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Abstract. A cyclic polygon is a convex n-gon inscribed in a circle. If, in
addition, one of its sides is a diameter of the circle, then the polygon will be

called Thalesian. Up to permutation, a Thalesian n-gon is determined by the
lengths of its non-diametric sides. It is also determined by the distances of

its non-diametric sides from the center of its circumscribed circle. We prove
that the Thalesian n-gon in general can be constructed with straightedge and

compass neither from these lengths if n ≥ 4, nor from these distances if n ≥ 5.
An analogous statement for the constructibility of cyclic n-gons from the

side lengths was found by P. Schreiber in 1993; his statement was first proved

by the present author and Á. Kunos in 2015. The 2015 paper could only prove

the non-constructibility of cyclic n-gons from the distances for n even; here we
extend this result for all n ≥ 5.

1. Introduction and results

A cyclic polygon is a convex n-gon inscribed in a circle. Constructibility is
always understood as the classical geometric constructibility with straightedge and
compass. The concept of constructibility in general is not as obvious as one may
think and the meaning “constructible for all (meaningful) data” does not lead to
the usual algebraic characterization. For example, consider the task when we are
given 0, 1, a, b ∈ R as points on the real line such that 0 < a < b and we want to
construct the unique c ∈ R defined by

c :=

{

b + q, if b/a = p/q for relatively prime p, q ∈ N,

a + b, otherwise.

A rigorous definition of this concept is given in [2] and it is outlined in the in-
troduction of [3]. However, in the present paper, the reader may safely assume
that “constructible in general” means “constructible for all meaningful data”. Here
“meaningful” refers to the property that the cyclic polygon exists; we will see that
in this case the polygon is determined by the data we consider up to permutation of
its edges. Motivated by Thales’ theorem, by a Thalesian polygon we mean a cyclic
polygon with exactly one of its sides being a diameter of the circumscribed circle;
see Figure 1 for an illustration.

Up to permutation, a cyclic n-gon is determined by its side lengths, that is, by
n data. These data are not quite arbitrary. We know from Schreiber [4] that for
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Figure 1. A Thalesian pentagon

positive real numbers a1, . . . , an, there exists a (non-degenerate) cyclic n-gon with
these side lengths iff each of these n numbers is less than the sum of the rest.
By the central distances of a cyclic n-gon we mean the distances of its sides from
the center C of its circumscribed circle. If C is outside the n-gon, then one of

these distances is negative. An n-tuple ~d = 〈d1, . . . , dn〉 is representable by central

distances if there exists a cyclic n-gon whose system of central distances is ~d. As
opposed to side lengths, we have no characterization of the representable tuples
~d. However, geometric intuition makes it clear that ~d is surely representable if all
the ratios di/dj are sufficiently close to 1; we will rely on this fact implicitly. The
following statement, for all n ≥ 5, was observed by Schreiber [4]; he proved it for
n = 5; the first complete proof for n > 5 is due to [3].

(1.1)
If n ≥ 5, then the cyclic n-gon is in general
not constructible from its side lengths.

Also, [3] contains the following statement:

(1.2)
If n ≥ 5 is an even number, then the cyclic n-gon is in
general not constructible from its central distances.

As a by-product of our approach here, the restricting stipulation “even” will be
removed from (1.2). For a Thalesian n-gon, we only consider n − 1 data: either
the (n − 1)-tuple 〈a1, . . . , an−1〉 of the side lengths of its non-diametric sides, or
the (n − 1)-tuple 〈d1, . . . , dn−1〉 of the central distances of its non-diametric sides.
For example, the task for the Thalesian pentagon in Figure 1 is either to construct
it from 〈a1, . . . , a4〉, or to construct it from 〈d1, . . . , d4〉. Our goal is to prove
the following theorem, which implies that the Thalesian n-gon is in general non-
constructible from its side lengths for n ≥ 4, and the same holds for its central
distances if n ≥ 5.

Theorem 1.1. Let n ≥ 5 be a natural number.

(i) There exists an (n− 1)-tuple ~a = 〈a1, . . . , an−1〉 of positive real numbers such

that |{a1, . . . , an−1}| ≤ 2, there is a Thalesian n-gon with these side lengths,

but this Thalesian n-gon is not constructible from a1, . . . , an−1.
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(ii) There exists an (n− 1)-tuple ~d = 〈d1, . . . , dn−1〉 of positive real numbers such

these numbers as central distances determine a Thalesian n-gon, this Thale-

sian n-gon is not constructible from d1, . . . , dn−1, and |{d1, . . . , dn−1}| ≤ 2.

