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ABSTRACT
Since Henrik Strietz’s 1975 paper proving that the lattice Part(𝑛) of all partitions of an 𝑛-element finite set is four-generated,

more than half a dozen papers have been devoted to four-element generating sets of this lattice. We prove that each

element of Part(𝑛) with height one or two (in particular, each atom) belongs to a four-element generating set. Furthermore,

our construction leads to a concise and easy proof of a 1996 result of the author stating that the lattice of partitions of a

countably infinite set is four-generated as a complete lattice. In a recent paper “Generating Boolean lattices by few elements

and exchanging session keys”, see https://doi.org/10.30755/NSJOM.16637, the author establishes a connection between

cryptography and small generating sets of some lattices, including Part(𝑛). Hence, it is worth pointing out that by combining

a construction given here with a recent paper by the author, “Four-element generating sets with block count width at most two
in partition lattices”, available at https://tinyurl.com/czg-4gw2, we obtain many four-element generating sets of Part(𝑛).
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1. INTRODUCTION
This paper belongs to lattice theory. Apart from understanding the definition of a sublattice of a

lattice as an algebraic system, the paper requires no prior knowledge from the reader.

For a set 𝐴, the partitions of 𝐴 form a complete lattice, the partition lattice PLat(𝐴) of 𝐴. This
lattice is isomorphic to the equivalence lattice Equ(𝐴) of 𝐴; in fact, it is the canonical bijective

correspondence between the partitions and the equivalences of 𝐴 that defines the lattice order and

so the lattice structure of PLat(𝐴): For partitions 𝛼, 𝛽 ∈ PLat(𝐴), 𝛼 ≤ 𝛽 means that every pair in

the equivalence relation determined by 𝛼 belongs to the equivalence relation determined by 𝛽. As
usual, a subset 𝑋 of PLat(𝐴) is a generating set of PLat(𝐴) if no proper sublattice of PLat(𝐴) includes
𝑋 as a subset. Similarly, if no proper complete sublattice of PLat(𝐴) includes 𝑋 , then we say that

𝑋 generates PLat(𝐴) as a complete lattice. For 𝑘 ∈ ℕ+ ∶= {1, 2, 3,… }, a lattice 𝐿 is 𝑘-generated if it
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has a 𝑘-element generating set. For 𝑛 ∈ ℕ0 ∶= {0} ∪ ℕ+
, we denote {𝑖 ∈ ℕ+ ∶ 𝑖 ≤ 𝑛} by [𝑛], and

we write PLat(𝑛) rather than PLat([𝑛]). By Strietz [14] and [15], PLat(𝑛) is four-generated but not

three-generated provided that 4 ≤ 𝑛 ∈ ℕ+
. Since his papers, more than half a dozen papers have

been devoted to the four-element generating sets of partition lattices and their direct products. The

list of these papers includes [6], [7], [8], [11], Oluoch and Al-Najafi [13], Zádori [17], and it also

includes [3], [9], and [5], which present more recent developments. There are several analogous

papers on four-element generating sets of quasiorder lattices and sublattice lattices; see, for example,

[1], [2], [10], [12], and [16]. The papers mentioned so far provide motivations for the present work.

For further background on the topic, the reader may consult the mini-survey subsection in [4].

To present another aspect of our motivations, assume that 𝑥 ∶= (𝑥1,… , 𝑥𝑘) ∈ PLat(𝑛)𝑘 such that

𝑘 ∈ ℕ+
is small, {𝑥1,… , 𝑥𝑘} is a generating set of PLat(𝑛), and 𝑝 = (𝑝1,… , 𝑝𝑏) is a vector of 𝑘-ary

lattice terms. Roughly saying, [4, Proposition 5.1] implies that computing 𝑥 from 𝑝 and 𝑝(𝑥) is an
NP-hard problem. Hence, hopefully, if 𝐴 and 𝐵 are two communicating parties who have previously

agreed upon a secret key 𝑥 , then they can change 𝑝 on an open channel from time to time and use

𝑝(𝑥) as a session key in a secret-key cryptosystem. Note at this point that 𝑥 in itself cannot be a

(permanent) secret key; otherwise, the adversary could uncover 𝑥 when he guesses the content of

a, say, Vernam-cipher-encrypted message, and he could decrypt all further messages. A complete

section in [4] warns the reader that no rigorous theoretical treatment supports this idea concerning

modern cryptographic criteria. As these criteria are neither met by some popular cryptosystems like

RSA, the idea given in [4] still has some motivating value for lattice theory and leads to the following

conclusion: If we could construct very many four-element generating sets of PLat(𝑛), then a random

choice out of these constructible sets (augmented with a few further random partitions) might
function as a secret key. This gives some justification to our effort to find four-element generating

sets of PLat(𝑛).
In addition to the paragraph above, there are also strictly lattice theoretical motivations. First,

partition lattices play a central role in lattice theory, since they have nice properties and, say,

congruence lattices are naturally embedded in partition lattices. Second, there are several earlier

results on four-element generating sets of partition lattices, where the generating sets possess

specific properties. The first such property is that the set in question has two comparable members;

in chronological order, Strietz [14]–[15], Zádori [17], [6], [7], and [11] contain results on four-

element generating sets with this property. Some other properties are considered in [5], [3], and

[9]. Sometimes, different approaches to four-element generating sets can be combined, and this

leads to many new four-element generating sets; the present paper exemplifies this by (the proof

of) Corollary 2.3.

