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Abstract: Let bxc and dxe denote the lower integer part and the upper integer part of a real number x,
respectively. Our main goal is to construct four partitions of a finite set A with n ≥ 7 elements such that each
of the four partitions has exactly dn/2e blocks and any other partition of A can be obtained from the given
four by forming joins and meets in a finite number of steps. We do the same with dn/2e − 1 instead of dn/2e,
too. To situate the paper within lattice theory, recall that the partition lattice Eq(A) of a set A consists of all
partitions (equivalently, of all equivalence relations) of A. For a natural number n, [n] and Eq(n) will stand
for {1, 2, . . . , n} and Eq([n]), respectively. In 1975, Heinrich Strietz proved that, for any natural number n ≥ 3,
Eq(n) has a four-element generating set; half a dozen papers have been devoted to four-element generating sets
of partition lattices since then. We give a simple proof of his just-mentioned result. We call a generating set X
of Eq(n) horizontal if each member of X has the same height, denoted by h(X), in Eq(n); no such generating
sets have been known previously. We prove that for each natural number n ≥ 4, Eq(n) has two four-element
horizontal generating sets X and Y such that h(Y ) = h(X) + 1; for n ≥ 7, h(X) = bn/2c.

Keywords: Partition lattice, Equivalence lattice, Minimum-sized generating set, Horizontal generating set,
Four-element generating set.

1. Notes on the dedication

Árpád Kurusa, 1961–2024, was an excellent geometer. The present paper is dedicated to his
memory. In addition to his high reputation in geometry, his editorial and technical editorial work
for several mathematical journals as well as his textbooks (in Hungarian) were also deeply ac-
knowledged. From 2000 to 2018, he led the Department of Geometry at the Bolyai (Mathematical)
Institute of the University of Szeged. As the title of [5] shows, our collaboration has added a piece
to the traditionally strong interrelation between geometry and lattice theory. At the motivational
level, the present paper has some (but very slight) connection to the just-mentioned joint paper.
Indeed, partition lattices form a specific subclass of geometric lattices, and the term “horizontal”
is rooted in a geometric perspective of these lattices.

2. Introduction and our theorem

Given a set A, the collection of equivalences, that is, the collection of reflexive, symmetric,
transitive relations of A forms a lattice Eq(A), the equivalence lattice of A. In this lattice, the
meet and the join are the intersection and the transitive hull of the union, respectively. By the
well-known bijective correspondence between the equivalences of A and the partitions of A, Eq(A)
is isomorphic to the partition lattice of A, which consists of all partitions of A. By the just-
mentioned correspondence, we make no sharp distinction between equivalences and partitions in
our terminology and notations. To explain that we use the notation Eq(A) rather than something
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like Part(A), note that equivalences are more appropriate for performing the lattice operations and
forming restrictions. For a natural number n, we let [n] := {1, 2, . . . , n}, and we usually abbreviate
Eq([n]) to Eq(n).

Partition lattices play an important role in lattice theory since congruence lattices, which play a
central role in universal algebra, are naturally embedded in partition lattices. In fact, every lattice
is embeddable into a partition lattice by Whitman [12] and each finite lattice into a finite partition
lattice by Pudlák and Tůma [9]; note that these facts can be exploited in some proofs, for example,
in [1]. Furthermore, every partition lattice Eq(A) is known to be a geometric lattice, that is, an
atomistic semimodular lattice; see, e.g., Grätzer [7, Section IV.4] or [8, Section V.3]. Being atomistic
means that each element x of Eq(A) is the join of all atoms below x. Semimodularity is understood
as upper semimodularity, that is, for any x, y, z ∈ Eq(A), x � y implies that x ∨ z � y ∨ z, where
� is the “is covered by or equal to” relation.

A subset X of Eq(A) is a generating set of Eq(A) if X extends to no proper subset S of Eq(A)
such that S is closed with respect to joins and meets. In the seventies, Strietz [10] and [11] proved
that, for any natural number n ≥ 3, Eq(n) has a four-element generating set. His result is optimal,
since Eq(n) does not have a three-element generating set provided that n ≥ 4. Since Strietz’s
pioneering work was published in [10] and [11], five additional papers have already been devoted to
the four-element generating sets of equivalence lattices; see [6], the 2nd-, the 3rd-, and the 4th-item
in the “References” section of [6], and Zádori [13].