(iii) In (i) and (ii), we can also stipulate that the components of ~a and those of ~d
are positive integers.

(iv) The Thalesian triangle is in general constructible from its side lengths and also

from its central distances. The Thalesian quadrangle is in general constructible

from its central distances.

(v) The Thalesian quadrangle with side lengths 〈1, 2, 3〉 is not constructible from

its side lengths.

Note that a Thalesian triangle is simply a right-angled triangle. For many n,
we can even say |{a1, . . . , an−1}| = 1 and |{d1, . . . , dn−1}| = 1 in parts (i) and (ii)
above. To see this, we call a Thalesian polygon regular if all its non-diametric
sides are of the same length. In the constructibility problem of regular (Thalesian)

polygons, the value of a in ~a = 〈a, . . . , a〉 and that of d in ~d = 〈d, . . . , d〉 are
irrelevant. By reflecting a regular Thalesian n-gon across its diametric side, we
obtain a regular 2(n− 1)-gon. The latter is constructible iff the regular (n− 1)-gon
is constructible; these n − 1 are characterized by the well-known Gauss–Wantzel
theorem; see [5]. Therefore, the following statement is trivial.

Remark 1.2. The regular Thalesian triangle is, of course, constructible. For n ≥ 4,
the regular Thalesian n-gon is constructible if and only if the regular (n − 1)-gon
is constructible.

In a sense, if dn = 0 is allowed, Theorem 1.1(ii) extends the validity of (1.2)
from “even” to “all”. The following corollary does the same with positive central
distances.

Corollary 1.3. For every n ≥ 5 or n = 3, there are positive integers num-

bers d1, . . . , dn such that they determine a cyclic n-gon with central distances ~d =

〈d1, . . . , dn〉, this n-gon is not constructible from ~d, and |{d1, . . . , dn}| ≤ 3. How-

ever, the cyclic quadrangle is constructible from ~d.

For n ∈ {3, 4}, this corollary was proved in [2]; see also [3, Proposition 1.3] where
this is cited. The rest of the corollary follows from Theorem 1.1, the Limit Theorem
[3, Theorem 9.1], and the Rational Parameter Theorem [3, Theorem 11.1]; we will
not recall these advanced tools and the straightforward details are left to the reader.

With the technique presented in this paper, one can disregard Thalesian polygons
and give a direct proof that improves |{d1, . . . , dn}| ≤ 3 to |{d1, . . . , dn}| ≤ 2,
provided n ≥ 5; the details are again omitted. For small n, note the following
difference between the cyclic and the Thalesian case. For all n ∈ {3, 4}, a cyclic
n-gon is in general constructible from its side lengths, but this is not true for n = 3
with central distances. On the other hand, for all n ∈ {3, 4}, a Thalesian n-gon is
in general constructible from its central distances, but this is not true for n = 4
with side lengths.

Besides cyclic, that is, inscribed polygons, we can consider circumscribed poly-
gons. However, their study is easily reduced to that of cyclic polygons. The follow-
ing corollary of Theorem 1.1 follows obviously with the help of [3, Remark 1.4]; no
further detail will be given here.
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Corollary 1.4. For n ≥ 3, a circumscribed n-gon is in general constructible from

the distances of its vertices from the center of the inscribed circle if and only if

n = 4.

2. Proofs and auxiliary statements

The greatest common divisor will be denoted and abbreviated by gcd. A poly-
nomial is primitive if the gcd of its coefficients is 1. The following well-known
statement is due to C.F. Gauss; we cite parts (i) and (iii) from [1, Thm. 2.16 (page
90) and Prop. 7.24 (page 260)]; (ii) follows from (iii).

Lemma 2.1. If R is a unique factorization domain with field of fractions F , then

(i) the polynomial ring R[x] is also a unique factorization domain,

(ii) if a polynomial is irreducible in R[x], then it is also irreducible in F [x], and

(iii) a primitive polynomial is irreducible in R[x] iff it is irreducible in F [x].

For the ring Z of integers, the field of fractions of Z[x] is Q(x), the field of rational
functions over Q; note that Q(x) is a transcendental extension of the field Q of
rational numbers. We know that the polynomial rings Z[x, y], Z[x][y], and Z[y][x]
are isomorphic. This fact allows us to write fx(y) and fy(x) instead of f(x, y) ∈
Z[x, y]. That is, fx(y), fy(x), and f(x, y) are essentially the same polynomials but
we put an emphasis on fx(y) ∈ Z[x][y] ⊆ Q(x)[y] and fy(x) ∈ Z[y][x] ⊆ Q(y)[x].
Therefore, the following convention applies in the paper:

(2.1)
no matter which of f(x, y) ∈ Z[x, y], fx(y) ∈ Z[x][y], and
fy(x) ∈ Z[y][x] is given first, we can also use the other two.