In PLat(𝐴), the height of an atom is 1; a partition 𝛼 ∈ PLat(𝐴) is an atom if it has a two-element

block and the rest of its blocks are singletons. If 𝛼 ∈ PLat(𝐴) is the join of two distinct atoms, then

𝛼 is said to be of height 2. There are two sorts of partitions with height 2. Namely, 𝛼 ∈ PLat(𝐴) is of
height 2 if and only if either 𝛼 has two two-element blocks and the rest of its blocks are singletons

or 𝛼 has a three-element block and the rest of its blocks are singletons. According to these two

possibilities, we say that 𝛼 is of type 2 + 2 or it is of type 3, respectively. The paper deals with the

following three properties of a four-element generating set 𝑋 of PLat(𝑛): 𝑋 contains an atom, 𝑋
contains a partition of height 2 and type 2 + 2, and 𝑋 contains a partition of height 2 and type 3.
However, it is reasonable to formulate the main result, Theorem 2.1, more concisely.

Implicitly, the historical comment in a [9], a recent paper, may suggest that an atom in a four-

element generating set of PLat(𝑛) for a large 𝑛 is probably impossible. Now it turns out that it is

possible, and [9] was the direct predecessor that inspired the present paper.

2. RESULTS
For 𝑛 ≤ 3, |PLat(𝑛)| ≤ 5 and nothing interesting can be stated. Hence, the main result below assumes

that 𝑛 ≥ 4. The only element of PLat(𝑛) with height 0 is its smallest element 𝟎
PLat(𝑛). From Strietz’s

previously mentioned result asserting that PLat(𝑛) is not three-generated, it is not hard to see that

the following theorem does not hold for 𝛼 = 𝟎
PLat(𝑛).
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THEOREM 2.1. Assume that 4 ≤ 𝑛 ∈ ℕ+
, and let 𝛼 ∈ PLat(𝑛) be a partition of height 1 or 2. Then

there exist 𝛽, 𝛾, 𝛿 ∈ PLat(𝑛) such that {𝛼, 𝛽, 𝛾, 𝛿} is a four-element generating set of PLat(𝑛).
Let Pfin(𝐴) denote the sublattice of PLat(𝐴) consisting of all partitions that have only finitely

many non-singleton blocks and each of these blocks is finite. For a subset Φ of PLat(𝐴), we denote
by [Φ] the sublattice generated by Φ. We will present a new concise proof of the following result.

PROPOSITION 2.2 ([6]). Let𝐴 be a countably infinite set, and let 𝛼 be an atom of PLat(𝐴). Then there are
𝛽, 𝛾, 𝛿 ∈ PLat(𝐴) such that Φ ∶= {𝛼, 𝛽, 𝛾, 𝛿} generates PLat(𝐴) as a complete lattice and, furthermore,

Pfin(𝐴) is included in the sublattice generated by Φ, that is, Pfin(𝐴) ⊆ [Φ].
In the proposition above, [Φ] and PLat(𝐴) are of cardinalities ℵ0 and 2ℵ0 , whereby [Φ] ≠ PLat(𝐴);

furthermore, [Φ] is not a complete sublattice of PLat(𝐴).
For 𝛼 ∈ PLat(𝐴) and 𝑢 ∈ 𝐴, 𝑢/𝛼 stands for the 𝛼-block of 𝑢, that is, for the unique block of 𝛼 that

contains 𝑢. For sets 𝐴 ⊆ 𝐵 and partitions 𝛼 ∈ PLat(𝐴) and 𝛽 ∈ PLat(𝐵), we say that 𝛽 extends 𝛼 if for

every 𝑢 ∈ 𝐴, 𝑢/𝛼 = 𝐴 ∩ (𝑢/𝛽). Note that for 𝑛, 𝑚 ∈ ℕ+
, [𝑛] ⊆ [𝑛 + 𝑚]. We will derive the following

statement from a construction needed in the proof of Theorem 2.1 and the proof of [3, Theorem 1].

COROLLARY 2.3. Assume that 𝑚 ∈ ℕ+
is an even number, 5 ≤ 𝑛 ∈ ℕ+

is an odd number, and 𝛼 is an

atom in PLat(𝑛). Then there are 𝛽, 𝛾, 𝛿 ∈ PLat(𝑛) such that the following two facts hold.

(1) {𝛼, 𝛽, 𝛾, 𝛿} is a four-element generating set of PLat(𝑛).
(2) PLat(𝑛 +𝑚) has at least 2𝑚−3 ⋅ (𝑚 − 1)!/(3𝑚 + 3) four-element generating sets {𝛼′, 𝛽′, 𝛾 ′, 𝛿′}

such that 𝛼′
, 𝛽′

, 𝛾 ′, and 𝛿′ extend 𝛼, 𝛽, 𝛾 , and 𝛿, respectively.

3. PROOFS
A partition with nonsingleton blocks {𝑎1,1,… , 𝑎1,𝑡1 }, . . . , {𝑎𝑠,1,… , 𝑎𝑠,𝑡𝑠 } will be denoted by

prt(𝑎1,1 … 𝑎1,𝑡1 ; … ; 𝑎𝑠,1 … 𝑎𝑠,𝑡𝑠 ) or, if confusion threatens, prt({𝑎1,1,… , 𝑎1,𝑡1 }; … ; {𝑎𝑠,1,… , 𝑎𝑠,𝑡𝑠 }).

For example, prt(23) and prt(13; 24) are members of PLat(7); the former is an atom, the latter is

of height 2. However, we do not drop the commas and the curly brackets when dealing with

PLat(𝑛) = PLat([𝑛]) for 𝑛 ≥ 10 or an unspecified 𝑛, since otherwise, say, 12 (twelve) and the list

1, 2 could be confused. Note the “commutativity” of prt; e.g., prt(𝑥𝑦) = prt(𝑦𝑥). In some form, the

following trivial lemma occurs in many earlier papers; see, e.g., [11, Lemma 2.5].

