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ON CONGRUENCE #-DISTRIBUTIVITY OF
ORDERED ALGEBRAS

G. CZEDLI and A. LENKEHEGYI (Szeged)

1. Introduction. The triple (4, F, =) is said to be an ordered algebra of type
7 if (4, F) is a universal algebra of type 7, (4, =) is a partially ordered set, and
all fe F are monotone with respect to =. It is worth mentioning that 7-terms induce
monotone term-functions on ordered t-algebras. For z-terms g, /& the string g=h
is called an order-identity or, shortly, identity. (Note that an identity g=# is equi-
valent to the conjunction of g=#/ and h=g). Let H, S, P be the operators of taking
homomorphic images, subalgebras and direct products, respectively. (These concepts
are defined in the natural way. I.e., a homomorphism is a monotone map preserving
the operations, u=v in _g A, means (Yy€eI)(u(y)=v(y)) and the original order

7

is restricted in case of subalgebras.) The following result of Bloom [2] shows that the
counterpart of the classical Birkhoff Theorem is valid for classes of ordered algebras:
HSP is a closure operator on classes of similar ordered algebras, and a class of similar
ordered algebras is closed under HSP iff it can be defined by a set of order-identities.

The concept of n-distributivity was introduced by Huhn [8, 10]. This concept
has proved to be a very useful tool in several investigations (cf., e.g., Huhn [8, 9, 10]
and Herrmann—Huhn [7]).

A lattice is called n-distributive if the n-distributive identity

n n n
xAV 3=V (xA V )
i=0 Jj=0 i=0
i#j
holds in it.

A variety of lattices is said to be a congruence variety (Jénsson [13]) if it is
generated by the class of congruence lattices of all members of some variety of uni-
versal algebras. It is known (cf. Nation [16]) that n-distributive congruence varieties
are distributive, and this fact plays an important réle in the theory of congruence
varieties. Our aim is to generalize this result for the case of ordered algebras.

2. Order-congruences. If congruence relations of an ordered algebra (4, F, =)

" were defined as congruences of (4, F), they would not depend on the ordering. More-

over, there would be no reasonable way to define orders on factor algebras so that

factor, algebras would be order-homomorphic images under the canonical map.

That is why the concept of order-congruences is introduced. Since our motivation will

be given only in Proposition 2.1, the following definition might seem astounding at
the first sight.

DEFINITION. A binary relation @ is called an order-congruence of the ordered
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18 G. CZEDLI and A. LENKEHEGYI

algebra (4, F, =) if @ is a congruence of the universal algebra (4, F) and

whenever a, b, ag, @y, -5 Qy» bgs by, ...y €A  such that
(*) a= a0@a1 = a2@a3 a4@a5 = .4, = b = b()@bl = b2@b3 =
= b4@b5 = .. bk =a then a@b.

PROPOSITION 2.1. Assume that @ is a binary relation on an ordered algebra A.
Then O is an order-congruence if and only if there exist an ordered algebra B and a
homomorphism ¢: A—B such that ©=XKer o.

PRrOOF. Suppose @ is an order-congruence of (4, F, =). Set B=A/6 and,
for a,b€Ad, define [a]O@=[b]® by “there exist a,,a;, oo a,€A such that
a=a,00,=0,00,=0,0...q,=b". The reflexivity of @ and = (over A4) together
with (#) y1e1d that = is an ordering of B. If fis an m-ary operation of 4 and [@10=
=[b']@ (i=1,...,m) then we have d'=d} @aiéazﬁ’ .ai=b* where, without loss
of generality, we assume that ¢ does not depend on i. Since f preserves both @ and =
we obtain

f@@,...,a") = f(as,....a"0f(@i,....,a" = f(a}, ....,aP) O ... f(a},...,a") =

= f(bl, AR | b’”),
which shows that

f(a1e,..,[a"0) =[f(a,....,am]e =[P, ..., b™M] 6 = f([b16, ..., [b"]0).

