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Abstract. Recently, G. Grätzer has raised an interesting problem: Which distribu-
tive lattices are congruence lattices of slim semimodular lattices? We give an eight

element slim distributive lattice that cannot be represented as the congruence lattice
of a slim semimodular lattice. Our lattice demonstrates the difficulty of the problem.

1. Introduction

All lattices in the paper are assumed to be finite. A finite lattice L is slim, if
Ji L, the set of nonzero join-irreducible elements of L, is included in the union
of two chains of L; see G. Czédli and E.T. Schmidt [3]. A slim lattice is finite by
definition. In the planar semimodular case, this concept was first introduced by
G. Grätzer and E. Knapp [8] in a different but equivalent way: a semimodular
lattice is slim if it contains no M3 sublattice; equivalently, if it contains no
cover-preserving M3 sublattice; see also G. Czédli and E. T. Schmidt [3, Lemma
2.3]. By [3, Lemma 2.2], slim lattices are planar. Our aim is to prove the
following theorem.

Figure 1. A non-representable slim distributive lattice

Theorem 1.1. There is no slim semimodular lattice whose congruence lattice
is isomorphic to the planar distributive lattice D8 of Figure 1.
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The historical background of this theorem is briefly the following. We know
from J. Jakub́ık [13], see also G. Grätzer and E.T. Schmidt [12], that the con-
gruence lattice Con M of a finite modular lattice M is boolean. (Interestingly,
this result also follows from the deep result of G. Grätzer and E. Knapp [10,
Theorem 7].) On the other hand, each finite distributive lattice is isomor-
phic to the congruence lattice of a planar semimodular lattice by G. Grätzer,
H. Lakser, and E. T. Schmidt [11]. Let Con(SSL) denote the class of finite
lattices isomorphic to the congruence lattices of slim semimodular lattices.
In [7], G. Grätzer raised the problem to give an internal characterization for
Con(SSL). There are many known facts about the lattices in Con(SSL). For
example, G. Grätzer and E.T. Schmidt (personal communication) point out
that if D ∈ Con(SSL) such that JiD has exactly two maximal elements, then
there exists a unique element d ∈ D such that the filter ↑d is a 4-element
boolean lattice and D = ↑d ∪ ↓d. Furthermore, in this case, G. Grätzer (per-
sonal communication) observed that each element of Ji D is covered by at
most two elements of Ji D. Although no specific property that hold for the
members of Con(SSL) is targeted in the present paper, we note that the prop-
erties mentioned above follow from G. Czédli [2, Theorems 3.7 and 5.5] and
G. Grätzer and E. Knapp [10, Theorem 7]. Since D8 satisfies these properties,
Theorem 1.1 indicates that the problem of characterizing Con(SSL) is more
complex than one would expect.

2. Auxiliary statements and the proof of Theorem 1.1

For notation and concepts not defined in the paper, see G. Grätzer [6].
The left boundary (chain) and the right boundary (chain) of a planar lattice
diagram D are denoted by C`(D) and Cr(D), respectively. Their union is the
boundary of D. A double irreducible element on the boundary is called a weak
corner. Note that 0 and 1 are not doubly irreducible elements. Following
G. Grätzer and E. Knapp [8], a planar lattice diagram D is rectangular if it is
semimodular, C`(D) has exactly one weak corner, denoted by lc(D), Cr(D) has
exactly one weak corner, rc(D), and these two elements are complementary,
that is, lc(D) ∧ rc(D) = 0 and lc(D) ∨ rc(D) = 1. Note that a rectangular
diagram consists of at least four elements. If a lattice L has a rectangular
diagram, then L is a rectangular lattice. We know from G. Czédli and E. T.
Schmidt [5, Lemma 4.9] that if one diagram of a planar semimodular lattice
is rectangular, then so are all of its planar diagrams. Furthermore, if D is
a planar diagram of a slim rectangular lattice R, then {C`(D), Cr(D)} and
{lc(D), rc(D)} do not depend on D. Therefore, since our arguments are left-
right symmetric, we can always think of a fixed diagram and we can use the
notation C`(R), Cr(R), lc(R), and rc(R).

Suppose, for a contradiction, that Theorem 1.1 fails. In the rest of the paper,
let L8 denote a slim semimodular lattice such that ConL8

∼= D8. We know
from G. Grätzer and E. Knapp [10, Theorem 7] that each planar semimodular
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lattice L has a rectangular congruence-preserving extension. Analyzing the
proof of this result, or referencing G. Czédli [1, Lemma 5.4] and G. Czédli and
E. T. Schmidt [4, Lemma 21], we obtain that for a slim semimodular lattice L,
there exists a slim rectangular lattice R such that Con L ∼= Con R. Therefore,
we can assume that L8 is a slim rectangular lattice.