LEMMA 3.1. Assume that 3 ≤ 𝑘 ∈ ℕ+
. Let {𝑎1,… , 𝑎𝑘} be a 𝑘-element subset of a set 𝐴, and denote by

𝑆 the sublattice generated by 𝑌 ∶= {prt(𝑎𝑖𝑎𝑖+1) ∶ 𝑖 ∈ [𝑘 − 1]} ∪ {prt(𝑎𝑘𝑎1)} in PLat(𝐴). Then for all

𝑖, 𝑗 ∈ [𝑘] such that 𝑖 ≠ 𝑗 , the partition prt(𝑎𝑖𝑎𝑗 ) belongs to 𝑆. Consequently, if |𝐴| = 𝑘, then 𝑌 is a

generating set of PLat(𝐴).
The following four lemmas constitute the lion’s share of the proofs of Theorem 2.1 and Corollary

2.3. Note that the corresponding constructions are visualized by Figure 1, which adheres to the

following convention. The non-singleton 𝛼-blocks are denoted by ovals. Each of 𝜅 ∈ {𝛽, 𝛾, 𝛿} has
its own line style, consisting of a color, a thickness, and a feature (solid, dotted, dashed), which we

use for the so-called 𝜅-edges of our graphs. For 𝑥, 𝑦 ∈ 𝐴, 𝑥 and 𝑦 belong to the same 𝜅-block if and

only if they can be connected by a path consisting of 𝜅-edges of the graph. (The length of this path

can be 0, allowing 𝑥 = 𝑦.) If 𝜅 and 𝜅0 both occur in our arguments, then only a textual explanation

specifies which 𝜅-colored edges define 𝜅0; there are no separate 𝜅0-styled edges.

LEMMA 3.2. For 2 ≤ 𝑘 ∈ ℕ+
and 𝑛 = 2𝑘 + 1, let 𝐴 = {𝑎1,… , 𝑎𝑘 , 𝑏1,… , 𝑏𝑘 , 𝑎𝑘+1 = 𝑏𝑘+1} be an 𝑛-element

set. Let 𝛼 ∶= prt(𝑎1𝑏1),

𝛽0 ∶= prt(𝑎1𝑏2; 𝑎2𝑏3; … ; 𝑎𝑘−1𝑏𝑘) = ⋁
𝑖∈[𝑘−1]

prt(𝑎𝑖𝑏𝑖+1), 𝛽 ∶= 𝛽0 ∨ prt(𝑎𝑘𝑎𝑘+1), (3.1)

𝛾0 ∶= prt(𝑏1𝑎2; 𝑏2𝑎3; … ; 𝑏𝑘−1𝑎𝑘) = ⋁
𝑖∈[𝑘−1]

prt(𝑏𝑖𝑎𝑖+1), 𝛾 ∶= 𝛾0 ∨ prt(𝑏𝑘𝑏𝑘+1), (3.2)

and 𝛿 ∶= prt(𝑎1 … 𝑎𝑘 ; 𝑏1 … 𝑏𝑘). Denote by 𝑆0 and 𝑆 the sublattices generated by Φ0 ∶= {𝛼, 𝛽0, 𝛾0, 𝛿}
and Φ ∶= {𝛼, 𝛽, 𝛾, 𝛿}, respectively, in PLat(𝐴). Then
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(a) for all 𝑥, 𝑦 ∈ 𝐴 ⧵ {𝑎𝑘+1} = 𝐴 ⧵ {𝑏𝑘+1} such that 𝑥 ≠ 𝑦, prt(𝑥𝑦) belongs to 𝑆0, and
(b) 𝑆 = PLat(𝐴), that is, Φ generates PLat(𝐴).

For Lemma 3.2

𝑎9 = 𝑏9

For Lemma 3.3

𝑎9 = 𝑏9

For Lemma 3.4

𝑎9 = 𝑏9

For Lemma 3.5

𝑎9 = 𝑏9

Notation:

𝛽:

𝛾 :

𝛿:

𝛼

𝛼-block 𝛼-block
𝑐

𝛼-block 𝛼-block
𝑑

𝑎1 𝑏1

𝑎2 𝑏2

𝑎3 𝑏3

𝑎4 𝑏4

𝑎5 𝑏5

𝑎6 𝑏6

𝑎7 𝑏7

𝑎8 𝑏8

𝑎1 𝑏1

𝑎2 𝑏2

𝑎3 𝑏3

𝑎4 𝑏4

𝑎5 𝑏5

𝑎6 𝑏6

𝑎7 𝑏7

𝑎8 𝑏8

𝑎1 𝑏1

𝑎2 𝑏2

𝑎3 𝑏3

𝑎4 𝑏4

𝑎5 𝑏5

𝑎6 𝑏6

𝑎7 𝑏7

𝑎8 𝑏8

𝑐 𝑎1 𝑏1

𝑎2 𝑏2

𝑎3 𝑏3

𝑎4 𝑏4

𝑎5 𝑏5

𝑎6 𝑏6

𝑎7 𝑏7

𝑎8 𝑏8

𝑐

Figure 1. With 𝑘 ∶= 8, the constructions for Lemmas 3.2–3.5

Proof. For 𝑘 = 8, our partitions are visualized by the graph on the left of Figure 1. In addition to

the edges defining 𝛽, 𝛾 , and 𝛿, the graph also contains the horizontal grey dashed edges (𝑎𝑖, 𝑏𝑖) for
𝑖 ∈ [𝑘]; the same applies for the second graph in the figure. For the third and fourth graphs, the

