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Factor lattices by tolerances

GABOR CZEDLI

1. Introduction

Given a lattice L, a binary, reflexive, symmetric and compatible relation ¢ S L XL
is said to be a tolerance relation (or shortly tolerance) of L. Tolerances of lattices
were firstly investigated by CHAIDA and ZELINKA [2]. Recently the importance of this
concept has grown: a finite lattice is monotone functionally complete iff it has the
trivial tolerances only (cf. KINDERMANN [4]). Moreover, KINDERMANN [4] has shown
that the algebraic functions on a finite lattice are just the monotone functions pre-
serving its tolerances.

Our aims in the present paper are to introduce the concept of L/g (i.e., factor
lattice by a tolerance g), to give a more handlable description of L/g, and to give
a structure-like theorem for lattices with the following consequence: every finite
lattice is isomorphic to D/ for a suitable finite distributive lattice D. A characteri-
zation for tolerances of lattices will be presented in Theorem 2.

Given a reflexive and symmetric relation ¢ over a non-empty set 4, a subset
H of 4 is called a block of g if H2S ¢ but G?S g forno HcGEA. le, His
a block of ¢ if it is maximal with respect to the property: for any a, b€ H agh.
Let the set of all blocks be denoted by %,. On the other hand, certain subsets of
P*(4), the set of non-empty subsets of A4, can be called quasi-partitions on A (cf.
CHAIDA, NIEDERLE, and ZeLINKA [1]). The connection of these two concepts (see
[1] again) is the following. If ¢ is a reflexive and symmetric relation then
%, is a quasi-partition. For a quasi-partition € the relation ¢,={(a,b) : {a,b}SH
for some H¢ %} is reflexive and symmetric. The map ¢—%,, from the set of reflex-
ive and symmetric relations on A into the set of quasi-partitions on 4, is bijective
and its inverse map is ¥+—g,. Moreover, a reflexive and symmetric relation ¢
is an equivalence iff %, is a partition. Therefore the following notion of factor latti-
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36 G. Czdli

ces by tolerances seems to be a natural generalization of that of factor lattices by
congruences.

For definition, let ¢ be a tolerance of a lattice L. For blocks G and H of and
o€{A,V} we define GoH to be the unique block of ¢ for which {goh: g€G,
h€ HYSGcH. (The correctness of this definition will be shown!). Now L/g, the
factor lattice by g, is the set of all blocks of ¢ equipped with the above defined A
and V operations. Le., the notation L/g is used instead of €, and L/ge=(L/e; A, V).
It is worth mentioning that L/p is the factor lattice in the usual sence whenever the
tolerance ¢ happens to be a congruence relation.

2. L/g is an algebra

In this section the correctness of the definition of L/g will be shown. Suppose
G,HeLjg. If g,€G, h€¢H (i=1,2) then the compatibility of ¢ yields (g,oh,,
geohy)€p. le., {goh: g€G, hé HFCS 9. Now Zorn Lemma applies and {goh:
g€G,he HYSE for some E€Lfg.

To show the uniqueness of E some preliminaries are needed. In what follows in
this section let ¢ be a fixed tolerance of a lattice L.

Lemma 1 (CaAIDA and ZELINKA [2]). For a,beL, (a,b)ce if and only if
[aAb, aVBP S @.

Lemma 2. The blocks of ¢ are convex sublattices of L.

Proof. Let C be a block of p, and suppose a,bcC. For an arbitrary x€C
apx and bgx, whence aVboxVyx=x. le., (CU{avyb}*Se¢ and the maximality
of C yields a\ybeC. Therefore C is a sublattice. If a, b€C, u€L, and a=u=b,
then, for any x€C, apx€C and byx€C. Thus aAxgbVx, and Lemma 1 yields
xgc. Finally, ucC follows from the maximality of C again. Q. e. d.

For a subset X of L let [X) and (X] denote the dual ideal and ideal generated
by X, respectively. We write [a) instead of [{a}), and dually.

Lemma 3 (GrATzER {3]). For any convex sublattice C of L the equality C=
=[C)N(C] holds. Moreover, if C is the intersection of a dual ideal D and an ideal I,
then D={C) and I=(C].

Definition 1. For ideals I; and I, let LAL=LNI,, LVL={x:x=cvd
for some ccl;,dely=(Ul), and let I;=1, mean I, SI,. On the other hand
for dual ideals D, and D, let D;AD,={x: x=cAd for some c¢D,, deD,}=[D,UD,),
D,\yDy=D,ND,, and let D;=D, mean D;2D,.

