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Abstract. Gumm [6] used the Shifting Lemma with high success in congruence modular
varieties. Later, some analogous diagrammatic statements, including the Triangular Scheme
from [1] were also investigated. The present paper deals with the purely lattice theoretic
underlying reason for the validity of these lemmas. The shift of a lattice identity, a special
Horn sentence, is introduced. To any lattice identity λ and to any variable y occurring
in λ we introduce a Horn sentence S(λ, y). When S(λ, y) happens to be equivalent to λ,
we call it a shift of λ. When λ has a shift then it gives rise to diagrammatic statements
resembling the Shifting Lemma and the Triangular Scheme. Some known lattice identities
will be shown to have a shift while some others have no shift.

Gumm [6] has shown that every congruence modular algebra A satisfies the
following property, called Shifting Lemma: for any α, β, γ ∈ Con A if αβ ≤ γ,
(x, y), (z, u) ∈ α, (x, z), (y, u) ∈ β and (z, u) ∈ γ then (x, y) ∈ γ. (Here and in the
sequel the join resp. meet of two lattice elements, say µ and ν, will be denoted by
µ + ν resp. µν.) The Shifting Lemma is depicted in Figure 1.

Notice that the Shifting Lemma plays a crucial role in Gumm’s way to develop
modular commutator theory in [6]. Motivated by the Shifting Lemma, an analogous
property under the name Triangular Scheme has been introduced by Chajda [1].
The Triangular Scheme is the following condition: for any congruences α, β, γ if
αβ ≤ γ, (x, y) ∈ γ, (x, z) ∈ β and (y, z) ∈ α then (x, z) ∈ γ, cf. Figure 2. Every
algebra with distributive congruence lattice satisfies the Triangular Scheme by [1]
or by the rest of the present paper. It is an open problem if, for varieties, the
Triangular Scheme implies congruence distributivity. However, the conjunction of
the Triangular Scheme and the Shifting Lemma implies congruence distributivity
for varieties; this was announced in Duda [4] and proved in [2]. Moreover, Duda
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αβ ≤ γ
=⇒

Figure 1

αβ ≤ γ
=⇒

Figure 2

[3] found a diagrammatic condition which is equivalent to congruence distributivity
for varieties; this condition is called Trapezoid Lemma in [2], where an easy proof
of its equivalence with congruence distributivity is given.

Now, after [1], [2], Duda [3], [4] and mainly Gumm [6], no deep study of these
lemmas would be reasonable in the present paper. Hence we restrict ourselves
to an illustration, which slightly generalizes the well-known fact that congruence
distributivity implies the Fraser–Horn property. The easy proof of the following
assertion is left to the reader.

Assertion 1. If both the Shifting Lemma and the Triangular Scheme hold in a
direct product A1 ×A2 then A1 ×A2 satisfies the Fraser–Horn property, i.e., it has
no skew congruences.

The motivation for this paper is the following question: what is the purely lattice
theoretic connection between the Shifting Lemma resp. the Triangular Scheme and
modularity resp. distributivity?

Let
λ : p(x1, . . . , xn) ≤ q(x1, . . . , xn)

be a lattice identity. (Notice that by a lattice identity we always mean an inequality,
i.e., we use ≤ but never =.) If y is a variable then let S(λ, y) denote the Horn
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sentence
q(x1, . . . , xn) ≤ y =⇒ p(x1, . . . , xn) ≤ y.

If y /∈ {x1, . . . , xn} then λ is clearly equivalent to S(λ, y). However, we are inter-
ested in the case when y ∈ {x1, . . . , xn}, say y = xi (1 ≤ i ≤ n). Then S(λ, xi) is a
consequence of λ. When S(λ, xi) happens to be equivalent to λ then S(λ, xi) will
be called a shift of λ. If S(λ, xi) is equivalent to λ only within a lattice variety V
then we say that S(λ, xi) is a shift of λ in V .

As it will soon become clear, not every lattice identity has a shift. If an identity λ
can be characterized by excluded (partial) sublattices then it is usually much easier
to decide whether λ has a shift, but we also handle identities, n-distributivity and
Fano identity, without such characterization.

First consider the distributive law

dist: β(α + γ) ≤ βα + βγ.