(𝑎𝑖, 𝑏𝑖)s are edges only for 2 ≤ 𝑖 ≤ 𝑘, but the grey-dashed (𝑎1, 𝑐) and (𝑐, 𝑏1) are edges, too.
Observe that 𝛽0 = 𝛽 ∧ (𝛼 ∨ 𝛿) ∈ 𝑆 and 𝛾0 = 𝛾 ∧ (𝛼 ∨ 𝛿) ∈ 𝑆. Hence, 𝑆0 ⊆ 𝑆. It suffices to show that

for every edge (𝑥, 𝑦) of the graph such that 𝑥 ≠ 𝑎𝑘+1 ≠ 𝑦, prt(𝑥𝑦) ∈ 𝑆0, and (3.3)

for every edge (𝑥, 𝑦) of the graph, we have that prt(𝑥𝑦) ∈ 𝑆. (3.4)

Indeed, if (3.3) and (3.4) hold, then Lemma 3.1 applied to the “perimeter” of the subgraph 𝐴⧵ {𝑎𝑘+1 =
𝑏𝑘+1} and to the “perimeter” of the whole graph yields Parts (a) and (b) of Lemma 3.2, respectively.

Therefore, in the remainder of the proof, we proceed to verify (3.3) and (3.4). Let us compute; note

that (𝑎𝑖, 𝑏𝑖, 𝛽, 𝛾) and (𝑏𝑖, 𝑎𝑖, 𝛾, 𝛽) play the same role by symmetry, so a part of our computations need

no separate checking.

prt(𝑎1𝑏1) = 𝛼 ∈ 𝑆0, (3.5)

𝜖 ∶=
𝑘−2

⋁
𝑖=1

prt(𝑎𝑖𝑎𝑖+2; 𝑏𝑖𝑏𝑖+2) = (𝛽0 ∨ 𝛾0) ∧ 𝛿 ∈ 𝑆0. (3.6)

We can assume that the graph is drawn so that the geometric distance of 𝑎𝑖 and 𝑎𝑖+1 and that of 𝑏𝑖
and 𝑏𝑖+1 are 1 for 𝑖 ∈ [𝑘 − 1]. Then for 𝑥 ≠ 𝑦 ∈ 𝐴, 𝑥 and 𝑦 belong to the same 𝜖-block if and only

if they lie on the same vertical geometric line and their distance is an even integer. This visual

idea helps to understand the rest of the computations in some places. Along the graph, we proceed
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upwards; each containment “∈ 𝑆0” below follows from the preceding containments within the list

(3.5)–(3.14), Φ0 ⊆ 𝑆0, and the commutativity of our notation.

prt(𝑎1𝑎2) = (𝛼 ∨ 𝛾0) ∧ 𝛿 ∈ 𝑆0, prt(𝑏1𝑏2) = (𝛼 ∨ 𝛽0) ∧ 𝛿 ∈ 𝑆0, (3.7)

prt(𝑎1𝑏2) = (prt(𝑎1𝑏1) ∨ prt(𝑏1𝑏2)) ∧ 𝛽0 ∈ 𝑆0, prt(𝑏1𝑎2) = (prt(𝑏1𝑎1) ∨ prt(𝑎1𝑎2)) ∧ 𝛾0 ∈ 𝑆0, (3.8)

prt(𝑎2𝑏2) = (prt(𝑎2𝑎1) ∨ prt(𝑎1𝑏2) ∧ (prt(𝑎2𝑏1) ∨ prt(𝑏1𝑏2) ∈ 𝑆0, (3.9)

prt(𝑎2𝑎3; 𝑏1𝑏2) = (prt(𝑎2𝑏2) ∨ 𝛾0) ∧ 𝛿 ∈ 𝑆0, prt(𝑏2𝑏3; 𝑎1𝑎2) = (prt(𝑏2𝑎2) ∨ 𝛽0) ∧ 𝛿 ∈ 𝑆0, (3.10)

prt(𝑎1𝑎3) = (prt(𝑎2𝑎3; 𝑏1𝑏2) ∨ prt(𝑎1𝑎2)) ∧ 𝜖 ∈ 𝑆0,

prt(𝑏1𝑏3) = (prt(𝑏2𝑏3; 𝑎1𝑎2) ∨ prt(𝑏1𝑏2)) ∧ 𝜖 ∈ 𝑆0,

}

(3.11)

prt(𝑎2𝑎3) = (prt(𝑎2𝑎1) ∨ prt(𝑎1𝑎3)) ∧ prt(𝑎2𝑎3; 𝑏1𝑏2) ∈ 𝑆0,

prt(𝑏2𝑏3) = (prt(𝑏2𝑏1) ∨ prt(𝑏1𝑏3)) ∧ prt(𝑏2𝑏3; 𝑎1𝑎2) ∈ 𝑆0,

}

(3.12)

prt(𝑎3𝑏2) = (prt(𝑎3𝑎2) ∨ prt(𝑎2𝑏2)) ∧ 𝛾0 ∈ 𝑆0,

prt(𝑏3𝑎2) = (prt(𝑏3𝑏2) ∨ prt(𝑏2𝑎2)) ∧ 𝛽0 ∈ 𝑆0,

}

(3.13)

prt(𝑎3𝑏3) = (prt(𝑎3𝑏2) ∨ prt(𝑏2𝑏3)) ∧ (prt(𝑎3𝑎2) ∨ prt(𝑎2𝑏3)) ∈ 𝑆0. (3.14)