The motivation of this definition will be given in the remark to Lemma 4.
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Proposition 1. If (C}=(D] for C,D¢Ljgo then C=D.

Proof. First we show that U=([C)A[D))\(C]€L/o. Suppose x;,x€U.
Then x;=ciAd; for c¢;€[C) and dj€[D), i=1,2. Let c€C and d¢D, and set
¢;=ciAc, dy=d;Ad (i=1, 2). Then, by Lemma 3, we have x,=cAd;, ¢;€C, and d;€D
for i=1,2. Set a=xVc;VxsVes and b=x,VdiVxavd,. By (Ci=(D] and
Lemma 3 we obtain q€C, beD, and aybeC\D. Since cAcs€C and diAd€D,
(ci/\cs,avb)eo and (diAd,y, ayb)ep follow. The compatibility of ¢ yields
(cihcAdi s, aVDYE@. But  x;, x,€[c;AdiAcsNds, avb], whence Lemma 1 1im-
plies (x;, x,)€0. We have shown that U?*Cg. U2[C)N(C]=C and the maximal-
ity of C yields U=C¢€ L/g. By making use of (C]=(D] we obtain UZ2[D)N(D]=D
similarly. Therefore U=D as well. Q. e. d.

Proposition 2. Suppose C,D,EcL[p and {cVd:c€C, d<D}CE. Then
[CIWVID)=[E).

Proof. Let {cvd: c€C,déD} be denoted by U. Since [U)=[C)N[D)=
=[CWID), [C)VID)ES[E) follows easily. To show the required equality let [C)N[D)=
=[C)VI[D)cE be assumed. Then [E)\([C)N[D))= ¢, and one can easily see
that EN\([C)N[D))= & as well. Therefore an element a can be chosen so that
acE and, e.g., a4[C). Choosing elements c¢€C and dcD we can assume that
a=cVd. (Otherwise a could be replaced by (cVd)Aa, because cVd, (cvd)\acE and
(cvd)Aa¢[C).) Evidently we have aAc§C. For an arbitrary x€C we can proceed as
follows. From (xVc)ydc US E and a€ E we obtain (xVcvd, a)€g. From x, c€C and
Lemma 2 (xVc, xAc)€¢ follows. By meeting we obtain (xVc¢, aAxAc)€g. From
Lemma 1 (x, aAc)€¢ can be concluded. Consequently (CU {aVc})*Se, a contra-
diction. Q. e. d.

Now Propositions 1 and 2 and their dual statements imply the correctness of
the definition of L/g.

3. L/p is a lattice

Before proving what is stated in the title of this section, a more handlable de-
scription of L/p is necessary.

Lemma 4. Suppose E=CyD and F=CAD for C,D,E, FEL[g9. Then we
have [C)[D)=[E) and (C)(DI=(El. The dual statement, [CIA\[D)=[F) and
(CINDY=(F), also holds.

Remark. If for X¢{C,D,E, F}SL/¢ X is an interval [x;,x,], and E=
=CVYD, F=CAD, then Lemma 4 yields c¢Vd,=e, c;Vdy=e;, c;Adi=f;, and
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csAdy=f>. (This is always the case when L is a finite lattice.) This remark can supply
a motivation of Definition 1.

Proof. Since {cVd: c€C,deD}SE, we have (CIV(D])=({cVd: c€C,de DS
C (E], implying (C1V (D]=(E]. The rest follows from Proposition 2 and the Duality
Principle.

This lemma enables us to strengthen Proposition 1:

Corollary 1. For C,DcL[g we have [C)=[D) if and only if (C}=(D].
Really, Proposition 1 follows from this corollary and Lemma 3.

Proof. Suppose [C)=[D), then [C)V[D)=[D). Proposition 2 and the dual
of Proposition 1 imply CV.D=D. By making use of Lemma 4 we obtain (C]=
=(CIV(D}=(D]. The Duality Principle yields the converse implication. Q.e. d.

Theorem 1. For any tolerance ¢ of an arbitrary lattice L, Ljo is a lattice
again.