Hence, equipped with this ordering, B is an ordered algebra. Now the map ¢: 4—B,
ap=[a]® is a homomorphism and @ =Ker ¢.

Conversely, if ©=Ker ¢ for some homomorphism ¢ and a=aq,0a,=
=0,0...0,=b=b,0b,;=b,0...b,=a then ap=a,p=0a,0=dy=...=a,=>b, Im-
plying ap=bp. Since bp=ap follows similarly, ap=>bep, whence a®b. Q.e.d.

Let us mention two examples. The additive group Z=(Z, +, =) of integers
with the usual ordering has many congruences, but it has only the two trivial order-
congruences. (Indeed, its proper factor groups do not admit nontrivial orderings.)
In case of lattices equipped with the usual ordering congruences and order-congruen-
ces are the same.

For an ordered algebra 4 let Con (4) denote the set of order-congruences of A.
Since the meet of arbitrary many order-congruences is an order-congruence again,
Con (4) is a complete lattice with respect to the set-theoretic inclusion. The join in
Con (4) is described in the following

PrOPOSITION 2.2. Let A be an ordered algebra and let ©,, @, ..., @, be order-
congruences of A. Set ®={(a,b)€A? there exist a,,a, ..., %y, bg, b, ..., 0,CA
such that

a=00000,0,0,0 ... 4,0, 041 = 03450001450 ... A5 +201 43 =... S, = b
and
b = bo@ob]_@]_ ‘oo bk@kbk-('l = bk+2@0bk+3@1 .o b2k+2@kb2k+3 =... bt = a}.

Then &=\ O, in the lattice Con (4).
i=0
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ON CONGRUENCE #-DISTRIBUTIVITY OF ORDERED ALGEBRAS 19

PRrOOF. It is straightforward to check that & is an order-congruence. The
inclusion @;S @ is trivial. On the other hand, if ¥¢Con (4) and 6,S¥ for all
i then (%) yields @S ¥. Qed.

3. The main theorem. Now we can formulate

THEOREM 3.1. For any class U of ordered algebras which is closed under taking
subalgebras and direct products, and for any natural number 1 the following three con-
ditions are equwalent

(i) Con (4) is n- -distributive for all Aeq;

(ii) Con (4) is distributive for all Ac%;

(iii) There exist a natural number k and ternary terms ty(x, y, 2), t,(X, ¥, 2), ...,
t.(x, ¥, ) (corresponding to the type of U) such that the identities

tox, v, 2)=2x, t(x,y,2)=12 t(xy,x)=x for i=0,1,..,k,
L, %, ) =t (6 x,y) for i=0(3),0=i<k,
L%, 1, 9) =t (3,9) for i=1Q3),0=i<k,
Xy, )=t y,2) for i=203),0=i<k
hold in %.
Before proving this theorem let some consequences and examples be mentioned.

COROLLARY 3.2. (Jémnsson [12]). 4 variety ¥ of universal algebras of type t is
congruence distributive iff there exist a natural number k and ternary t-1erms by, ty, ...,
such that the identities

to(x,y, Z)=x= l‘k(x,y, Z)=Z: Z‘i(x’ y,x) =X for O=i= k,
t(x, %, ) =t 1(x,x,y) for ieven, 0=i<k,

L0, 9,y) = ti(e,y,y) for iodd, 0=i<k
- hold in ¥ '

CoroLLARY 3.3. (Nation [16}). If a variety ¥ of universal algebras is congruence
n-distributive then it is congruence distributive.

Both corollaries follow by the same consideration: Equip the members of ¥
with the trivial order. Then congruences are the same as order-congruences and an
order-identity #;(x, y,2)=t;.1(x,y,2) is equivalent to ¢#(x,y, 2)=t,,(x,, 2).