For n ≥ 3, which is always assumed, each permutation of [n] extends to an automorphism
of Eq(n), and such an automorphism sends generating sets to generating sets. We say that two
generating sets of Eq(n) are essentially different if no such automorphism sends one of them to
the other one. We know even from Strietz [10] and [11] that, for n large enough, Eq(n) has several
essentially different four-element generating sets. Many more (essentially different) four-element
generating sets have been given in [6]. However, it is very likely by the computer-assisted section
of [6] that only an infinitesimally small percentage of the four-element generating sets of Eq(n) are
known for n large. Exploring more such generating sets seems to be a reasonable target in its own
right, and there is an additional motivation: Namely, the more small generating sets of Eq(n) are
available, the more the cryptographic ideas of [2] can benefit from equivalence lattices. (If there
are and we know many four-element generating sets, then we can extend them to small generating
sets in very many ways.)

Before explaining what sort of new four-element generating sets of Eq(n) we are going to present,
note that even at the very beginning of this type or research in the seventies, Strietz himself paid
attention to some lattice theoretical properties of his four-element generating sets. For n ≥ 4,
he showed that a four-element generating set is either an antichain (that is, a subset with no
comparable elements) or it is of order type 1 + 1 + 2, that is, exactly two out of the four generators
are comparable. He managed to prove that Eq(n) has a four-element generating set of order type
1 + 1 + 2 for every integer n ≥ 10. Briefly saying, Eq(n) is (1 + 1 + 2)-generated for n ≥ 10. With
ingenious constructions, Zádori [13] improved “n ≥ 10” to n ≥ 7, and he gave a visual proof of
Strietz’s result that Eq(n) has a four-element generating set; his proofs are simpler than Strietz’s
ones. Zádori [13] left open the problem whether Eq(5) and Eq(6) are (1 + 1 + 2)-generated. This
problem was solved as recently as 2020 in [6], where an affirmative answer for Eq(6) was given but
a computer-assisted negative answer for Eq(5) was provided.

As Eq(n) is a geometric lattice, there is a natural property of a subset, which is more restrictive
than being an antichain. To introduce it, recall that the length of an n-element chain is n− 1. The
least element and the largest element of Eq(n) or Eq(A) will be denoted by ∆ and ∇, respectively.
If confusion threatens, we write ∆n, ∇A, etc.. The height of an element µ ∈ Eq(n) is the length
of a maximal chain in the interval [∆, µ]; we know from the Jordan-Hölder Chain Condition for
semimodular lattices, see, e.g., Grätzer [7, Theorem IV.2.1 on page 226] or [8, Theorem 377], that
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no matter which maximal chain is taken. We denote the height of µ by h(µ). A subset X of Eq(n)
is horizontal if its elements are of the same height; in this case, the common height of the elements
of X is denoted by h(X). A horizontal subset of Eq(n) is necessarily an antichain. Clearly, Eq(n)
for n ≥ 3 has a horizontal generating set, since the set of atoms is such. To get a better insight into
the four-element generating sets of partition lattices, it is reasonable to determine those natural
numbers n for which Eq(n) has a four-element horizontal generating set. In fact, we are going to
do more by showing that whenever Eq(n) has a four-element antichain at all, that is, whenever
n ≥ 4, then it has two four-element horizontal generating sets of neighboring heights. To smooth
our terminology, let us introduce the notation

HFHGS(n) := {h(X) : X is a four-element horizontal generating set of Eq(n)};

the acronym above comes from the heights of four-element horizontal generating sets. For a real
number r, we denote by brc and dre the lower integer part and the upper integer part of r; for
example, b

√
2c = 1 and d

√
2 e = 2. Let N+ denote the set of positive integers.

Theorem 1. For every natural number n ≥ 4, the partition lattice Eq(n) has two four-element
horizontal generating sets X and Y such that h(Y ) = h(X)+1 holds for their heights. Furthermore,

HFHGS(n) ⊇ {bn/2c, bn/2c+ 1} for all integers n ≥ 7 and also for n = 5, and (2.1)

HFHGS(n) ⊆ {k ∈ N+ : b(n− 1)/4c+ 1 ≤ k ≤ n− d 4
√
n e} for all integers n ≥ 4. (2.2)

Based on the following statement, we conjecture that “⊇” in (2.1) is never an equality for n ≥ 7.
We do not know whether limn→∞ |HFHGS(n)| = ∞ and HFHGS(n) is always a convex subset of
N+. We know HFHGS(n) only for n ∈ {4, 5, 6, 7, 8}. In the proposition below, each occurrence of

the relation symbol
comp
= denotes an equality that we could prove only with the assistance of the

brute force of a computer.