We have seen so far that prt(𝑎3𝑏3) ∈ 𝑆0 and for every edge (𝑥, 𝑦) of the graph that is (geometrically)

below (𝑎3, 𝑏3), the partition prt(𝑥𝑦) is in 𝑆0. (Of course, we stop here if 𝑘 = 3, and we stop right after

(3.9) if 𝑘 = 2.) As an induction hypothesis, assume that 3 ≤ 𝑖 ∈ [𝑘 − 1] and

prt(𝑎𝑖𝑏𝑖) ∈ 𝑆0 and prt(𝑥𝑦) ∈ 𝑆0 for every edge (𝑥, 𝑦) below (𝑎𝑖, 𝑏𝑖). (3.15)

Repeating (3.10)–(3.14) so that we change the subscripts 1, 2, and 3 to 𝑖 − 1, 𝑖, 𝑖 + 1, respectively, we
obtain the validity of (3.15) for 𝑖 + 1. Therefore, it follows by induction that (3.15) holds for 𝑖 = 𝑘.
Hence, we have proved (3.3). Finally, adding

prt(𝑎𝑘𝑎𝑘+1) = (prt(𝑎𝑘𝑏𝑘) ∨ 𝛾) ∧ 𝛽 ∈ 𝑆 and prt(𝑏𝑘𝑏𝑘+1) = (prt(𝑎𝑘𝑏𝑘) ∨ 𝛽) ∧ 𝛾 ∈ 𝑆 (3.16)

to (3.3), we obtain that (3.4) also holds, completing the proof of Lemma 3.2. □

LEMMA 3.3. For 3 ≤ 𝑘 ∈ ℕ+
and 𝑛 = 2𝑘+2, let 𝐵 = {𝑎1,… , 𝑎𝑘 , 𝑏1,… , 𝑏𝑘 , 𝑎𝑘+1 = 𝑏𝑘+1, 𝑐} be an 𝑛-element

set. Let 𝛼 ∶= prt(𝑎1𝑏1),

𝛽 ∶= prt(𝑐𝑎1𝑏2; 𝑎2𝑏3; … ; 𝑎𝑘𝑏𝑘+1) = prt(𝑎1𝑐) ∨ ⋁
𝑖∈[𝑘]

prt(𝑎𝑖𝑏𝑖+1),

𝛾 ∶= prt(𝑐𝑏1𝑎2; 𝑏2𝑎3; … ; 𝑏𝑘𝑎𝑘+1) = prt(𝑏1𝑐) ∨ ⋁
𝑖∈[𝑘]

prt(𝑏𝑖𝑎𝑖+1),

and 𝛿 ∶= prt(𝑎1 … 𝑎𝑘 ; 𝑏1 … 𝑏𝑘). Then Φ ∶= {𝛼, 𝛽, 𝛾, 𝛿} generates PLat(𝐵).

Proof. For 𝑘 = 8, the situation is visualized by the second graph in Figure 1. Let 𝑆 be the sublattice

generated by Φ in PLat(𝐵). As 𝐴 from Lemma 3.2 is subset of 𝐵, the definition of 𝛽0 and 𝛾0 in
(3.1)–(3.2) makes sense. We still have that 𝛽0 = 𝛽 ∧ (𝛼 ∨ 𝛿) ∈ 𝑆 and 𝛾0 = 𝛾 ∧ (𝛼 ∨ 𝛿) ∈ 𝑆. So the

sublattice 𝑆0 generated by Φ0 ∶= {𝛼, 𝛽0, 𝛾0, 𝛿} is included in 𝑆. The argument (3.5)–(3.15) needs

no change to yield the validity of (3.3) for 𝐵 ⧵ {𝑐}. That is, if (𝑥, 𝑦) is an edge of the graph and

{𝑥, 𝑦} ∩ {𝑎𝑘+1 = 𝑏𝑘+1, 𝑐} = ∅, then prt(𝑥𝑦) ∈ 𝑆0 ⊆ 𝑆. As 𝑐 and 𝑎𝑘+1 = 𝑏𝑘+1 are geometrically far

enough from each other, the equalities in (3.16) remain valid. (Note that they would fail for 𝑘 = 2.)
Hence, we obtain that prt(𝑎𝑘𝑎𝑘+1), prt(𝑏𝑘𝑏𝑘+1) ∈ 𝑆. Applying Lemma 3.1 to these two memberships,

prt(𝑎1𝑐) = 𝛽 ∧ (prt(𝑎1𝑏1) ∨ 𝛾) ∈ 𝑆, prt(𝑐𝑏1) = 𝛾 ∧ (𝛽 ∨ prt(𝑎1𝑏1)) ∈ 𝑆, and (3.3), we conclude the

validity of Lemma 3.3. □
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LEMMA 3.4. For 2 ≤ 𝑘 ∈ ℕ+
and 𝑛 = 2𝑘+2, let 𝐶 = {𝑎1,… , 𝑎𝑘 , 𝑏1,… , 𝑏𝑘 , 𝑎𝑘+1 = 𝑏𝑘+1, 𝑐} be an 𝑛-element

set. Let 𝛼 ∶= prt(𝑎1𝑏1𝑐),

𝛽 ∶= prt(𝑎1𝑏2; 𝑎2𝑏3; … ; 𝑎𝑘𝑏𝑘+1) = ⋁
𝑖∈[𝑘]

prt(𝑎𝑖𝑏𝑖+1),

𝛾 ∶= prt(𝑏1𝑎2; 𝑏2𝑎3; … ; 𝑏𝑘𝑎𝑘+1) = ⋁
𝑖∈[𝑘]

prt(𝑏𝑖𝑎𝑖+1),

and 𝛿 ∶= prt(𝑎1 … 𝑎𝑘 ; 𝑏1 … 𝑏𝑘 ; 𝑐𝑎𝑘+1). Then Φ ∶= {𝛼, 𝛽, 𝛾, 𝛿} generates PLat(𝐶).