The first part of the following lemma will play an important role in the paper; the
second part will not be used. The degree of a polynomial g(x) will be denoted by
deg(g(x)) = degx(g(x))

Lemma 2.2. Assume that g1(x) and g2(x) are non-zero polynomials in Z[x] such

that gcd
(

g1(x), g2(x)
)

= 1. Let f(x, y) = g1(x)y + g2(x). Then fy(x) is an ir-

reducible polynomial in Z[y][x] and, consequently, also in Q(y)[x]. Furthermore,

fy(x) is a primitive polynomial in Z(y)[x].

Proof. . Assume that

(2.2) uy(x), vy(x) ∈ Z[y][x] such that fy(x) = uy(x) · vy(x).

Then g1(x)y + g2(x) = fx(y) = ux(y) · vx(y). Since fx(y) ∈ Z[x][y] is of degree 1,
one of ux(y) ∈ Z[x][y] and vx(y) ∈ Z[x][y] is of degree 0. Let, say, ux(y) be of degree
0; then vx(y) ∈ Z[x][y] is of degree 1. Hence, there are u(x), v1(x), v2(x) ∈ Z[x]
such that ux(y) = u(x) and vx(y) = v1(x)y + v2(x). Comparing the coefficients of
y in the factorization

g1(x)y + g2(x) = ux(y) · vx(y) = u(x) ·
(

v1(x)y + v2(x)
)

,

we obtain that u(x) | g1(x) and, consequently, u(x) | g2(x). Hence, using the
assumption gcd(g1(x), g2(x)) = 1, we conclude that u(x) ∈ {−1, 1}. Thus, fy(x) is
irreducible in Z[y][x]. By Lemma 2.1(ii), it is also irreducible in Q(y)[x].

Finally, since (2.2) also implies u(x) ∈ {−1, 1} in the particular case when u(x)
is an element of Z, it follows that fy(x) is a primitive polynomial in Z[y][x]. �
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The following statement is well-known and often taught for students; see [2,
Theorem V.3.6]; see also the list of references right before [3, Proposition 3.1]. As
usual, the field extension of Q by a transcendental number c is denoted by Q(c); it
is isomorphic to the field Q(x) of fractions of Z[x].

Proposition 2.3. Let c be a real transcendental number and let u ∈ R. If there

exists an irreducible polynomial h(x) ∈ Q(c)[x] such that h(u) = 0 and degx(h(x))
is not a power of 2, then u is not constructible from Q ∪ {c}.

For all k ∈ N := {1, 2, . . .} and γ ∈ R, the following two identities are well-
known, see, for example, [3, Section 3]; 2 | j = 0 will mean that j is even and runs
from 0 while 2 6 | j = 1 refers to indices running through odd numbers.

cos(kγ) =

k
∑

2|j=0

(−1)j/2

(

k

j

)

(cos γ)k−j · (sin γ)j(2.3)

sin(kγ) =

k
∑

2 6 |j=1

(−1)(j−1)/2

(

k

j

)

(cos γ)k−j · (sin γ)j .(2.4)

Proof of Theorem 1.1. For n ≥ 5, there are several cases depending on n and,
furthermore, (i) and (ii) need different arguments. To avoid unnecessary repetitions,
we give the common parts of these arguments. We choose the data from one of the
following two possibilities where c ∈ R is a transcendental number:

〈1, . . . , 1,
√

c 〉, with k := n − 2 units and a single
√

c, or(2.5)

〈1, . . .1,
√

c,
√

c 〉, with k := n − 3 units and two copies of
√

c.(2.6)

The (n−1)-tuples above are the system 〈a1, . . . , an−1〉 of side lengths or the system
〈d1, . . . , dn−1〉 of central distances. To ensure that the Thalesian n-gon exists, c is
assumed to be sufficiently close to 1. Note that

√
c is transcendental iff so is c.

Since
√

c and c are mutually constructible from each other, we can assume that c
rather than

√
c is given. That is, 1 and c are the input data. Let α and β denote

the central half angles corresponding to the first k edges and to the rest of non-
diametric edges, respectively. After modifying Figure 1 so that α = α1 = · · · = α3

and β = α4, we could visualize (2.5) for n = 5. Let r denote the radius of the
circumscribed circle. For (i), where the side lengths are given, we let u := 1/(2r);
then we have

(2.7) sinα = u, cosα =
√

1 − u2, sin β = u
√

c, cosβ =
√

1 − cu2.