Next, let R be an arbitrary slim rectangular lattice. The boundary of R is
C`(R) ∪ Cr(R), while R \

(
C`(R) ∪ Cr(R)

)
is the interior of R. For a meet-

irreducible element x ∈ MiR, x∗ denotes the unique cover of x. We define an
equivalence relation on MiR as follows. For x, y ∈ MiR, let 〈x, y〉 ∈ Θ mean
that x = y, or both x and y are in the interior of R and x∗ = y∗. The quotient
set (Mi R)/Θ is denoted by M̂iR. For x ∈ Mi R, we denote the Θ-block of x

by x/Θ. We define a relation σ̂ on M̂i R by the rule

〈x/Θ, y/Θ〉 ∈ σ̂ iff x/Θ 6= y/Θ, x is in the interior of R, x∗ ≤ y∗,
but there are x′ ∈ x/Θ and y′ ∈ y/Θ such that x′ 6≤ y′.

Finally, let τ̂ be the reflexive transitive closure of σ̂ on M̂iR. We need the
following result from G. Czédli [2, Theorem 7.3(ii)].

Figure 2. An illustration for Theorem 2.1

Theorem 2.1. 〈M̂iR; τ̂〉 is an ordered set, and it is isomorphic to the ordered
set 〈Ji (Con R);≤〉.

The elements of M̂iR belong to two categories. If x ∈ MiR is on the
boundary of R, then the singleton Θ-block x/Θ = {x} is a boundary block.
For x ∈ Mi R such that x is in the interior of R, the block x/Θ is called
an umbrella. For the slim rectangular lattice R of Figure 1, the elements of
Mi R are black-filled, the Θ-blocks are indicated by dotted closed curves, b1/Θ
and b2/Θ are boundary blocks, and u1/Θ, u2/Θ, and u3/Θ are umbrellas. We
need the following lemma.

Lemma 2.2. If R is a slim rectangular lattice, then the maximal elements of
〈M̂i R; τ̂〉 are exactly the boundary blocks.



4 G. Czédli Algebra univers.

Proof. It follows from the definition of σ̂ and τ̂ that the boundary blocks are
maximal elements.

Conversely, assume that x ∈ MiR is an interior element of R. We have to
show that the umbrella x/Θ is not a maximal element in 〈M̂i R; τ̂〉. Denote
lc(R) and rc(R) by w` and wr, respectively. Let a = w` ∨ x and b = wr ∨ x.
If a = w` and b = wr, then x ≤ w` and x ≤ wr imply that x ≤ w` ∧ wr = 0,
which contradicts 0 = w`∧wr /∈ Mi R. Therefore, we can assume that a 6= w`,
that is, w` < a. By G. Grätzer and E. Knapp [10, Lemma 4], ↑w` is a chain
and a subset of the left boundary chain of R. Hence, there is a unique c ∈ ↑w`

such that c ≺ a. We know from G. Grätzer and E. Knapp [10, Lemma 3]
that c ∈ MiL. Hence, c/Θ is a boundary block. Since x is in the interior of
R but a is not, x ≤ a yields that x < a. This, together with {x, c} ⊆ MiR,
implies that x∗ ≤ a = c∗. If x ≤ c, then a = x ∨ w` ≤ c, which contradicts
that c ≺ a. Thus, x 6≤ c, and we conclude that 〈x/Θ, c/Θ〉 ∈ σ̂. Consequently,
〈x/Θ, c/Θ〉 ∈ τ̂ . Since c/Θ is a boundary block and x/Θ is an umbrella, we
have that x/Θ 6= c/Θ. Therefore, x/Θ is not a maximal element. �

Now, we are ready to prove our result.

Proof of Theorem 1.1. Applying Theorem 2.1 and Lemma 2.2 to R = L8, we
obtain that 〈M̂iL8; τ̂ 〉 consists of two boundary blocks, A and B, and three
umbrellas, E, F and G, such that, with the notation of Figure 1, A, B, E,
F , and G correspond to a, b, e, f , and g, according to the order isomorphism
〈M̂i L8; τ̂〉 → 〈Ji D8;≤〉 provided by Theorem 2.1.

For a Θ-block U , in particular, for an umbrella U , the element x∗ is the
same for all x ∈ U ; by the top U∗ of U we mean x∗, where x ∈ U . On the
other hand, the bottom U∗ of U is

∧
U , the meet of all elements of U .