Then S(dist, γ) is βα + βγ ≤ γ =⇒ β(α + γ) ≤ γ, which is clearly equivalent to
saying that

αβ ≤ γ =⇒ β(α + γ) ≤ γ (1)

is a shift of dist. Indeed, replacing γ by αβ + γ, (1) implies the identity β(α + γ) ≤
αβ + γ, whence β(α + γ) ≤ β(αβ + γ). Using this second identity twice we obtain
β(α + γ) ≤ β(αβ + γ) ≤ βα + βγ, the distributive law.

Although S(dist, γ) and, rather, (1) are not lattice identities, they have two con-
spicuous advantages over distributivity. Firstly, if we want to test the distributivity
of an n-element lattice in the most straightforward way then we have to evaluate
both sides of β(α + γ) ≤ βα + βγ for n3 triplets. But to test S(dist, γ) resp. (1) we
have to evaluate β(α + γ) for those triplets for which βα + βγ resp. αβ is below γ.
Secondly, S(dist, γ) or (1) makes it clear that the Triangular Scheme holds when
the congruence lattice is distributive. (In fact, the Triangular Scheme is equiva-
lent to congruence distributivity provided the algebra in question has permutable
congruences.)

Practically the same is true for the modular law

mod: α(β + αγ) ≤ αβ + αγ.

Now S(mod, γ): αβ + αγ ≤ γ =⇒ α(β + αγ) ≤ γ, which is clearly equivalent to

αβ ≤ γ =⇒ α(β + αγ) ≤ γ. (2)

To show that (2) implies modularity it suffices to observe that (2) fails in the
pentagon (five element nonmodular lattice) when β ‖ γ < α ‖ β. Again, S(mod, γ)
and (2) are easier to test from a computational point of view, they evidently imply
the Shifting Lemma, and, in fact, the satisfaction of (2) is equivalent to the Shifting
Lemma provided the algebra has 3-permutable congruences.

The examples above show the advantage of shifts of lattice identities: they are
easier to test and they give rise to congruence diagrammatic statements which could
be quite useful. In the rest of the paper we consider some concrete lattice identities,
and we give their shifts or show that no shift exists.
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Figure 3

Following Huhn [8] and [9], a lattice L is said to be n-distributive (n ≥ 1) if the
identity

distn : β
n

∑

i=0

αi ≤
n

∑

j=0



β
∑

i∈{0,...,n}\{j}

αi





holds in L. (Notice that in his earlier papers Huhn assumed modularity in the
definition but later he dropped this assumption.) Clearly, dist1 is the usual distrib-
utivity.

Theorem 1. S(distn, α0) is a shift of distn in the variety of modular lattices.
However, if n ≥ 2 then distn has no shift (in the variety of all lattices).

Proof. Let L be a modular lattice such that distn fails in L. Then, by Huhn
[8] and [9], L contains an n-diamond1, i.e., there are pairwise distinct elements
u, v, a0, . . . , an+1 in L such that for any n-element subset H ⊆ {0, 1, . . . , n+1} and
k ∈ {0, . . . , n + 1} \ H we have

ak

∑

i∈H

ai = u and ak +
∑

i∈H

ai = v.

Notice that these equations mean that any n + 1 elements of {a0, . . . , an+1} are
the atoms of a Boolean sublattice with bottom u and top v. Now the substitution
αi = ai, i = 0, . . . , n, and β = an+1 shows that S(distn, α0) fails in L.

Now let n ≥ 2. We define a lattice L such that distn fails but all the ”shift
candidates” S(distn, β), S(distn, α0), . . ., S(distn, αn) hold in L. Take the finite
Boolean lattice with n+2 atoms, pick an atom v, let u be the complement of v and
insert a new element w in the prime interval [u, 1]. This way we obtain L, which is
depicted in Figure 3 when n = 2. Letting {α0, . . . , αn} be the set of covers of v and
β = w we see that distn fails in L. Clearly, S(distn, β) holds in any lattice. Now,

1This is the current terminology. Huhn called an equivalent notion as an (n − 1)-diamond.
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β(α0 +α1) + β(α0 +α2)+
+β(α1 +α2) ≤ α0

=⇒

Figure 4

by way of contradiction, assume that S(distn, α0) fails for some β, α0, . . . , αn ∈ L.
Then we have

p 6≤ q, q ≤ α0, p 6≤ α0, (3)

(∀i) β 6≤ αi, (4)

(∀j) αj 6≤
∑

i∈{0,...,n}\{j}

αi, (5)

w ∈ {β, α0, . . . , αn}. (6)