Proposition 1. We have the following equalities and inclusions:

HFHGS(4) = {1, 2}, (2.3)

HFHGS(5) = {2, 3}, (2.4)

{2, 3} ⊆ HFHGS(6) ⊆ {2, 3, 4}, in fact, HFHGS(6)
comp
= {2, 3}, (2.5)

{2, 3, 4} ⊆ HFHGS(7) ⊆ {2, 3, 4, 5}, in fact, HFHGS(7)
comp
= {2, 3, 4}, and (2.6)

{3, 4, 5} ⊆ HFHGS(8) ⊆ {2, 3, 4, 5, 6}, in fact, HFHGS(8)
comp
= {3, 4, 5}. (2.7)

Remark 1. (2.3) and (2.5) witness that (2.1) fails for n ∈ {4, 6}. Note also that concrete
four-element horizontal generating sets witnessing (2.1) and (2.3)–(2.7) are defined by Lemma 5
combined with Assertion 1, by Lemmas 6, 7 and 8 combined with both (the Key) Lemma 4 and
Assertion 1, and in the rest of the lemmas presented in Section 5. For n large, the just-mentioned
four-element horizontal generating sets are given only inductively; the inductive feature could be
eliminated but we do not strive for non-inductive definitions of these generating sets.

The rest of the paper is devoted to proving Theorem 1 and Proposition 1. Unless explicitly
stated otherwise, we assume that 4 ≤ n ∈ N+ for the remainder of the paper.
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3. Some lemmas, the Key Lemma, and a new proof of one of Strietz’s results

For a finite nonempty set A, if {a1,1, . . . , a1,t1}, . . . , {ak,1, . . . , ak,tk} is a repetition-free list of
the blocks of a partition µ ∈ Eq(A), then we denote both µ and the corresponding equivalence by

eq(a1,1, . . . , a1,t1 ; . . . ; ak,1, . . . , ak,tk) or eq(a1,1 . . . a1,t1 ; . . . ; ak,1 . . . ak,tk).

That is, we omit the commas when no confusion threatens but not the block-separating semicolons.
Usually, the elements in a block and the blocks are listed in lexicographic order. For example,

∆4 = eq(1; 2; 3; 4), ∇4 = eq(1234), and ∇11 = eq(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);

for more involved examples, see Lemmas 5–15. For u, v ∈ A, the least equivalence of A collapsing
u and v will be denoted by at(u, v) or, if confusion threatens, by atA(u, v). For example, in Eq(6),
at(2, 5) = eq(1; 25; 3; 4; 6). Note that at(u, v) is an atom of Eq(A) (that is, a cover of ∆), and every
atom of Eq(A) is of this form.

We define the graph G(S) of a sublattice S of Eq(A) by letting A be the vertex set of G(S)
and letting {(a, b) : a 6= b and at(a, b) ∈ S} be the edge set of G(S). (No matter if we consider
(a, b) and (b, a) equal or different.) A Hamiltonian circle of G(S) is a permutation a1, a2, . . . , an of
the elements of A such that at(ai−1, ai) ∈ S for i ∈ [n]− {1} and at(an, a1) ∈ S. Of course, G(S)
need not have a Hamiltonian circle. The following lemma occurs, explicitly or implicitly, in several
papers dealing with generating sets of equivalence lattices; see, for example, Czédli and Oluoch
[6, Lemma 2.5]. For the reader’s convenience, we are going to outline its trivial proof.

Lemma 1 (Hamiltonian Cycle Lemma). For a finite set A with at least three elements and a
sublattice S of Eq(A), we have that S = Eq(A) if and only if G(S) has a Hamiltonian circle.

P r o o f. The “only if” part is trivial. To prove the “if” part, let a1, . . . , an be a Hamiltonian
circle of G(S). As each element of the atomistic lattice Eq(A) is the join of some atoms, it suffices
to show that for all i 6= j, i, j ∈ [n], we have that at(ai, aj) ∈ S. This membership follows from

at(ai, aj) =
(

at(ai, ai+1) ∨ at(ai+1, ai+2) ∨ · · · ∨ at(aj−1, aj)
)

∧
(

at(ai, ai−1) ∨ at(ai−1, ai−2) ∨ · · · ∨ at(a2, a1)

∨ at(a1, an) ∨ at(an, an−1) ∨ at(an−1, an−2) ∨ · · · ∨ at(aj+1, aj)
)

and the “commutativity” at(x, y) = at(y, x). �

Let Z4 := ({0, 1, 2, 3},+) denote the cyclic group of order 4; the addition in it is performed
modulo 4. To give the lion’s share of the proof of (2.3) and also to present an easy consequence of
Lemma 1, we present the following lemma, in which the addition is understood in Z4.

Lemma 2. Both X := {at(i, i + 1) : i ∈ Z4} and Y := {at(i, i + 1) ∨ at(i + 1, i + 2) : i ∈ Z4}
are four-element horizontal generating sets of Eq(Z4) ∼= Eq(4).