It follows from the main result of G. Grätzer and E. Knapp [9] that L8

contains an element with at least three distinct lower covers. Consequently,
it is clear, and it follows rigorously from D. Kelly and I. Rival [14], that
the interior of L8 is non-empty. Let u be a maximal element of the interior
of L8. Suppose, for a contradiction, that u /∈ MiL8. Then u is the meet of
meet-irreducible elements that belong to C`(L8)∪Cr(L8) of L8. Since C`(L8)
and Cr(L8) are chains, we can assume that u = v1 ∧ v2, where v1 ∈ C`(L8),
v2 ∈ Cr(L8), {v1, v2} ⊆ MiL8, and v1 ‖ v2. By G. Grätzer and E. Knapp [10,
Lemma 4],

C`(L8) = ↓lc(L8) ∪ ↑lc(L8). (2.1)

Since every element in ↓lc(L8) \ {lc(L8)} has at least two covers by G. Czédli
and E. T. Schmidt [5, (2.14)], we obtain that v1 ≥ lc(L8). Similarly, v2 ≥
rc(L8). We cannot have equality in both cases, because this would imply
u = v1 ∧ v2 = lc(L8) ∧ rc(L8) = 0, which is not in the interior of L8. Let, say,
v1 > lc(L8). Then v1/Θ, lc(L8)/Θ, and rc(L8)/Θ are three distinct boundary
blocks, which is a contradiction. This proves that u ∈ MiL8.
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By the maximality of u, the element u∗ is on the boundary of L8. Let,
say u∗ ∈ C`(L8). Since C`(L8) ⊇ ↓lc(L8) by G. Grätzer and E. Knapp [10,
Lemma 4], if u∗ is in ↓lc(L8), then u ∈ C`(L8), which is a contradiction. Hence,
u∗ /∈ ↓lc(L8), and (2.1) implies that lc(L8) < u∗. If u∗ < 1, then u∗ ∈ Mi L8

by [10, Lemma 3], whence u∗/Θ, lc(L8)/Θ, and rc(L8)/Θ are three distinct
boundary blocks, which is a contradiction. Consequently, u∗ = 1. This proves
that L8 has an umbrella whose top is 1.

Next, we show that this umbrella is not G. Suppose, for a contradiction,
that G∗ = 1. Since g < e, we have that 〈G, E〉 ∈ τ̂ . Hence, there exists a
sequence

G = X0, . . . , Xs = E in M̂iL8 such that 〈Xi−1, Xi〉 ∈ σ̂ (2.2)

for i ∈ {1, . . . , s}. Thus X∗
i−1 ≤ X∗

i for all i, and we obtain that G∗ ≤ E∗.
Therefore, G∗ = 1 = E∗, which is a contradiction, because distinct umbrellas
clearly have distinct tops by the definition of Θ. This proves that G∗ 6= 1.
Since the role of E and F is symmetric, we can assume that E∗ = 1.

Next, we assert that
F ∗ ≤ E∗. (2.3)

To prove this, observe that f ‖ e gives that 〈F, E〉 /∈ τ̂ and, consequently,
〈F, E〉 /∈ σ̂. This, together with F ∗ ≤ 1 = E∗, yields that, for all x′ ∈ F

and y′ ∈ E, x′ ≤ y′. Hence, for all x′ ∈ F , we have that x′ ≤ E∗. There
are two cases. First, assume that |E| ≥ 2, and let x′ ∈ F . Since E∗ /∈ Mi L8

and x′ ∈ Mi L8, we have that x′ 6= E∗. Thus the inequality x′ ≤ E∗ implies
that x′ < E∗. Therefore, F ∗ = x′∗ ≤ E∗. Second, assume that E = {y′} is a
singleton. Let x′ ∈ F . We know that x′ ≤ E∗ = y′. If we have equality here,
then F ∗ = x′∗ = y′∗ = E∗ contradicts the fact that distinct umbrellas have
distinct tops. Thus x′ < E∗, which implies that F ∗ = x′∗ ≤ E∗ again. This
proves (2.3).

Next, we turn our attention to the inequality g < f . Since 〈G, F 〉 ∈ τ̂ , we
obtain from a σ̂-sequence similar to (2.2) that G∗ ≤ F ∗. (In fact, G∗ < F ∗,
but we do not need the sharp inequality here.) Combining this with (2.3), we
obtain that G∗ ≤ E∗. Since g < e, we have that 〈G, E〉 ∈ τ̂ , which is witnessed
by a shortest sequence described in (2.2). If X1 in the sequence equals F , then
(2.2) gives 〈F, E〉 ∈ quor(σ̂) = τ̂ , contradicting f 6≤ e. This excludes that
X1 = F . Similarly, since a 6≤ e and b 6≤ e, we exclude X1 ∈ {A, B}. Since
(2.2) is the shortest sequence, X1 6= G. Now, after that all but one element
of M̂i L8 = {A, B, E, F, G} have been excluded, we conclude that X1 = E.
Therefore, 〈G, E〉 ∈ σ̂. This implies the existence of an element z′ ∈ G and
an element y′ ∈ E such that z′ 6≤ y′. But this is a contradiction, because
z′ ≤ G∗ ≤ E∗ ≤ y′. �
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