Indeed, (5) follows from (3), and (6) follows from (3) and the fact that p ≤ q
in the Boolean lattice L \ {w}. If w = αk, 0 ≤ k ≤ n, then either the interval
[v, 1] contains some αi and 1 = αk + αi contradicts (5) (this is where n ≥ 2 is
used) or all the αi belong to [0, w] = [0, αk], which contradicts (5) again. Hence (6)

yields β = w. In what follows,
d
= will refer to distributivity applied for elements

of the sublattice L \ {w}. If
∑

i∈{0,...,n} αi 6= 1 then, for any H ⊆ {0, . . . , n},

β
∑

i∈H αi = u
∑

i∈H αi, and using the above-mentioned distributivity clearly gives
p = q, contradicting (3). Hence

∑

i∈{0,...,n} αi = 1 and p = β = w. Since

q =
∑

j∈{0,...,n}

β
∑

i∈{0,...,n}\{j}

αi ≥
∑

j∈{0,...,n}

u
∑

i∈{0,...,n}\{j}

αi
d
= u

∑

j∈{0,...,n}

αj = u

and q ≤ p 6≤ q, we have q = u. Then (3) gives α0 = u and (5) gives a contradiction
again, either because [v, 1] contains some αi and α0 + αi = 1 or because [0, α0]
contains all the αi. �

Now, to show once again how a shift leads to a diagrammatic statement, we
visualize dist2. The following statement clearly follows from the preceding part of
the paper. It is worth mentioning that when congruence lattices of all algebras of
a given variety are considered then each of distn is equivalent to the usual distrib-
utivity by Nation [11]; hence the following statement is totally uninteresting for
varieties instead of single algebras.
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Q0 Q1

Corollary 1. (A) Let A be an algebra with modular congruence lattice ConA. If
ConA is 2-distributive then the diagrammatic statement depicted in Figure 4 holds
in A.

(B) If A is congruence permutable then Con A is 2-distributive if and only if the
diagrammatic statement depicted in Figure 4 holds in A.

The next group of lattice identities we consider is taken from McKenzie [10].
These identities are as follows:

ζ0 : (x + y(z + xy))(z + xy) ≤ y + (x + z(x + y))(y + z),
ζ1 : x(xy + z(w + xyz)) ≤ xy + (z + w)(x + w(x + z)),
ζ2 : (x + y)(x + z) ≤ x + (x + y)(x + z)(y + z),
ζ3 : (x + yz)(z + xy) ≤ z(x + yz) + x(z + xy), and
ζ4 : y(z + y(x + yz)) ≤ x + (x + y)(z + x(y + z)).

Notice that ζ3 is Gedeonová’s p-modularity, cf. [5].

Theorem 2. S(ζ0, y), S(ζ1, y), S(ζ2, x), and S(ζ3, y) are shifts of ζ0, ζ1, ζ2 and
ζ3, respectively. On the other hand, ζ4 has no shift.

Proof. Consider the lattices Q0, . . . , Q4 given by their Hasse diagram. For i =
0, . . . , 4 McKenzie [10] proved that Qi is a projective splitting lattice with conjugate
identity ζi. As a consequence, for an arbitrary lattice L, ζi holds in L if and only
if Qi is not (isomorphic to) a sublattice of L; for i = 3 this was previously proved
by Gedeonová [5].

(Since it is not so easy to extract this well-known consequence from [10], perhaps
a short hint is helpful. By definitions, for any lattice variety V either ζi holds in
V or Qi ∈ V . Now suppose that ζi fails in a lattice L. Then Qi ∈ HSP {L} =
Ps HSPu {L}. Splitting lattices are subdirectly irreducible, so Qi ∈ HSPu {L}.
Since Qi is projective, Qi ∈ SPu {L}, i.e., Qi can be embedded into an ultrapower
of L. But Qi is finite, its embeddability can be expressed by a first order formula,
so applying Loś’ theorem we conclude that Qi is embeddable into L.)
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Q2 Q3

Q4

Now if the shift of ζi, 0 ≤ i ≤ 3, (i.e., S(ζ2, x) for i = 2 and S(ζi, y) for 2 6= i ≤ 3)
held but ζi failed in a lattice L then Qi would be a sublattice of L and the elements
x, y, . . . indicated in the diagram of Qi would refute the satisfaction of the shift of
ζi in L.

