cjr/βββπ

]

)⋄ by a vertical reflection,
and (4.7) holds again. From (4.7), applied for r = 1, . . . , t, and (4.6), we obtain
that (ϕ0(π))

lat ∼= (ϕ0(σ))
lat. Thus, ϕ is a well-defined map.

Finally, since ϕ0 and ψ0 are reciprocal bijections by Lemma 4.9, so are ϕ and
ψ. �

Proof of Corollary 3.5. As detailed in the Introduction, the second part of the
statement is known. By Theorem 3.3, it suffices to show that for each π ∈ Sn

there exist a finite cyclic group G and composition series ~H and ~K of G such that

the unique permutation σ associated with (Lat( ~H, ~K)δ)▽, see Remark 2.8, equals π.
Let p1, . . . , pn be distinct primes, and let G be the cyclic group of order p1p2 . . . pn.
For i = 1, . . . , n, let Hi and Ki be the unique subgroup of order p1 . . . pi and
pπ−1(1) . . . pπ−1(i), respectively. Then |Hi/Hi−1| = pi and |Kj/Kj−1| = pπ−1(j),
for all i, j ∈ {1, . . . , n}. Since down-and-up projective quotients are isomorphic,
pi = |Hi/Hi−1| equals |Kσ(i)/Kσ(i)−1|, which is pπ−1(σ(i)). Hence i = π−1(σ(i)),
for all i ∈ {1, . . . , n}, and we conclude that σ = π. �
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