If we call lattice varieties generated by the class {Con (4)|4€%} for some
variety of ordered algebras % order-congruence varieties and denote by #(T) the
variety of all vector spaces over a field T then we can descrlbe the minimal modular
order-congruence varieties:

COROLLARY 3.4. For any modular but not distributive order-congruence variety U
there exists a prime field T such that the (order-) congruence variety

HSP {Con (V)|Ve.#(T)}

is asubvarrety of U. (Note that HSP {Con Mi\Ven (T)} i=1,2, are incomparable
provided Ty and T, are non-isomorphic prime fields.)
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20 G. CZEDLI and A. LENKEHEGYI

For congruence varieties the same result was announced by Freese [4]. Herrmann
and Freese [5] gave a very elegant proof for Freese’s result. Their proof is based on,
among others, Corollary 3.3. Replacing Corollary 3.3 by Theorem 3.1 their argu-
ment proves Corollary 3.4. (Since their work [5] had not appeared when the present
paper was written, let us mention that their proof can be found in [3, Theorem 3.2],
too.)

If a variety ¥ of algebras is congruence distributive then ¥, as an S and P
closed class of ordered algebras (with the equality relations as orderings) is order-
congruence distributive. (Indeed, Jénsson’s condition from Corollary 3.2 is stronger
than (iii) of Theorem 3.1) Therefore if we intend to present examples for classes of
ordered algebras satisfying the conditions of Theorem 3.1, we can equip any congru-
ence distributive variety of algebras with the trivial orderings. Another example is
the class of all lattices with the usual orderings. In order to give a nontrivial example
(which is far from lattice orderings) consider the ordered algebra A=({a, b, ¢}, f, =)
where the ordering is {(x, x)|x€ A}U{(q, b), (@, ¢)}, and f is a ternary majority
function defined by

a if [{xy,xs, %3} =3

f(xl’xz”‘3)={ue,4 i |{ilx = ) = 2.

Now the class SP{A} satisfies condition (iii) of Theorem 3.1 since we can put k=2
and #,(x, y, 2)=f(x, y, 2).

Finally, it is worth mentioning that for a single ordered algebra A the n-distri-
butivity of Con (4) does not imply the distritutivity of Con (4). (Indeed, choose a
finite ordered A4 such that Con (4) is not distributive. Then Con (4) is n-distributive
for any n greater than [Con (4)|.)

4. Proof of the main theorem. Let us define three further conditions besides the
conditions of Theorem 3.1:
(iv) The identity
n n—1 n
6: x\ V yi= (xA v YV (xA v %)
holds in Con (4) for any Ae%;
(v) There exist k=1 and (n+2)-ary terms £, t, ..., , such that the identities
Lo(X0s X15 ooes XnaD) = Xo»  L(Xos X15 ooes Xpa1) = Xpi1s
ti(x’ Y15 Vas «-es yrnx) =x for O0=i= n,

Zi(x’ Xy oes Xy Y5 ¥ uees J’) = i+1(x: Xy ees X% V5 Vs ---sy)
N \— e’
Jj+1 J+1
where 0=j=n, 0=i<k and i=j (n+2),

ti(xo: X1y eevy xn+1)§ti+1(x0: X1 eeey xn-!—l)
for i=n+1(r+2) and 0=i<k hold in %;

(VI) (xo’ 'xn'i'l)E ]_\:/0 (@xoxnn/\ i\=/0 @xu~ixn+1-i)
i j

where ©,_,, denotes the smallest order-congruence of Fy(Xy, X1, ..., X,4+1), the free
U-algebra over {xy, X1, ..., X,41}, under which x; and x, collapse.
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ON CONGRUENCE #-DISTRIBUTIVITY OF ORDERED ALGEBRAS 21

REMARK. Since % is closed under S and P, the free algebra involved in (vi)
(and that over an arbitrary generating set) exists. (The definition of free algebras
and the proof of this remark are the same as in case of universal algebras, cf. Gritzer
[6] or Birkhoff [1].) Note also that (v) is a generalization of Mederly’s condition [15].