Similarly, for (ii), where the central distances are given, we let u := 1/r; then we
have

(2.8) cos α = u, sin α =
√

1 − u2, cosβ = u
√

c, sin β =
√

1 − cu2.

Note that the constructibility of u is equivalent to that of the Thalesian n-gon.
If (2.5), then kα + β = π/2. Hence, cos(kα) = sin β, sin(kα) = cosβ,

(2.9) cos2(kα) = sin2 β, and sin2(kα) = cos2 β

hold. Similarly, if (2.6), then kα + 2β = π/2, cos(2β) = 1 − 2 sin2 β, so

(2.10) sin(kα) = 1 − 2 sin2 β.

As it will be clear soon, (2.3)–(2.10) offer several ways to find a polynomial f(0)(x, y)

in Z[x, y], that is f
(0)
y (x) ∈ Z[y][x], such that u is a root of f

(0)
c (x) ∈ Q(c)[x].
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Sometimes, we simplify f(0)(x, y) to another polynomial f(x, y) with the same
properties; otherwise, we let f(x, y) := f(0)(x, y).

Case 1 (n > 5 is even and the side lengths are given). We go after (2.4), (2.6),
(2.7), and (2.10) to obtain that

k
∑

2 6 |j=1

(−1)(j−1)/2

(

k

j

)

(

√

1 − u2
)k−j

· uj = 1− 2cu2.

So we let

(2.11) f(x, y) := 2x2y +
(

−1 +
k

∑

2 6 |j=1

(−1)(j−1)/2

(

k

j

)

(1 − x2)(k−j)/2 · xj
)

.

Since k := n − 3 is odd, fy(x) = f(x, y) is a polynomial. Clearly, u is a root of
fc(x). The coefficient of xk above is

(2.12)

k
∑

2 6 |j=1

(−1)(j−1)/2

(

k

j

)

(−1)(k−j)/2 = (−1)(k−1)/2
k

∑

2 6 |j=1

(

k

j

)

= ±2k−1,

and we obtain that degx(fy(x)) = k. Since k is odd and k = n − 3 ≥ 6 − 3 = 3, k
is not a power of 2. In (2.11), every summand after −1 is divisible by x. Hence,
2x2 and the parenthesized polynomial in (2.11) are relatively prime in Z[x]. Thus,
Lemma 2.2 yields that fy(x) is irreducible in Q(y)[x]. Since c ∈ R is transcen-
dental, we have that Q(y)[x] ∼= Q(c)[x]. Therefore, fc(x) is irreducible in Q(c)[x]
and degx(fc(x)) = degx(fy(x)) = k. It follows from Proposition 2.3 that u and,
consequently, the Thalesian n-gon are not constructible from the data.

Remark 2.4. The argument above makes it clear that, besides referencing earlier
parts of the paper, only the verification of the following two properties of f(x, y)
required some work.

• We had to show that fy(x) is irreducible in Q(y)[x]. By Lemma 2.1(ii), it
would have sufficed to show that fy(x) is irreducible in Z[y][x].

• We had to show that degx(fy(x)) is not a power of 2.

Therefore, in the rest of the proof, we only concentrate on these two properties.

Case 2 (n ≥ 5 is odd and the side lengths are given). We go after (2.3), (2.5),
(2.7), and the first equation of (2.9) to obtain f(x, y) := f(0)(x, y) as follows:

f(x, y) = x2y − (1 − x2)
(

k
∑

2|j=0

(−1)j/2

(

k

j

)

(1 − x2)(k−1−j)/2 · xj)
)2

.

Since k is odd, the subtrahend is a polynomial. Since

(2.13)

k
∑

2|j=0

(−1)j/2

(

k

j

)

(−1)(k−1−j)/2 = (−1)(k−1)/2
k

∑

2|j=0

(

k

j

)

= ±2k−1,

we square a polynomial of degree k − 1. Hence, the degree of the subtrahend and
degx(fy(x)) are 2k, which is not a power of 2, because k is odd and k = n− 2 ≥ 3.
Since the constant in the subtrahend is 1, the subtrahend and x2 are relatively
prime polynomials. Thus, fy(x) is irreducible in Q(y)[x] by Lemma 2.2, and the
Thalesian n-gon is non-constructible by Remark 2.4.
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Case 3 (n ≥ 5 is odd and the central distances are given). Going after (2.3), (2.5),
(2.8), and the first equation of (2.9), we obtain f(x, y) = f(0)(x, y) as follows:

(2.14) f(x, y) =
(

k
∑

2|j=0

(−1)j/2

(

k

j

)

xk−j · (1 − x2)j/2
)2

− (1 − yx2).

