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Some nontrivial implications in congruence varieties

GABOR CZEDLI1

Dedicated to Professor Béla Csdkdny on his 60th birtday

A congruence variety is a lattice variety generated by the class of congruence
lattices of all members of some variety of algebras. The most known examples are
¥ (R), the lattice varieties generated by congruence (or submodule) lattices of R-
modules for rings R with 1. Given a lattice identity « and a set I" of lattice identities,
we write I'k=.a if every congruence variety satisfying I also satisfies a (cf. JONssON
[8]). The implication I'k=,a is called nontrivial if I'k=a (in the class of all lat-
tices). For I'={y} we will write y rather than {y}.

There are many results stating that y,a without y=a for certain pairs
(7, %) of lattice identities. These results are surveyed in JONSSON [8]; for a further
development cf. FREese, HERRMANN and HuUHN [3]. However, all the known results
are located at distributivity or modularity in the sense that either yk ak=, dis-
tributivity =,y or yk. ok, modularity = y. Now [1] offers an easy way to achieve
yk=.o results of a different nature.

For an integer n>2 and a modular lattice L, a system

f=(a,-,c,-j: l=i=nl=j=n1i#j)

of elements of L is called a (von Neumann) n-frame in L if q; Z‘ a;=03, cjp=cyj,

a;c;x=03,a;+cp=a;+a.and c,k—(a,+ak)(c,,+c,k) for all d1st1nct], k,1c{1,2,...,n}
where O; resp. 1; are the meet resp. join of all elements of f (cf. voN NEUMANN [9]).
We write x+y and xy for the join and meet of x and y.

Given m=0 and n=1, a lattice identity A(m, n) is defined in [7, page 289]
such that, for any ring R with 1, 4(m, n) holds in ¥"(R) iff the divisibility condition
(Ar)(m-r=n-1), abbreviated by D(m, n), holds in R (cf. [7, Prop. 6]). What else
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we need to know about A(m,n) is that A{(m, n) is of the form
(%1 +X2) (X3 + X)) = G, n(X15 X3, X3, Xp).

Frames are projective in the variety of modular lattices. This was proved in
two steps; first for (Huhn) diamonds in HURN [6] (for a more explicit statement cf.
FREESE [2]) and then frames and diamonds turned out to be equivalent in HERRMANN
and HUHN [, page 104]. Therefore there are lattice terms b;(X) and d;;(X) in variables
%=(x;, x;;: 1=i,j=k, i#j) such that these terms produce a k-frame (b;(¥),
dij(): 1=i, j=k, i#j) from any system y of elements of a modular lattice
L and, in addition, if f=(a;, ¢;;: 1=i,jsk, i#j) is a k-frame in L then b,(f)=aq;
and d;;(f)=c;; for every ij.

For k=4 the conjugation of the modular law and the identity

(d13(%) + das(3)) (d1a (%) + 24 (3)) = G, (d13(3); ds(3), G1a (3); da (%)),

where X=(x;, x;;: 1=i, j=k, i#j), will be denoted by A(m,n, k). Clearly,
A(m, n, k) is equivalent to a single lattice identity modulo lattice theory.

Theorem. Consider arbitrary integers m’,m;=0,n’, n;=1, and k', k;=4 (icI)
where I is an index set. Then {A(my, n;, ky): i€l}=A(m’,n', k") if and only if
{D(m;, n)): i€I} implies D(m’, v’} in the class of rings with 1.

In particular, if mfn and k=5 then A(m,n, k)=.A4(m,n,k—1). This is a
nontrivial implication, for we have the following

Proposition. If mfn, m=0, n=1 and k=5 then 4(m, n,k)i=A(m,n, k—1).

To point out that the A(m, n, k) in the proposition are essentially distinct we
present the following.

Remark. The set {4(p, 1, k): p prime}, where k=4, is independent in con-
gruence varieties in the sense that for every prime ¢

{4(p, 1, k): p prime, p = q}¥.4(q, 1, k).

Proof of the theorem. Since frames and diamonds are equivalent (cf.
HERRMANN and HUBN [5, page 104]), the identities A(m, n, k) are diamond iden-
tities in the sense of [1]. What we need from [1] is only its Theorem 2, which we re-
formulate less technically as follows: For any diamond identity «, I'=.a iff for
any ring R with 1 I" implies « in ¥"(R). Therefore it suffices to show that 4(m, n, k)
and A(m,n) are equivalent in any ¥ (R). Clearly, A(m,n) implies A(m,n, k)
and 4 (m, n) are equivalent in any ¥"(R). Clearly, 4 (m, n) implies 4 (m, n, k) in ¥"(R).
Conversely, assume that A(m,n, k) holds in ¥'(R). Let M=M(u,, u,, ..., 4)
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denote the R-module freely generated by {u;, #,, ..., %, }. Then A(m,n, k) holds
Sub (M), the submodule lattice of M. It is easy to see (or cf. NEUMANN [9]) that
the cyclic submodules (Ru;, R(u;—u;): 1=i, j=k, i #j) constitute a k-frame in
Sub (M). (In fact, this is the most typical example of a k-frame.) Therefore

1) (R(ul ~u3)+ R(up— us)) (R (1 —ug) + R(uy— u,;)) =
= Gm,n (R(ul — utg), R(uy—t3), R(ty — uy), R(us—uy))

holds in Sub (M) and even in Sub (M (u, u,, us, u,)). Now the theory of Mal'tsev
conditions (cf. WILLE [11] or PIXLEY [10]) together with the canonical isomorphism
between Sub (M (uy, u,, us, uy) and the congruence lattice of M (uy, uy, U3, ty)
yield easily that A(m, n) holdsin ¥"(R). (Note that the first nine rows in the proof of
[7, Prop. 6] supply a detailed proof of the fact that (1) implies the satisfaction of
A(m,n) in ¥ (R).)

Proof of the proposition. Let Z denote the ring of integers. Since m{n and
A(m, n, k—1) implies 4A(m,n) in ¥ (Z) by the proof above, A(m,n, k—1) fails
in ¥°(Z). It is shown in HERRMANN and HUHN [4, Satz 7] that ¥"(Z) is generated by its
finite members. Therefore there is a finite modular lattice L with minimal number of
elements such that 4(m, n, k—1) fails in L. We intend to show that 4 (m, n, k) holds
in L. Assume the contrary. Then there is a k-frame f=(a;, ¢ 1=i,j=k, i#))
such that A(m, n) fails when ¢35, ¢y3, C1a, C24 are substituted for its variables. It is
known that either all elements of a frame are equal or gy, a,, ..., q, are distinct
atoms of a Boolean sublattice of length k (cf., e.g., HERRMANN and HUHN [5, (iii)
on page 101 and page 104]). Now only the latter is possible since the one element lat-
tice satisfies any identity. Hence the subframe g=(a;, c;;: 1=i,/=k—1, i%j) lies
in the interval L’=[0;, 1;]. From l;=a,+...+a,_;<a;+...+a=1; we obtain
|L’|<|L|. The frame g witnesses that A(m, n, k—1) fails in L’, which contradicts
the choice of L.

The remark is concluded from the theorem quite easily; we need only to con-
sider the ring of those rational numbers whose denominator is not divisible by g.
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