Via the implications (i) —(vi) ~(v)~(iv) -~ (ii) (i) we intend to show that all the
six conditions, (i), ..., (vi), are equivalent. (No matter that (iii) is not involved above.
For n=1 (v) and (iii) are the same, and 1-distributivity is the usual distributivity.
Thus )the equivalence of the other five conditions yields the equivalence of all the six
ones.

n
Slnce (xo, x”+1) Eonxn+1/\(@x0xlo @xlxzo s O @xnxn-l-l) g @xoxu+1/\i\_/0@xn—ixn+1—f’

the implication (i) —>(vi) is trivial. Distributive lattices are n-distributive (cf. Huhn
[8]), which settles (ii) (). :
(vi) implies (v). Suppose (vi) and let \/ & be denoted by &; (j=
=0

iz

FneiXn+lei

A®;) and Proposition

X0Xn+1

=0, 1, ...,n). From the assumption (x,, x,,1)€ V (@
i=0

2.2 we obtain that there are elements #,(Xg, X1, ..., Xyp1), 21(Xg> X1s cvvs Xygt)s oees
(X5 X15 ooy Xy41) 1D Fy(Xgs ... X,pq) (Where ¢; is a term) such that

o Xo = tg(Xos X1s «ovs Xpa)s 5(Xos X1s ves Xpp1) = X1,
) L(X0s X1y voes Xp1) = g1 (Xgs X15 ooey Xypp) fOr i=n+1 (n42),
3 i(Xgs X15 ves Xnt1) g 1 NP tiv1 (K05 Xa5 ovvs Xyp1)
where 0=j=n and i=j#n+2).
Since O, ,,AP;=0y, ,,N®;, from (3) we obtain

C)) £i(Xos X15 oves Xy 1) Pyl (%o, X1y o Xp11)

where 0=j=n and i=j (n+2). Denoting (x,, Xy, ..., X,41) by X, from (2) and (3) we
obtain x0=t0(x)@xoxnﬂtl(x)@xoxn+1...@xoxn+1tn+l(x)_§t,,+2(x)@xoxnﬂ...é...ti(x)...
L(X)=X,,,0 Xy, Whence () yields

=
Yz = X0 Xpa1

©) X00 gy xpurfi(Xos X15 oy Xypy) for i=0,1,..,k.

Since Fy(%g, ..., X,41) 1S a free ordered algebra in %, (1) and (2) show that all the

identities of (v) which contain n+2 variables hold in %. For the rest of identities (4)

and (5) will be used. Consider indices i, j (0=j=n, 0=i=k and i=j(n+2))

and the homomorphism @: Fy(xy, X1, ..., Xpq1) >~ Fa (X, 1), Xo0=...=x,_;0=2x,

Xy41-;@=...=X,110=y. Then Ker ¢ is an order-congruence by Proposition 2.1.

Since, for i#j, (x,_;, X,41_;)€Ker ¢, we have q5j=‘;/. O, 15,1, EKer ¢. Thus
i=J

from (4) we obtain
ti(x: Xy ves Xy Yy Vs oeos y) = ti(xO(P: X1 <ves x,,+1go) = ti(x()a AR ] x,,+1)(p =
e, e

Jj+1
= ti1(Xos ooy Xt D P = L1 (X0 @y o0y Xy 420) = Fips (X5 s X, 9, oy _}’)-
J+1
Hence the identity #,(x, ..., X, ¥, ..., W =t;41 (%, ..., X, », ..., ¥) holds-in %. Similarly,
e N e

Jj+1 J+l
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22 G, CZEDLI and A, LENKEHEGYI

considering the homomorphism ¥: Fg(Xgs «vvs Xpan) = Fa (X Y15 Vos ooos Va)y Xo¥W =
=x, V=%, x,¥y=y, for 1=s=n, and making use of (5) together with & c