P r o o f. By Lemma 1, X generates Eq(Z4). Since

at(i, i+ 1) =
(
at(i, i+ 1) ∨ at(i+ 1, i+ 2)

)
∧
(
at(i− 1, i) ∨ at(i, i+ 1)

)
for i ∈ Z4, (3.1)

it follows that X is contained in the sublattice of Eq(Z4) generated by Y , whence Y also generates
Eq(Z4). �
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Next, we introduce a concept that is crucial in the proof of Theorem 1. By an n-element eligible
system we mean a 7-tuple

A = (A,α, β, γ, δ, u, v) (3.2)

such that A is an n-element finite set, u and v are distinct elements of A, {α, β, γ, δ} is a four-element
generating set of Eq(A), and

α ∨ δ = ∇, α ∧ δ = ∆, (3.3)

β ∧
(
γ ∨ at(u, v)

)
= ∆, γ ∧

(
β ∨ at(u, v)

)
= ∆, (3.4)

and β ∨ γ ∨ at(u, v) = ∇. (3.5)

To present an example and also for a later reference, we formulate the following statement.

Lemma 3. With α = eq(123; 4), β = eq(14; 2; 3), γ = eq(1; 2; 34), and δ = eq(1; 24; 3),

A := ([4], α, β, γ, δ, 1, 2) (3.6)

is an eligible system

P r o o f. Let S be the sublattice of Eq(4) generated by {α, β, γ, δ}. Since

at(1, 2) = eq(12; 3; 4) = α ∧ (β ∨ δ) ∈ S, at(2, 3) = α ∧ (γ ∨ δ) ∈ S, at(3, 4) = γ ∈ S,

and at(4, 1) = β ∈ S, the sequence 1, 2, 3, 4 is a Hamiltonian cycle in G(S). Thus, Lemma 1
implies that {α, β, γ, δ} generates Eq(4). Since (3.3), (3.4), and (3.5) are trivially satisfied, the
proof of Lemma 3 is complete. �

For A ⊆ B and µ ∈ Eq(A), the smallest equivalence of B that includes µ will be denoted by
µext
B . The superscript in the notation comes from “extension”. As a partition, µext

B consists of the
blocks of µ and the singleton blocks {b} for b ∈ B −A.

Lemma 4 (Key Lemma). Assume that (A,α, β, γ, δ, u, v) is an eligible system, |A| ≥ 4, w /∈ A,
and B = A ∪ {w}. Let

α′ := βext
B ∨ atB(u,w), β′ := αext

B , γ′ := δext
B , δ′ := γext

B ∨ atB(v, w), u′ := u, v′ := w. (3.7)

Then the extended system

ES(A) := B =
(
B, α′, β′, γ′, δ′, u′, v′

)
(3.8)

is also an eligible system. The heights of the partitions occurring in (3.7)–(3.8) satisfy that

h(α′) = h(β) + 1, h(β′) = h(α), h(γ′) = h(δ), h(δ′) = h(γ) + 1. (3.9)

P r o o f. Assume that A is an eligible system and B = ES(A) is as in (3.8). We will frequently
but mostly implicitly use the obvious fact that the function f : Eq(A)→ Eq(B) defined by µ 7→ µext

B

is a lattice embedding and, for any µ ∈ Eq(A), h(f(µ)) = h(µ). Denote by S the sublattice
generated by {α′, β′, γ′, δ′} in Eq(B). For µ ∈ Eq(B), let µ�A denote the restriction of µ to A.
That is, as an equivalence, µ�A = µ ∩ (A×A). E.g.,

(
(∆A)ext

B

)
�A = ∆A. Note the obvious rule:

(ρext
B )�A = ρ and (µ�A)ext

B = µ ∧ (∇A)ext
B for every ρ ∈ Eq(A) and µ ∈ Eq(B). (3.10)
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Let us agree that, for x, y ∈ B, at(x, y) is understood as atB(x, y) even when x, y ∈ A. We claim
that for any µ ∈ Eq(A) and for any d ∈ A,(

µext
B ∨ atB(d,w)

)
�A = µ; and, in particular, (3.11)

α′�A = β and δ′�A = γ. (3.12)

The inequality
(
µext
B ∨ atB(d,w)

)
�A ≥ µ is clear. To show the converse inequality, assume that

a 6= b and (a, b) belongs to
(
µext
B ∨ atB(d,w)

)
�A. Then a, b ∈ A and, by the description of the join

in equivalence lattices, there exists a shortest sequence x0 = a, x1, . . . , xt−1, xt = b of elements of
B such that, for each i ∈ [t],

either (xi−1, xi) ∈ µext
B or (xi−1, xi) ∈ {(d,w), (w, d)}. (3.13)