Proof. By the Duality Principle it is enough to show that the V operation is
commutative and associative, and one of the absorption laws holds. Since the join
for dual ideals in Definition 1 is commutative and associative, the commutativity
and associativity are straightforward consequences of Proposition 2 and the dual of
Proposition 1. To show CV(CAD)=C, for C,DcL/p, by the dual of Proposition
1 it is enough to check [CV (CAD))=[C). But, by Lemma 4, [C)=[C)A[D)=
=[CAD), and so [CV (CAD))=[C)A[CAD)=[C). Q. e. d.

The following theorem deals with the connection between tolerances and cor-
responding quasi-partitions on lattices. For a tolerance ¢ on a lattice L, ¢,=L/¢
and P*(L) were defined in the Introduction.

Theorem 2. Given a lattice L, for any € S P* (L) the following two conditions
are equivalent.

(@) €=%,(=L/g) for some tolerance @ on L.

(b) € has the following six properties:

(C1) The elements of € are convex sublattices of L;

(C2) CLgJ«;C:L;

(C3) For any C,D€%, [C)=[D) is equivalent to (Cl=(D];

(C4) For any C,D€% there exist E,F¢¥ such that [C)V[D)=[E),
(CIV(DI=(E], and [C)NID)=[F), (CIA(D)=(F];

(C5) Let xcL, dcCE¥ be arbitrary. If for any e€CN(d] there exists C,
such that {e,x}SC.€% then x€(C), and, dually, if for any f€CN[d) there exists
C;, such that {f,x}SC,€¥ then x€[C);

(C6) If U is a convex sublattice of L and for any a,beU there exists D%
containing both a and b, then USC for some CE%.
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Moreover, if L is a finite lattice then (C5) and (C6) follow already from (Cl),
(C2), (C3), and (C4).

Proof.(a) implies (b). (C1),(C3)and (C4)is involved in Lemma 2, Corrollary 1,and
Lemma 4, respectively. Zorn Lemma yields (C2) and (C6). Suppose x€L, d€CE%,=
=1/p, and for any e€C\(d] there exists C.,¢L/g such that {e, x}SC,. Consid-
ering the set X={x}U(CN(d]) we have X?Sg¢. Extending X to an element
of L/g, say E, we obtain [C)=[Cﬂ(d])g[X YEIE), ie. [C)=]E). Corollary 1 yields
(C]=(E]. Hence x¢ XSEZ(E]S(C]. The proof of (C5) is completed by the Dual-
ity Principle.

(b) implies (a). Suppose ¥ satisfies the requirements of (b) and let ¢ denote
0¢={(a, b)EL?: {a,b}SC for some Cc%}. The relation ¢ is evidently symmetric;
and it is reflexive by (C2). If C, D, Ec%, U denotes the set {cVd:c€C,deD},
[C)VID)=]E), and (C]V(D]=(E] then USE. Indeed, US[C)N[D)=[E), U&
C(CIV(DIS(E], and, by Lemma 3, E=[E)N(E]. Now (C4) and the Duality
Principle yield the compatibility of ¢. Therefore ¢ is a tolerance on L, and %,=%
has to be shown. Suppose Cc%. Then C?*So. If (x,c)€o for any c€C then
x€[CYN(C}=C by (C5) and Lemma 3. Thus C<¥, and ¥S%,. Conversely, if
Uc¥, then USC for some C€% by (C6). But then both U and C belong to €,,
whence U=C. =%, has been shown.

Finally, suppose L is a finite lattice, S P+ (L) and ¥ satisfies (Cl), (C2), (C3),
and (C4). Since any convex sublattice of L is an interval, (C6) evidently holds. Sup-
pose x€L,dcC=[a, bl€¥ and for any ecCN(d] there exists C, such that {e, x}<S
CC.£¥. Then {a,x}EC,=[u,v). Since u=a, we obtain [C)V[C)=[C). Now
(C4) together with (C3) yield (C1V(C,]=(C], i.e., bVv=>b. Hence x=v=b, which
implies x€(C). (CS5) is satisfied by the Duality Principle. Q. e. d.

Note that usually it is convenient to give €, instead of ¢. For example, let D be
a five-element chain, say D={0<1<2<3<4}, let L=D™{(0,4)}, a sublattice
of D% and let %,={[(0,0),(2, DI, [(3,0),4, 1}, [(3,2),4 4], [0,2),(2,3)
[(1,2).(2,4)]}. Then Theorem 2 makes it easy to check that ¢ is a tolerance and
L/p is isomorphic to N;, the five-element non-modular lattice.