Proof. For 𝑘 = 8, the situation is visualized by the third graph in Figure 1. Let 𝑆 be the sublattice
generated by {𝛼, 𝛽, 𝛾, 𝛿} in PLat(𝐶). Since 𝐴 from Lemma 3.2 is subset of 𝐶, there is a natural

embedding 𝑓 ∶ PLat(𝐴) → PLat(𝐶); for 𝜅 ∈ PLat(𝐴), we obtain 𝑓 (𝜅) from 𝜅 by adding a singleton

block {𝑥} to it for all 𝑥 ∈ 𝐶 ⧵ 𝐴. (Now there is only one such 𝑥 , namely, 𝑥 = 𝑐.) To distinguish the

partitions of𝐴 from the members of PLat(𝐶), we add𝐴 as a subscript to each of the partitions defined

in Lemma 3.2, and we let Φ𝐴 ∶= {𝛼𝐴, 𝛽𝐴, 𝛾𝐴, 𝛿𝐴}. The partition 𝜇 ∶= 𝛽 ∨ 𝛾 ∈ PLat(𝐶) has only two

blocks, the singleton {𝑐} and 𝐴. Hence, for every 𝜅 ∈ Φ, 𝑓 (𝜅𝐴) = 𝜅 ∧ 𝜇 ∈ 𝑆, that is, 𝑓 (𝛼𝐴) = 𝛼 ∧ 𝜇 ∈ 𝑆,
. . . , 𝑓 (𝛿𝐴) = 𝛿 ∧ 𝜇 ∈ 𝑆. Since 𝑓 is an embedding and, by Lemma 3.2, Φ𝐴 generates PLat(𝐴), we
obtain that 𝑓 (PLat(𝐴)) ⊆ 𝑆. In particular, if 𝑥, 𝑦 ∈ 𝐴, 𝑥 ≠ 𝑦, and 𝑐 ∉ {𝑥, 𝑦}, then prt(𝑥𝑦) ∈ 𝑆. Hence,
prt(𝑎1𝑐) = 𝛼∧(prt(𝑎1𝑏𝑘+1)∨𝛿) ∈ 𝑆 and prt(𝑐𝑏1) = 𝛼∧(𝛿∨prt(𝑏𝑘+1𝑏1)) ∈ 𝑆. Finally, applying Lemma

3.1 to the “perimeter” of the graph, we conclude Lemma 3.4. □

LEMMA 3.5. For 3 ≤ 𝑘 ∈ ℕ+
and 𝑛 = 2𝑘 + 3, let 𝐷 = {𝑎1,… , 𝑎𝑘 , 𝑏1,… , 𝑏𝑘 , 𝑎𝑘+1 = 𝑏𝑘+1, 𝑐, 𝑑} be an

𝑛-element set. Let 𝛼 ∶= prt(𝑎1𝑏1𝑐),

𝛽 ∶= prt(𝑑𝑎1𝑏2; 𝑎2𝑏3; … ; 𝑎𝑘𝑏𝑘+1) = prt(𝑑𝑎1) ∨ ⋁
𝑖∈[𝑘]

prt(𝑎𝑖𝑏𝑖+1),

𝛾 ∶= prt(𝑑𝑏1𝑎2; 𝑏2𝑎3; … ; 𝑏𝑘𝑎𝑘+1) = prt(𝑑𝑏1) ∨ ⋁
𝑖∈[𝑘]

prt(𝑏𝑖𝑎𝑖+1),

and 𝛿 ∶= prt(𝑎1 … 𝑎𝑘 ; 𝑏1 … 𝑏𝑘 ; 𝑐𝑎𝑘+1). Then Φ ∶= {𝛼, 𝛽, 𝛾, 𝛿} generates PLat(𝐷).

Proof. We apply the same technique as in the previous proof, but now we derive the statement from

Lemma 3.4. The objects defined in Lemma 3.4 will be subscripted by 𝐶, and the natural embedding

𝑔 ∶ PLat(𝐶) → PLat(𝐷) is defined analogously to 𝑓 in the previous proof. The sublattice generated

by Φ is denoted by 𝑆. With 𝜈 ∶= 𝛼 ∨ 𝛿, we have that 𝑔(𝜅𝐶) = 𝜅 ∧ 𝜈 ∈ 𝑆 for every 𝜅 ∈ Φ. Since
{𝜅𝐶 ∶ 𝜅 ∈ Φ} generates PLat(𝐶) by Lemma 3.4, we obtain that 𝑔(PLat(𝐶)) ⊆ 𝑆. Hence, for any
𝑥, 𝑦 ∈ 𝐷 ⧵ {𝑑} = 𝐶 such that 𝑥 ≠ 𝑦, prt(𝑥𝑦) belongs to 𝑆. Thus, prt(𝑎1𝑑) = 𝛽 ∧ (prt(𝑎1𝑏1) ∨ 𝛾) ∈ 𝑆
and prt(𝑑𝑏1) = 𝛾 ∧ (𝛽 ∨ prt(𝑎1𝑏1)). Therefore, we can apply Lemma 3.1 to conclude Lemma 3.5 so

that, say, we take the pairs (𝑏1, 𝑐) and (𝑐, 𝑏2) instead of the edge (𝑏1, 𝑏2) on the perimeter. □