Using a variant of (2.13), we obtain that the minuend is of degree 2k. Hence,
degx(fy(x)) = 2k, which is not a power of 2 since neither is k = n− 2 ≥ 3, which is
odd. The sum is divisible by x. Hence, the minuend minus 1 is relatively prime to
x2. Thus, Lemma 2.2 implies that fy(x) is irreducible in Q(y)[x]. Therefore, the
Thalesian n-gon is non-constructible by Remark 2.4.

Case 4 (n > 5 is even and the central distances are given). We go after (2.4),
(2.5), (2.8), and the second equation of (2.9). So we obtain

f(0)(x, y) = x2y − (1 − x2)
(

k
∑

2 6 |j=1

(−1)(j−1)/2

(

k

j

)

xk−j · (1 − x2)(j−1)/2
)2

.

Using a variant of (2.12), we obtain that the big sum is of degree k−1 in Z[x]. Hence,

degx(f
(0)
y (x)) = 2(k − 1) + 2 = 2k. Since k = n − 2 is even and the subscript j is

odd, the big sum is divisible by x and the subtrahend by x2. Divide the subtrahend
by x2 and let g2(x) ∈ Z[x] denote the polynomial we obtain in this way. Then

f(x, y) := f(0)(x, y)/x2 is of the form 1 · y − g2(x). This polynomial is irreducible

in Q(y)[x] by Lemma 2.2. Its degree is degx(fy(x)) = degx(f
(0)
y (x))− 2 = 2(k− 1),

which is not a power of 2 since k − 1 = n − 3 is odd and k − 1 ≥ 2. We know that

u is a root of f
(0)
c (x). Since u is distinct from zero, it is also a root of fc(x). Thus,

Remark 2.4 yields that the Thalesian n-gon is non-constructible.

Case 5 (n = 4 and the side lengths are given). Let a, b, and c be the given
side lengths. The corresponding central angles are denoted by α, β, and γ. Let
u = 1/(2r). Since sin(α/2) = au, we have cosα = cos2(α/2) − sin2(α/2) = 1 −
2 sin2(α/2) = 1 − 2a2u2. Similarly, cos β = 1 − 2b2u2 and cos γ = 1 − 2c2u2. It is
well-known that if α + β + γ = π, then

(2.15) cos2 α + cos2 β + cos2 γ + 2 cosα cos β cos γ − 1

is 0; see, for example, [2]. Therefore, substituting 〈x, 1 − 2a2x, 1 − 2b2x, 1 − 2c2x〉
for 〈u2, cosα, cosβ, cos γ〉 in (2.15), we obtain a polynomial g(a, b, c, x) ∈ Z[a, b, c, x]
such that degx(g(a, b, c, x)) = 3 and u2 is a root of this polynomial. Using computer
algebra, we obtain that this polynomial is irreducible. Note that

g(1, 2, 3, x) = −576x3 + 784x2 − 112x + 4

is also irreducible in Q[x] and the Thalesian quadrangle with ~a = 〈1, 2, 3〉 exists.
Hence, neither u2, nor the Thalesian quadrangle with side lengths 〈1, 2, 3〉 is con-
structible.

Cases (1)–(5) imply parts (i), (ii), and (v). Parts (i)–(ii) and the Rational
Parameter Theorem, see [3, Theorem 11.1], imply part (iii).

Next, we focus our attention to part (iv). For n = 3, the statement is obvious,
because the triangle is right-angled by Thales’ theorem, and we are given either the
lengths of its legs, or the central distances, which are the halves of these lengths.
So let n = 4 and assume that the three central distances are given. Then we also
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know the fourth distance, since it is 0 by the definition of a Thalesian quadrangle.
Thus, the constructibility of the Thalesian quadrangle is a particular case of the
constructibility of a cyclic quadrangle from its central distances in general; see [2]
or, for a secondary source, [3, Proposition 1.3]. �

Acknowledgment. Prior to the present paper, an unknown referee of [3] gave an
elementary proof for the “n is odd case” of (1.1). The treatment for Case 4 is
similar to his proof. The present paper is motivated by the referee’s proof.
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