Since this sequence is repetition-free, the first alternative in (3.13) means that (xi−1, xi) ∈ µ. By
way of contradiction, suppose that not all elements of the sequence are in A. Let j be the smallest
subscript such that xj /∈ A. As x0 = a ∈ A and xt = b ∈ A, we have that 0 < j < t. By the choice
of j, xj−1 ∈ A. This rules out that (xj−1, xj) = (w, d). Since xj /∈ A, (xj−1, xj) ∈ µ cannot occur
either. Hence, (xj−1, xj) = (d,w). However, then the only possibility to continue the sequence is
that (xj , xj+1) = (w, d). So d occurs in the sequence at least twice, which contradicts the fact that
our sequence is repetition-free. Therefore, all elements of the sequence are in A, whereby the first
alternative of (3.13) holds for all i. Thus, (xi−1, xi) ∈ µ for i ∈ [t], and we obtain the required
membership (a, b) = (x0, xt) ∈ µ by transitivity. We have shown (3.11). Letting (µ, d) := (β, u)
and (µ, d) := (γ, v), (3.11) implies (3.12).

Next, using the first half of (3.3) (and the fact that f is an embedding), we obtain that
(∇A)ext

B = (α ∨ δ)ext
B = αext

B ∨ δext
B = β′ ∨ γ′ belongs to S. Hence, so does α′ ∧ (∇A)ext

B . By
the second half of (3.10) applied to µ := α′, this equivalence is (α′�A)ext

B , whence (α′�A)ext
B ∈ S.

Therefore, applying (3.12), βext
B ∈ S. As β and γ play a symmetric role, γext

B is also in S. By
(3.7), S contains αext

B = β′ and δext
B = γ′. So f(µ) = µext

B ∈ S for every µ ∈ {α, β, γ, δ}. Since f
is an embedding and {α, β, γ, δ} generates Eq(A), we conclude that f(Eq(A)) ⊆ S. In particular,
atB(u, v) = f(atA(u, v)) ∈ S. Based on this containment, we claim that

atB(u,w) = α′ ∧
(
atB(u, v) ∨ δ′

)
∈ S. (3.14)

As atB(u, v), α′, δ′ ∈ S, it suffices to show the equality in (3.14). The inequality “≤” in place of
the equality is clear by the definition of α′ given in (3.7). To show the converse inequality, assume
that a 6= b and (a, b) belongs to the right-hand side of the equality in (3.14). Let ν := atA(u, v)∨γ.
Observe that

(a, b) ∈ α′ ∧
(
νext
B ∨ atB(v, w)

)
, (3.15)

since

α′ ∧
(
νext
B ∨ atB(v, w)

)
= α′ ∧

((
atA(u, v) ∨ γ

)ext

B
∨ atB(v, w)

)
= α′ ∧

((
atA(u, v)

)ext

B
∨ γext

B ∨ atB(v, w)
)

(3.16)

= α′ ∧
(
atB(u, v) ∨ γext

B ∨ atB(v, w)
) (3.7)

= α′ ∧
(
atB(u, v) ∨ δ′

)
. (3.17)

As a 6= b and |B − A| = |{w}| = 1, at least one of a and b is in A. By symmetry, we can assume
that a ∈ A. Depending on the position of b, there are two cases.

First, assume that b is also in A. Then (a, b) ∈ α′ and (3.12) give that (a, b) ∈ β. As (a, b) is in
the second meetand in (3.15) and a, b ∈ A, we have that (a, b) ∈

(
νext
B ∨atB(v, w)

)
�A. Hence, (3.11)

applied to (µ, d) := (ν, v) yields that (a, b) ∈ ν. Thus, (a, b) belongs to β ∧ ν = β ∧
(
atA(u, v)∨ γ

)
,
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which is ∆A by (3.4). Since (a, b) ∈ ∆A contradicts the assumption a 6= b, the first case cannot
occur.

Second, assume that b /∈ A. Then (a,w) = (a, b) ∈ α′ ∧
(
atB(u, v) ∨ δ′

)
and a ∈ A. By (3.7),

(w, u) ∈ α′. As both (w, v) and (v, u) belong to the second meetand of (3.16), (w, u) belongs to
this meetand, too. These facts, (3.16), and (3.17) give that α′ ∧

(
atB(u, v) ∨ δ′

)
contains (w, u).

By transitivity, it contains (a, u), too. If we had that a 6= u, then (a, u) (with u playing the role of
b) would be a contradiction by the first case. Thus, a = u, that is, (a, b) = (u,w) ∈ atB(u,w), as
required. We have shown the validity of (3.14).