Proposition 1 yields that for any tolerance p on a finite lattice L, L/¢ cannot
have more element than L. That is why the following example can be of some inter-
est. Define g over Q, the set of rational numbers, by g={(x,»): [x—y|=1}. Armed
with the usual ordering Q turns into a lattice and ¢ is a tolerance on it. By making
use of the results of this section it is easy to check that the factor lattice Q/¢ is
isomorphic to R, the set of real numbers with the usual ordering. (Indeed, the
map Q/¢—+R, Cr—infC is an isomorphism.)
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4. Lattices as tolerance-factors of distributive lattices

The first example in the previous section indicates that forming factor lattices by
tolerances preserves neither distributivity nor modularity. It is a naturally arising
question which lattice identities are preserved. No non-trivial ones, as it will appear
from the forthcoming theorem. Let T, I, H, S, P, and P, denote the operators of
taking factor lattices by tolerances, isomorphic lattices, homomorphic images,
sublattices, direct products, and direct products of finite families, respectively.
Note, that HVCIT ¥V for any class V of lattices. Moreover, as it can be deduced
from Theorem 2, IT V=ITT V for any class ¥ of lattices. (To keep the size of the
paper limited, the proof, which is similar to that of Homomorphism Theorem, will
be omitted.) Let 2 denote the two-element lattice.

Theorem 3. ISTSP {2} is the class of all lattices, while ITSP {2} is the
class of all finite lattices.

Proof. Only one argument is needed to prove this theorem consisting of two
statements, just we have to show that our embeddings are surjective for the case of
finite lattices. We have to show that an arbitrary (finite, respectively) lattice L be-
longs to ISTSP{2} (to ITSP,{2}, resp.). First of all we can assume that L is
complete, since the map L—I(L), x—(x] is an (surjective for finite L) embedding
of L into its ideal lattice, i.e., into a complete lattice.

Claim 1. There are complete distributive lattices Dy and D, in P{2} and in-
jective 0-and 1-preserving maps ¢o: L—>Dy, ¢,;: L—D; such that ¢, preserves arbi-
trary joins and ¢, preserves arbitrary meets. If L is finite then D, D,€P {2}.

Proof. Let D, be P(L\{0}), the Boolean lattice of all subsets of L\ {0},
and define ¢,: L—D, as x—~(x]\{0}. The completeness of L yields (A (x,:y€I)]=
= ((x,]: y€T'), whence the required properties of ¢, are trivial. Moreover, D,
is isomorphic to 2/X-1. Q.e. d.

Now let D be Do+ D, , the ordinal sum of D, and D, . Le., D is the disjoint union
of Dy and D, equipped with the following ordering: x=y iff x¢D, and y€D,,
or x,yeD; and x=y for some i€{0,1}. Note that D is complete and it can be
embedded into the direct square of 2!Y1-1, thus it is in ISP{2} (in ISP {2} for
finite L). With the help of functions in Claim 1 define ¥SP*(D) by

€={C: 3=CCD, for any c,dcC there exists acL such that
{c, d}S[ag,, ap,], and C is maximal with respect to this property}.

Now, by making use of Theorem 2, we show that ¥ =%,(=D/) for some tolerance
goonD.
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To check (Cl) suppose x,y€C¢¥. For an arbitrary z€C there exist a, b€L
such that x, z€[ag,,ap,] and y, z€[bg,, be,]. Since ¢, preserves joins and ¢,
is monotone, we obtain xVy, z€ [a@,V be,, ap,V be, 1S [(aVb)e,, (aV b) @,]. From the
maximality of C we obtain xVy€C, showing that C is a sublattice. Let ¢, d€C, x€D
and c<x<d. Suppose that, e.g., x€D,, and let z be an arbitrary element of C.
Then ¢, z€[ag,, ap,] for some acl. But ap,€D, implies x<ag,, whence
x, z€[agp,, ap,]. The maximality of C yields x€C, i.e. C is a convex sublattice. By
the maximality of C, 1¢,€C, so C is not empty.

From [0¢g, 001U[1¢,, 1¢,]J=L and Zorn Lemma (C2) follows.