. XoXpe1=
CKeryy, we obtain £t Y1y s Yus D=EC0W Xaly vvos Xsa ¥)=10(To, X1 +rr
X)W =X =x, whence #(x,y1, ..., ¥, X)=x holds in %.
(v) implies (iv). Suppose (v) and let 4€%, a, By, ..., B,€Con (4). Considering a
n n—1 n

pair (g, b) of elements in aA V0 B; and denoting :V Bis iV B; by v, and y,,
je= =0 =1

respectively, (a, b)€ (@Ay,)V(«x/Ay,) should be shown. Since the rdle of ¢ and b
can be interchanged, by Proposition 2.2 it suffices to find a sequence of elements
a=d,, dy, ...,d,=b such that for all i(<r) we have either d;aAy;d;., for some
j€{0,n} or dy=d,,,. First of all (g, b)€a and, by Proposition 2.2, there are ele-
ments ¢, €7, Coy1, €A (i=0,1, ..., 5,j=0, 1, ...,n+1) such that

a = cooPocorBicozBaCos -+ BuCo,n+1 = Cr0BocriPrciaPacas oo BuCrnia1 =

= CopBoCarPiCaaPacCas v BuConir = = CioBoCs1BrCsaBaCss v BuCsni1 =

= Cyp,0=b

and
b= c®B,cMBc% ... B,cmtt = cl0Boct B e, Beb M == ¢0f By ...
v Bpes il = SFTL0 =g,

Let us compute by the identities of (v) and keeping in mind that all term func-
tions are monotone:

a=1ta,..,a,a,b)=
= 1,(ay ..., G, Ay D) P11 (a5 «evs Qs Coy D) Yot1(@y ooy Ay Co,p11, D) =
= £,(a, ..y A, C1g> D) Yot (@, «.vs @5 Crpy D) Yo 12(@, oovs @, €y pyrs D) ==
=4(a, ..., @, Csg> b)Put1(as s @y Cg, DYPo11(a, ..., Gy €5 pay, D) =
=4(a, ..., 8, Cs41,0. D) = t1(a, ..., a,b,b) =
= 1,(a, ..., @, @, b, b)P,13(a; .., @, Cons b, D) Pota(as ..., @, Co, i1, b, b) =
= £,(, ..., G, C195 by DYPuta(as .5 @, C1y, b, D) Yo la(a, ... @, €1 pay, b, D) ==
= 1,(a, -vs @, Cg11,00 D, b) = 13(a, ... a, b, b, b) = 1(a, ..., a,b,b,b) = ... =
=t,,1(a, b, b, ..., b) = t,,2(a, b, ..., b) =
= 1,.2(a, %, ..., €% D)y, ty42(a, €, ..., ¢, B)Potysa(a, ¢+, ., @ "+ b) =
= 1,42(a, €% ..., ¢, D), b1 0(a, €V .oy ¥, D) Yolyre(a, L, L, ML D) ==
= 1,,0(a, ¢ ...y €0 D)V tyr2(@, €7, oo, €, D) Polyrala, 1Y, L, 5L b) =
= 1,500, TV, L, RO D)y =1, .0(a, .0y a,0,0) =
= ty45(@y oo A, A, BYPutnis (@, ooy @y Cons D) Polyi3(@s o0y @5 Co pi1, D) =
= t,05(@ ooes @5 €10, D) Yulurs(@s ooy @y C1ny D) Polnis(@y ooy @561 i1, D) ===

=t,(a, some elements of A4, b)=b.
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ON CONGRUENCE n-DISTRIBUTIVITY OF ORDERED ALGEBRAS 23

Now if we replaced 9, and y, by aAy, and aAy,, respectively, we would obtain
a required sequence a=dy, dy, ..., d,=b. But this is possible since for any u,, ..., 4,€
€A we have t(a,uy, ..., u,, D)at,(a, vy, ..., 4,, a)=a, whence the elements of the
above sequence are pairwise congruent modulo a.

(iv) implies (ii). Suppose the identity 6 holds in a lattice L and let x, y, z be arbi-
trary elements of L. Let xAyAz be denoted by w. Then

xAGVZ) = xAGVWVWV..VwVz) = (xAGVwV ...V W)V (xAWY ...V wVz) =

= (xA»)V(xAz),
i.e., L ii distributive.
The proof of Theorem 3.1 is complete.