LEMMA 3.6 (Zádori [17]). For 5 ≤ 𝑛 ∈ ℕ+
, prt({1, 2}; {3, 4}) belongs to a four-element generating set of

PLat(𝑛).
Note that explicitly, [17] contains this statement only for 𝑛 ≥ 7; see the last but one paragraph

on page 583 and the last paragraph above the bibliographic section on page 585 in [17]. However,

this should not pose any trouble, as each of the following three independent reasons is sufficient

in itself. First, Zádori’s construction remains valid for all 𝑛 ≥ 5 if we modify his 𝑈4 to a smaller

partition of type 2 + 2. Second, this modification occurs in (2.8) and Lemma 2.3 in [8]. Third, in the

present paper, (3.19) in Lemma 3.8 and (3.31) in Lemma 3.9 take care of 𝑛 ∈ {5, 6}.
Next, we present four lemmas to settle some sporadic cases.

LEMMA 3.7. Each of the sets Φ4 ∶= {prt(12), prt(23), prt(34), prt(41)} and Ψ4 = {prt(12; 34), prt(23),
prt(124), prt(134)} generates PLat(4).

Proof. For Φ4, Lemma 3.1 immediately applies. Let 𝑆 be the sublattice generated by Ψ4. Then

prt(12) = prt(12; 34) ∧ prt(124) ∈ 𝑆, prt(34) = prt(12; 34) ∧ prt(134) ∈ 𝑆, and prt(41) = prt(124) ∧
prt(134) ∈ 𝑆 show that Φ4 ⊆ 𝑆. Hence, 𝑆 = PLat(4), as required. □
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LEMMA 3.8. With

𝛼 = prt(123), (3.17)

𝛽 = prt(35), (3.18)

𝛾 = prt(25; 34), and (3.19)

𝛿 = prt(145), (3.20)

Φ5 ∶= {𝛼, 𝛽, 𝛾, 𝛿} generates PLat(5).

Proof. Let 𝑆 denote the sublattice generated by Φ. The following elements belong to 𝑆:

prt(1235) = prt(123) ∨ prt(35) by (3.17) and (3.18), (3.21)

prt(2345) = prt(35) ∨ prt(25; 34) by (3.18) and (3.19), (3.22)

prt(1345) = prt(35) ∨ prt(145) by (3.18) and (3.20), (3.23)

prt(23) = prt(123) ∧ prt(2345) by (3.17) and (3.22), (3.24)

prt(34) = prt(25; 34) ∧ prt(1345) by (3.19) and (3.23), (3.25)

prt(15) = prt(145) ∧ prt(1235) by (3.20) and (3.21), (3.26)

prt(45) = prt(145) ∧ prt(2345) by (3.20) and (3.22), (3.27)

prt(125; 34) = prt(25; 34) ∨ prt(15) by (3.19) and (3.26), and (3.28)

prt(12) = prt(123) ∧ prt(125; 34) by (3.17) and (3.28). (3.29)

Hence, prt(12) ∈ 𝑆 by (3.29), prt(23) ∈ 𝑆 by (3.24), prt(34) ∈ 𝑆 by (3.25), prt(45) ∈ 𝑆 by (3.27), and

prt(51) ∈ 𝑆 by (3.26). Thus, Φ5 generates PLat(5) by Lemma 3.1. □

The author has developed a computer program package called equ2024p, which is available on

his website https://www.math.u-szeged.hu/∼czedli/ = https://tinyurl.com/g-czedli/. Instead of

the proof above, one can use this package to compute the sublattice generated by Φ5. However,

providing a rigorous proof that the program package operates correctly would be extremely difficult,

essentially more difficult than verifying the entire paper (including the Appendix) with all its proofs.

Therefore, we have elaborated some humanly readable proofs like the one above. As the reader

would hardly find more such proofs worth reading, the proofs of the following two lemmas go to the

(Appendix) Section 4 of the extended version
1
of the paper; they are longer than the proof above.

LEMMA 3.9. With

𝛼 = prt(12), (3.30)

𝛽 = prt(25; 34), (3.31)

𝛾 = prt(13; 56), and (3.32)

𝛿 = prt(24; 36), (3.33)

Φ6 ∶= {𝛼, 𝛽, 𝛾, 𝛿} generates PLat(6).
LEMMA 3.10. With

𝛼 = prt(123), (3.34)

𝛽 = prt(147; 56), (3.35)

𝛾 = prt(357; 46), and (3.36)

𝛿 = prt(15; 26; 34), (3.37)

Φ7 ∶= {𝛼, 𝛽, 𝛾, 𝛿} generates PLat(7).
Now we are ready to prove the main result, Theorem 2.1

1 See at https://arxiv.org/ or, temporarily, https://tinyurl.com/czg-a4genple
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Proof of Theorem 2.1. Assume that 4 ≤ 𝑛 ∈ ℕ+
, and let 𝑎, 𝑏, 𝑐, 𝑑 be pairwise distinct elements of

an 𝑛-element set 𝐴. If 𝛼 ∈ PLat(𝐴) is of height 1 or 2, then there is a permutation 𝜋 of 𝐴 such that

the automorphism of PLat(𝐴) determined by 𝜋 sends 𝛼 to one of the following three partitions:

𝛼1 ∶= prt(𝑎𝑏), 𝛼2 ∶= prt(𝑎𝑏; 𝑐𝑑), and 𝛼3 ∶= prt(𝑎𝑏𝑐). It suffices to show that each of 𝛼1, 𝛼2, and
𝛼3 belongs to a four-element generating set of PLat(𝐴) for at least one choice of (𝑎, 𝑏, 𝑐, 𝑑) and
the 𝑛-element set 𝐴. The case of 𝛼1 is settled by Lemma 3.2 (for 𝑛 = 5, 7, 9, 11… ), Lemma 3.3 (for