We obtain the following fact analogously; we can derive it also from (3.14) by symmetry, since
(A; δ, γ, β, α, v, u) is also an eligible system:

atB(v, w) = δ′ ∧
(
atB(u, v) ∨ α′

)
∈ S. (3.18)

With n := |A|, list the elements of B as follows: c1 := u, c2, . . . , cn−1, cn := v, cn+1 := w.
Since f(Eq(A)) ⊆ S and c1, . . . , cn ∈ A, we have that atB(ci, ci+1) = f

(
atA(ci, ci+1)

)
∈ S, that is,

(ci, ci+1) is an edge of G(S) for i ∈ [n − 1]. So are (cn, cn+1) = (v, w) and (cn+1, c1) = (w, u) by
(3.18) and by (3.14), respectively. Therefore, our list is a Hamiltonian cycle, and Lemma 1 implies
that {α′, β′, γ′, δ′} is a generating set of Eq(B). This set is four-element since |B| ≥ 4 and so we
know from Strietz [10] or [11] that Eq(B) cannot be generated by less than four elements.

Clearly, u′ = u ∈ A is distinct from v′ = w ∈ B −A. Since

α′ ∨ δ′ (3.7)
= βext

B ∨ atB(u,w) ∨ γext
B ∨ atB(v, w) = βext

B ∨ γext
B ∨ atB(u, v) ∨ atB(v, w)

=
(
β ∨ γ ∨ atA(u, v)

)ext

B
∨ atB(v, w)

(3.5)
= (∇A)ext

B ∨ atB(v, w) = ∇B,

B satisfies the first half of (3.3). To show by way of contradiction that B fulfills the second half,
suppose that a 6= b and (a, b) ∈ α′ ∧ δ′. If a, b ∈ A, then (3.12) leads to (a, b) ∈ β ∧ γ = ∆A,
contradicting that a 6= b. So one of a and b is w, and we can assume that a ∈ A and b = w. As
(a,w) = (a, b) ∈ α′ and (w, u) ∈ α′, we have that (a, u) ∈ α′. Hence, (a, u) ∈ β by (3.12). Similarly,
(a,w), (w, v) ∈ δ′ and (3.12) imply that (a, v) ∈ γ. The just-obtained memberships and relations
give that

(a, u) ∈ β ∧
(
γ ∨ atA(u, v)

)
and (a, v) ∈ γ ∧

(
β ∨ atA(u, v)

)
.

Combining this with (3.4), we obtain that a = u and a = v, contradicting u 6= v. So we have
proved that B fulfills (3.3).

By symmetry, to show that B satisfies (3.4), it suffices to deal with its first half. For the sake
of contradiction, suppose that β′ ∧

(
γ′ ∨ atB(u′, v′)

)
6= ∆B. Then we can pick a, b ∈ B such that

a 6= b and

(a, b) ∈ β′ ∧
(
γ′ ∨ atB(u′, v′)

) (3.7)
= αext

B ∧
(
δext
B ∨ atB(u,w)

)
. (3.19)

The containment (a, b) ∈ αext
B gives that a, b ∈ A. The meet in Eq(B) is the set-theoretic inter-

section, so it commutes with the restriction map. Hence, applying the first equality of (3.10) with

ρ := α and (3.11) with (µ, d) := (δ, u) at
∗
=, (3.19) leads to

(a, b) ∈
(
αext
B ∧

(
δext
B ∨ atB(u,w)

))
�A = αext

B �A ∧
(
δext
B ∨ atB(u,w)

)
�A
∗
= α ∧ δ (3.3)

= ∆A ⊆ ∆B,

which contradicts the assumption a 6= b and proves that B satisfies (3.4). Since

β′ ∨ γ′ ∨ atB(u′, v′)
(3.7)
= αext

B ∨ δext
B ∨ atB(u,w) = (α ∨ δ)ext

B ∨ atB(u,w)

(3.3)
= (∇A)ext

B ∨ atB(u,w) = ∇B,
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B satisfies (3.5), too. We have proved that B is an eligible system, as required.

For a finite nonempty set H and µ in Eq(H), let NumB(µ) denote the number of blocks of µ.
For example, if µ = eq(14; 25; 3) ∈ Eq(5), then NumB(µ) = 3. The following folkloric fact is trivial:

For any µ ∈ Eq(H), h(µ) + NumB(µ) = |H|. (3.20)

Clearly, (3.7) leads to NumB(α′) = NumB(β), NumB(β′) = NumB(α) + 1, NumB(γ′) =
NumB(δ) + 1, and NumB(δ′) = NumB(γ). These equalities and (3.20) imply (3.9), completing the
proof of the Key Lemma. �

Now we are in the position to give a new proof of Strietz’s result stating that Eq(n) is four-
generated. For those who prefer theoretical arguments rather than long and tedious computations
with concrete partitions, the proof below is presumably simpler than the earlier ones.