5. Some Mal’cev conditions. Roughly saying, a Mal’cev condition is a condition
on classes of algebras (ordered algebras, resp.) of the form “there are certain terms
which satisfy certain prescrited identities (order-identities, resp.).” (For a precise
definition and classification of Mal’cev conditions cf., e.g., Jénsson [13].) For example,
(iii) of Thearem 3.1, Jénsson’s condition in Corollary 3.2, and (v) in the previous
section are Mal’cev conditions. These conditions are named after A. I. Mal’cev, who
has proved in [14] that a variety % of universal algebras is congruence permutable if
and only if there exists a ternary term ¢, corresponding to the type of %, such that
the identities #(x, z, z)=x and #(x, X, z) =z are satisfied in %. An analogous result
is true for SP closed classes of ordered algebras with the surprising consequence that
these classes allow only trivial orderings whenever they are order-congruence permu-
table. (Therefore the permutability of order-congruences seems to have not much
importance. However, to claim its unimportance we need the following generaliza-
tion of Mal’cev’s result.)

PROPOSITION 5.1. For any S and P closed class % of ordered algebras the follow-
ing three conditions are equivalent:

(1) % is order-congruence permutable; i.e., if ® and ¥ are order-congruences of
any member of U then Po¥=Y¥od;

(ii) % is congruence permutable (i.e., congruences in the usual sense of its members
commute) and its members have trivial (i.e., equality) orderings;

(iil) There exists a ternary term t (corresponding to the type of U) such that the
(order-) identities t(x,z, z)=x, t(x, x, 2)=z hold in %.

Proor. (i) implies (iii). Suppose (i) and consider @,,, ©,,, the order-congruen-
ces of the free algebra F,(x, y, z), generated by (x, y) and (}, z), respectively. Now
(x,2)€0,,00,, implies (x,2)€O,,00,,, whence (x,1)€0,, and (12)€0,,
for some t=t(x,y, z)€ Fy(x, y,z). Defining a homomorphism ¢: Fu(x,y, z)—~
— Fy(x,z) by x—x, y—>z, 2>z, we have ©,, S Ker ¢. Thus x=x¢=t(x, y, z)p=
=t(xq, yp, z¢)=1t(x, z, z), while the satisfaction of the other identity follows simi-
larly.

(iii) implies (ii). It suffices to show that the memters of % do not allow nontri-
vial orderings, because then congruences and order-congruences are the same and
Mal’cev’s above mentioned theorem applies. (No matter that % is not necessarily a
variety, consider the variety gemerated (in the usual sense) by it.) Assume that
a, b€ A€U, a#b and a=b. Then b=t(a,a,b)=t(a, b,b)=a is a contradiction.
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24 G. CZEDLI and A. LENKEHEGYI

Finally, (ii) trivially implies (i).

Now we intend to present an algorithm which associates a strong (i.e., containing
a finite number of prescibed formulae) Mal’cev type condition M(p™ =¢™) with
an arbitrary lattice identity p=g¢ and integers m, n=2 such that the following result
can be stated. (Note that M(p"™=g™) is not a Mal’cev condition in the sense of
Ténsson [13].)

THEOREM 5.2. For any class U of ordered algebras closed under S and P and for
any lattice identity p=q the following three conditions are equivalent:
(i) The lattice identity p=q holds in the lattice of order-congruences of any
member of U,
(ii) For any integer m=2 there exists an integer n=2 such that the Mal’cev
type condition M(p™=q"™) is satisfied in U;
(iii) p=gq holds in the order-congruence lattices of finitely generated members of U.

Before defining the Mal’cev type conditions involved in Theorem 5.2 some re-
marks will be made. This theorem can be considered as a generalization of Wille’s
one [18]. (Really, if % happens to consist of trivially ordered algebras then any uni-
versal Horn sentence of M(p™=g™) is equivalent to an identity and M(p™=
=¢™) turns into a strong Mal’cev condition, which only slightly differs from Wille’s
one.) Even their proofs are similar, the only essential difference is the use of Propo-
sition 2.2 instead of the well-known description of join of congruences. (For the
proof of Wille’s theorem see, beside [18], Pixley [17], but the proof cited in [11] is
also recommended since its form is near to our approach.) Hence the proof of Theo-
rem 5.2 would not be surprising for those who are acquainted with that of Wille’s
theorem and Theorem 3.1. Thus the proof will be omitted because of its length.