𝑛 = 8, 10, 12,… ), Lemma 3.7 (for 𝑛 = 4), and Lemma 3.9 (for 𝑛 = 6). Lemmas 3.6 and 3.7 take care of

𝛼2. Finally, for 𝛼3, we can apply Lemma 3.4 (for 𝑛 = 6, 8, 10, 12,… ), Lemma 3.5 (for 𝑛 = 9, 11, 13… ),

Lemma 3.7 (for 𝑛 = 4), Lemma 3.8 (for 𝑛 = 5), and Lemma 3.10 (for 𝑛 = 7). The proof of Theorem 2.1

is complete. □

The proof of Proposition 2.2 runs as follows.

Proof of Proposition 2.2. Nomatterwhich set of size ℵ0 andwhich atom in PLat(𝐴) are taken. Hence,
we let𝐴 ∶= {𝑎𝑖 ∶ 𝑖 ∈ ℕ+}∪{𝑏𝑖 ∶ 𝑖 ∈ ℕ+}, and define 𝛼 ∶= prt(𝑎1𝑏1). Let 𝛽 ∶= ⋁{prt(𝑎𝑖𝑏𝑖+1)∶ 𝑖 ∈ ℕ+},
𝛾 ∶= ⋁{prt(𝑏𝑖𝑎𝑖+1)∶ 𝑖 ∈ ℕ+}, and 𝛿 ∶= ⋁{prt(𝑎𝑖𝑎𝑖+1; 𝑏𝑖𝑏𝑖+1)∶ 𝑖 ∈ ℕ+}. Denote {𝛼, 𝛽, 𝛾, 𝛿} by Φ. To
visualize the construct, remove 𝑎9 = 𝑏9 and its two adjacent edges from the graph drawn for Lemma

3.2 on the left side of Figure 1. Then add “⋮” (three dots) above 𝑎8 and 𝑏8 to indicate the continuation

upwards. By the graph in the present proof, we mean what we obtain in this way, even though we do

not draw it. Fortunately, the proof of Lemma 3.2 works with almost no changes. Now 𝛽0 ∶= 𝛽∧(𝛼∨𝛿)
equals 𝛽 and 𝛾0 ∶= 𝛾 ∧ (𝛼 ∨ 𝛿) equals 𝛾 . Hence, [Φ] in Proposition 2.2 corresponds to 𝑆0 in Lemma

3.2. Clearly, (3.5), . . . , (3.14), and (for all 𝑖) (3.15) need no change to imply (3.3). Combining (3.3) with

Lemma 3.1, it follows that [Φ] contains all atoms of PLat(𝐴). Thus, as each element of Pfin(𝐴) is
the join of finitely many atoms of PLat(𝐴), we have that Pfin(𝐴) ⊆ [Φ], as required. Furthermore,

since each element of PLat(𝐴) is the join of all (not necessarily finitely many) atoms below it, [Φ]
generates PLat(𝐴) as a complete lattice. Hence, so does Φ, completing the proof of Proposition

2.2. □

Corollary 2.3 follows easily from an argument given in [3] rather than from an easy-to-quote

statement from [3]. To maintain brevity, we do not reproduce this argument. Instead, we present

the 7-tuple to which the argument in [3] applies, and highlight which part of [3] is relevant.

Proof of Corollary 2.3. Instead of [𝑛], it suffices to take the set 𝐴 defined in Lemma 3.2; see also the

graph on the left of Figure 1. Let 𝑘 ∶= (𝑛−1)/2, that is,𝑛 = 2𝑘+1. Difference up to automorphism does

not count,wherebywe can assume that 𝛼 = prt(𝑎1𝑏1). Define 𝛽, 𝛾 , and 𝛿 in the sameway as in Lemma

3.2. Denote the smallest and the largest partition of a set𝑋 by 𝟎
PLat(𝑋 ) and 𝟏PLat(𝑋 ), respectively. Recall

from [3] that a 7-tuple (𝑋 ; 𝜖1, 𝜖2, 𝜖3, 𝜖4; 𝑦, 𝑧) is called an eligible system if {𝜖1, 𝜖2, 𝜖3, 𝜖4} generates
PLat(𝑋 ), 𝜖1∨𝜖2 = 𝟏

PLat(𝑋 ), 𝜖1∧𝜖2 = 𝟎
PLat(𝑋 ), 𝜖3∧(𝜖4∨prt(𝑥, 𝑦)) = 𝟎

PLat(𝑋 ), 𝜖4∧(𝜖3∨prt(𝑥, 𝑦)) = 𝟎
PLat(𝑋 ),

and 𝜖3 ∨ 𝜖4 ∨ prt(𝑥, 𝑦) = 𝟏
PLat(𝑋 ). Observe that

(𝐴; 𝛽, 𝛾, 𝛼, 𝛿; 𝑎𝑘 , 𝑎𝑘+1) (3.38)

is an eligible system. The second part of the proof of the main theorem in [3] begins with a 9-element

eligible system A0. (We can disregard the 8-element system in [3], since now 𝑛 + 𝑚 is odd.) Instead

of the 9-element eligible system A0, now (3.38) is an 𝑛-element one. If we change 9 to 𝑛 and A0 to

(3.38), then the proof in [3] needs no further change to yield at least 2𝑚−3 ⋅ (𝑚 − 1)!/(3𝑚 + 3) many

Φ′
, as required. Thus, Corollary 2.3 holds. □
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