Corollary 1 (Strietz [10] and [11]). For any natural number n ≥ 3, Eq(n) has a four-element
generating set.

P r o o f. As the case n = 3 is trivial, we assume that n ≥ 4. Let A4 be the eligible system
given in (3.6); see (3.2). For n > 4, define An as ES(An−1). Then, for each n ≥ 4, An is an
n-element eligible system by Lemmas 3 and (the Key) Lemma 4. Thus, by the definition of eligible
systems, Eq(n) is four-generated, completing the proof of Corollary 1. �

4. A tediously provable lemma

The n-th Bell number B(n) is defined to be the number of elements of Eq(n), that is, B(n) :=
|Eq(n)|. As n grows, B(n) grows very fast; see https://oeis.org/A000110 of N. J. A. Sloan’s Online
Encyclopedia of Integer Sequences. For example, |Eq(6)| = B(6) = 203, |Eq(8)| = 4 140, |Eq(9)| =
21 147, and |Eq(20)| = 51 724 158 235 372 ≈ 5.17 ·1013. These large numbers explain our experience
that even when it is feasible to prove that a four-element subset X of Eq(n) generates Eq(n), this
task requires straightforward but tedious computations in general. Each of Lemmas 5–15 belongs
to this category by stating that a subset X of Eq(n) generates Eq(n); some of these lemmas state
slightly more, but these surpluses are trivial to verify. We offer two ways to verify these lemmas.

First, one can read their proofs based on Lemma 1. One of these proofs is given in this
section. As the rest of these proofs are long without containing a single new idea, the proofs of
Lemmas 6–15 are given only in Appendix 1 of the extended version of the paper. At the time of
writing, this extended version3 is at https://tinyurl.com/czg-h4ge (and also at the author’s website4

http://tinyurl.com/g-czedli/), and it will be available at www.arxiv.org soon.

Second, the author has developed three closely related computer programs in Dev-Pascal 1.9.2
under Windows 10. These programs, available at https://tinyurl.com/czg-equ2024p or at the au-
thor’s website given in the previous paragraph, form a mini-package. The main program and its
auxiliary program are also given in Appendices 2 and 3 of the extended version of the paper. The
third program performs the same tasks as the first one and also uses the auxiliary program. Despite
being slower, it is more cross-platform because it requires less computer memory. For n ≤ 9, the
auxiliary program lists the elements of Eq(n); the other two programs rely on this list. In what
follows, by a program, we mean the main program. The program can “prove” Lemmas 5–15, and

3Temporary note: the journal prohibits uploading the paper to arXiv prior to its official publication.
4This standard “tiny” short link redirects us to the real URL https://www.math.u-szeged.hu/˜czedli/ .

https://oeis.org/A000110
https://tinyurl.com/czg-h4ge
http://tinyurl.com/g-czedli/
https://www.arxiv.org/
https://tinyurl.com/czg-equ2024p
https://www.math.u-szeged.hu/~czedli/
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it can also “prove” the
comp
= parts of (2.5)–(2.7). In fact, the program has been designed to perform

the following two tasks.
First, the program can take an n ∈ {4, 5, . . . , 9} and a four-element subset X of Eq(n) as

inputs. After enlarging X by adding the join and the meet of any two of its elements as long as the
enlargement is proper, the program computes the sublattice S generated by X. Then the program
displays the size |S| of S on the screen and tells whether X generates Eq(n). The program can
prove Lemma 8, where n = 9, in about fifteen minutes. For Lemma 14, where n = 8, 25 seconds
suffice. Note that for just one four-element subset X of Eq(n), it is not worthwhile to create and
the program does not create the operation tables of Eq(n). For this (the first) task, there is no
difference between the main program and its slower variant.

Second, for a given n ∈ {4, 5, . . . , 9} and a k ∈ [n− 1] as inputs, the program decides whether
Eq(n) has a four-element horizontal generating set of height k. For (n, k) = (8, 2), this takes about
three and a half minutes, provided the program runs on a desktop computer with AMD Ryzen 7
2700X Eight-Core Processor and 3.70 GHz with 16 GB memory. For (n, k) = (9, 3), if Eq(9) has
no four-element horizontal generating set of height 3, which we do not know, the program would
need about a month; partially because there is not enough computer memory to store the operation
tables of Eq(9) and also because there are significantly more cases.