To make our Mal’cev type conditions visible we shall use a pictorial approach.
Finally note that if p=g is the distributive law then (ii) of Theorem 5.2 is much less
handlable than condition (iii) of Theorem 3.1.

The definition of M(p™=g™) starts with the recursive definition of G, (p),
the graph of the lattice term p of order m. The graph G,,(p) bas coloured edges (the
colours are the sign = and the variables of p) and two of its vertices, the so-called
left and right endpoints, have special role. In the figures the left endpoint will be
placed on the left-hand side, and dually.

If p is a variable then G,,(p) has only a single edge coloured by p, which connects
the two endpoints.

To obtain G, (p;A\p,) take disjoint copies of G,,(py) and G, (p,) and glue their
left (right, resp.) endpoints together (Figure 1).

Gnlp A py):

Fig. 1.

To define G,,(p,Vp,) consider 2m disjoint graphs H,, H,, ..., H,,, H', H?, ...,
..., H™ where H; and H* are copies of G, (p;) for i=j(3) and j€{l,2}, while for

Acta Mathematica Hungarica 41, 1983



ON CONGRUENCE #-DISTRIBUTIVITY OF ORDERED ALGEBRAS ' 25

i=0 (3) let H; and H' be copies of the graph consisting of a single oriented edge
coloured by =:

o—= o
Now glue together:

the right endpoint of H; and the left one of H,,, for i=1, ...,n—1,
the right endpoint of H* and the left one of H'*1 for i=1, ...,n—1
the left endpoint of H; and the right endpoint of H™,

the left endpoint of H* and the right endpoint of H,,.

H

The obtained graph is G,,(p,Vp,), its left (right, resp.) endpoint is the left endpoint
of H, (H", resp.). (Note that, exceptionally, the left endpoint of H* is placed on the
right-hand side on Figure 2, and conversely.)

GmlpP1Vp2):

- The graph G,(g) is defined in the same way. Let X={xg, Xy, ..., x;} and T=
={ty, 11, ..., ;} be the vertex set of G,,(p) and G, (q), respectively, such that x, and 7,
are the left endpoints while x; and # are the right ones. For each variable o occurring
in p=gq let ©, be the smallest equivalence relation of the set {0, 1, ..., k} under
which 7 and j collapse whenever x; and x; are connected with an «-coloured edge in
Gn(p). Now G(p™=¢™) is obtained from G,(q) via replacing the colour «, for
all variables « of p=g, by @, on each a-coloured edge of G,(q).

For an equivalence @ of {0, 1, ..., k} and i€{0, 1, ..., k} let i®=min {;]j@i}.
With a @-coloured edge of G(p™=g™) connecting the vertices #, and #, we
associate the universally quantified Horn sentence ¢if x;=x; for all edges
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% 0——0x; of Gy (p) then 1,(Xee, X105 -+ X10) = ls(X00> X105 +++» Xye)” Wwhile with
an edge t,0——o1, of G(p™ =¢™) the universal Horn sentence “if x,=x, for
\ q 1=X;

all edges x;0—o x; of G,(p) then £,(Xg, X1, «os X) St (Xg, X1, ooy X)” Will
be associated.
Finally, M(p™=g™) is defined to be the following condition:

“There exist (k+1)-ary terms  2o(Xg, X1, «oos X2y 21(X0s X125 ooes Xi)s -0
voos Ls(Xgs X1, ...y X)) such that the two endpoint Horn sentences “x;=x; for all

edges x;0——-—0 x; of G, (p)imply #(xe, Xy, ..., X)=x" (/=0, 1) and the Horn
sentences associated with the edges of G(p™ =q™) are satisfied”.
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