Now suppose that, in contrary to (C3), [C)=[E) and (C]1#(F] for C, Ec%.
Then one of (CIN\(E] and (EIN(C], say (C]N\(E] is not empty. Fix an element d
from C\(E} and let x be an arbitrary element of E. Since dAxc(CJAIE)=[C)=
[E), Lemma 3 yields d,dAx€C and x,dAxcE. Hence ap,=dAx=d=agp,
and bp,=dAx=x=b¢, for some a,béL. By forming join we obtain (ayb)p,=
=q@.Vbpo=dAx=d\V x=ap,Vbp,=(aVb)p,. Thus x,de[(aVb)p,, (aVb)y,], con-
tradicting the maximality of E. The rest of (C3) follows from the Duality Principle.

To show (C4), let C, E€%4 and define X={cVe: c€C, e€¢E}. For any two ele-
ments in X, say ¢;Ve; and c¢yVe,(c€C, e,€E), there exists an u€L such that
c;Veclupy, up,] for i=1,2. Indeed, c;€{ap,,ap,] and ei[by,y, bep] (i=1,2
and a, bcl), and u can be defined as aVb. From Zorn Lemma we obtain the exis-
tence of an Fe¢% such that XCF. Since (CIV(E]=(X]=(F] is evident,
[C)VIE)=[F) has to be shown. If x€[C)V[E)=[C)N[E) then x=c¢ and x=e
for c€C,e€cE. Hence x=cVecF implies x€[F), showing that [C)V[E)S[F).
Suppose that [C)V[E)c[F). Then FN([C)NI[E)) and so, e.g., F\[C) are not
empty. Fix elements d, ¢, and e in F\[C),C, and E, respectively. For an arbitrary
x€C we have xAc,xVc€C and d, ((xVc)Ve)VdeF. Therefore apy=xAc=
=xVe=ap, and bo,=d=xVcVeVd=bp, for some a,bcL. By meeting we ob-
tain (aAD)po=a@ Abpy=xAcANd=xV c=ap;\bp,=(@Ab)p,. Now cAd¢C and
x, cAd€[(a\b)p,y, (aAb)p,] contradicts the maximality of C. The rest of (C4) is
settled by the Duality Principle.

Before going on we show that

(%) [ugy, up,1€€ for any wuclL.

Only the maximality of [u¢,, ue,] has to be shown. Suppose [ugp,, ug,] is not maxi-
mal, then [ug@,,up,]cC for some C¢c%. Fix an element ¢ in C\J[ug,, up,).
Since C is a sublattice, co=cAup, and c¢;=cVup; are in C, and either co<ug@,
or ¢;>up,. If, e.g., co=<u@,, then cq, up,:€C implies aQ,=co<u@y<uP;=ap;
for some a€L. Hence apy=u@,, (@Vu)ps=ap,\Vup,=up,, and u@,=apAup,=
=(aAu)p,. The injectivity of ¢, and ¢, yields a=u,aVu=u, and aAu=u, a
contradiction.
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Now suppose x€L, d€¢Ce€% and for any ecC(d] there exists C,€%4 such
that {e,x}SC,. Then for any ecCN(d] there exists a,6L such that
e, x€[a,pq, a.pi]. Set u=A(a,:e€CN(d]) and h=A(e:e€CN(d]). Since ¢,
preserves arbitrary meets and ¢, is monotone, we obtain u@,=A\(a.9,: e€CN(d])=h
and x=A(a.0,: e€CN(d])=up,, i.e., h, x€[up,, up,]=E. From (*) we conclude
that E€¥. Since ug,=h=y holds for any y€C (indeed, h=yAdeCN(d]),
LE)=[C). Now (C3) and (C4) imply (E1=(C] (cf. the proof of Corollary 1). There-
fore x€(C] follows from x€ECS(E]S(C). The rest of (C5) follows from the
Duality Principle.

Now let U be a convex sublattice of D and suppose that for any a, b€U there
exists E€% containing both a and b. Then q, b€fup,, up,] for some u€L, and
Zorn Lemma implies (C6).

We have shown that € is associated with a tolerance ¢ on D. Let D/g=%
denote the corresponding factor lattice. For ucL let wy denote [ug@,, up,]. Then,
by (%), ¥ is a map from L into Dfg. If u,v€L then [@Vo)¢)=[uVv)e,)=
=[up,Vv@y)=[upy)Vvey)=[uf)V{vp). Lemma 4 and the dual of Proposition 1
imply (uVo)=wyVoyp, showing that ¥ is a homomorphism. Since ¢, is injective,
so is . Therefore LcIST{D}.

In case L is finite, so is D. Then any convex sublattice and, in particular, any
element of ¥ is an interval. Hence ¥ is surjective, and LcIT{D}. Q. e. d.
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