It follows from definitions (or by substituting (x, y, z) = (a, b, c)) that ζ4 fails
in Q4. So, to prove that ζ4 : p4 ≤ q4 has no shift, it suffices to show that all the
”shift candidates” S(ζ4, x), S(ζ4, y) and S(ζ4, z) hold in Q4. If x, y, z ∈ Q4 with
{x, y, z} 6= {a, b, c} then the sublattice [x, y, z] is distinct from Q4, so it has no
sublattice isomorphic to Q4, hence ζ4 and therefore the shift candidates hold in
[x, y, z]. Hence it suffices to test substitutions with {x, y, z} = {a, b, c}; six cases. It
turns out that (x, y, z) = (a, b, c) is the only case when p4 6≤ q4, so it is quite easy
to see that all the shift candidates hold in Q4. �

Theorem 2 raises the problem of characterizing splitting lattices whose conjugate
identities have shifts.
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All the previous lattice identities have known characterizations by excluded (par-
tial) sublattices (at least in the variety of modular lattices) and, except for distribu-
tivity, our proofs were based on these characterizations. (Even in the second half of
the proof of Theorem 1 the construction was motivated by Huhn’ characterization
for the modular case.) It would be interesting but probably difficult to avoid the
use of excluded sublattices. The Fano identity (cf., e.g., Herrmann and Huhn [7]):

χ2 : (x + y)(z + t) ≤ (x + z)(y + t) + (x + t)(y + z)

has no similar known characterization; yet, we have the following statement.

Theorem 3. The Fano identity has no shift — not even in the variety of modular
lattices.

Proof. Suppose that χ2 has a shift in the variety of modular lattices. Since the role
of its variables is symmetric, we can assume that this shift is

S(χ2, x) : (x + z)(y + t) + (x + t)(y + z) ≤ x =⇒ (x + y)(z + t) ≤ x.

Let L be the subspace lattice of the real projective plane. Then L is a modular
lattice with length 3. It contains 0 = 0L = ∅, the atoms are the projective points
(as singleton subspaces), the coatoms are the projective lines, and the full plane is
1 = 1L. It follows from Herrmann and Huhn [7] that χ2 fails in L. We intend to
show that S(χ2, x) holds in L and this will imply our theorem. We will use the
modular law in its classical form

x ≤ z =⇒ (x + y)z = x + yz

and also in the form of shearing identity

x(y + z)
s
= x(y(x + z) + z) = x(y(x + z) + z(x + y)).

First we show that χ2 and therefore S(χ2, x) hold for x, y, z, t ∈ L when {x, y, z, t}
is not an antichain. By symmetry, it is enough to treat two cases.

Case 1: x ≤ y, then

(x + y)(z + t) = y(z + t)
s
= y(z(y + t) + t(y + z)) ≤ z(y + t) + t(y + z) ≤

(x + z(y + t)) + (x + t(y + z)) = (x + z)(y + t) + (x + t)(y + z).

Case 2: x ≤ z, then

(x + y)(z + t) = x + y(z + t)
s
= x + y(z(y + t) + t(y + z)) ≤

z(y + t) + x + t(y + z) = (x + z)(y + t) + (x + t)(y + z).

Let {x, y, z, t} be an antichain in L. Thus each of x, y, z and t is a point or a
line.

If x is a line then we infer x+z = 1 from z 6≤ x and the premise of S(χ2, x) gives
x ≥ (x + z)(y + t) = y + t ≥ y, a contradiction. Therefore x is a point. If z is a line
then x+z = 1 again and we can derive the same contradiction. Hence z is point and,
by z–t symmetry, so is t. Similarly, if y is a line then x ≥ (x+z)(y + t) = x+z ≥ z,
therefore y is a point.
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Figure 5

We have seen that x, y, z and t are pairwise distinct points. Let us consider the
”triangle” xzt, cf. Figure 5. The premise of S(χ2, x) says (x + z)(y + t) ≤ x, which
is possible only when y ≤ x + t (i.e., y is on the line through x and t). Similarly,
(x+t)(y+z) ≤ x forces y ≤ x+z. Hence y ≤ (x+t)(x+z) = x, a contradiction. �

Acknowledgment. Numerous helpful comments of the referee, including a sub-
stantial abridgement of the proof of Theorem 3 and raising problems that led to
the ”second part” of Theorems 1 and 2, are highly appreciated.
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