The quotation marks around “proved” in a paragraph above indicate that the author believes
but cannot prove that the program itself is error-free. The source code of the program and that
of its auxiliary program are 24 and 8 kilobytes, respectively, totaling 32 kilobytes. Proving exactly
that the program is perfect would probably be harder than verifying all proofs in Appendix 1.

Lemma 5. With

α := eq(123; 4; 5), (4.1)

β := eq(1; 23; 45), (4.2)

γ := eq(13; 25; 4), and (4.3)

δ := eq(15; 2; 34), (4.4)

([5], α, β, γ, δ, 1, 4) is an eligible system and h(α) = h(β) = h(γ) = h(δ) = 2.

P r o o f. Let S denote the sublattice of Eq(5) generated by {α, β, γ, δ}. We will list some
members of S; each of them belongs to S by earlier containments as indicated.

eq(1; 23; 4; 5) = eq(123; 4; 5) ∧ eq(1; 23; 45) ∈ S by (4.1) and (4.2), (4.5)

eq(13; 2; 4; 5) = eq(123; 4; 5) ∧ eq(13; 25; 4) ∈ S by (4.1) and (4.3), (4.6)

eq(1235; 4) = eq(123; 4; 5) ∨ eq(13; 25; 4) ∈ S by (4.1) and (4.3), (4.7)

eq(15; 234) = eq(15; 2; 34) ∨ eq(1; 23; 4; 5) ∈ S by (4.4) and (4.5), (4.8)

eq(1345; 2) = eq(15; 2; 34) ∨ eq(13; 2; 4; 5) ∈ S by (4.4) and (4.6), (4.9)

eq(15; 2; 3; 4) = eq(15; 2; 34) ∧ eq(1235; 4) ∈ S by (4.4) and (4.7), (4.10)

eq(1; 2; 3; 45) = eq(1; 23; 45) ∧ eq(1345; 2) ∈ S by (4.2) and (4.9), (4.11)

eq(13; 245) = eq(13; 25; 4) ∨ eq(1; 2; 3; 45) ∈ S by (4.3) and (4.11), (4.12)

eq(1; 24; 3; 5) = eq(15; 234) ∧ eq(13; 245) ∈ S by (4.8) and (4.12). (4.13)

Let E(S) denote the edge set of the graph G(S); it is defined in the paragraph preceding Lemma
1. Since (1, 3) ∈ E(S) by (4.6), (3, 2) ∈ E(S) by (4.5), (2, 4) ∈ E(S) by (4.13), (4, 5) ∈ E(S) by
(4.11), and (5, 1) ∈ E(S) by (4.10), the sequence 1, 3, 2, 4, 5 is a Hamiltonian cycle of G(S). Hence,
{α, β, γ, δ} is a generating set of Eq(5) by Lemma 1. Armed with this fact, now it is a trivial task
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to verify that ([5], α, β, γ, δ, 1, 4) satisfies (3.3), (3.4), and (3.5), whereby it is an eligible system.
Thus, (3.20) completes the proof Lemma 5. �

5. The rest of tediously provable lemmas

We need the following ten lemmas, too. As indicated in the second paragraph of Section 4,
their proofs are given only in Appendix 1 of the extended version of the paper.

Lemma 6. With

α := eq(134; 256; 7), β := eq(146; 27; 3; 5),

γ := eq(135; 2; 4; 67), and δ := eq(12; 357; 46),

([7], α, β, γ, δ, 2, 3) is an eligible system, h(α) = h(δ) = 4, and h(β) = h(γ) = 3.

Lemma 7. With

α := eq(134; 258; 67), β := eq(14; 2; 36; 578),

γ := eq(17; 25; 348; 6), and δ := eq(12; 378; 456),

([8], α, β, γ, δ, 2, 6) is an eligible system, h(α) = h(δ) = 5, and h(β) = h(γ) = 4.

Lemma 8. With

α := eq(178; 249; 356), β := eq(19; 26; 378; 45),

γ := eq(1; 28; 359; 467), and δ := eq(169; 258; 347),

([9], α, β, γ, δ, 1, 2) is an eligible system, h(α) = h(δ) = 6, and h(β) = h(γ) = 5.

Lemma 9. With

α := eq(134; 25), β := eq(13; 245),

γ := eq(12; 345), and δ := eq(124; 35),

{α, β, γ, δ} generates Eq(5) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 10. With

α := eq(12; 34; 5; 6), β := eq(1; 2; 35; 46),

γ := eq(1; 25; 36; 4), and δ := eq(15; 24; 3; 6),

{α, β, γ, δ} generates Eq(6) and h(α) = h(β) = h(γ) = h(δ) = 2.

Lemma 11. With

α := eq(13; 256; 4), β := eq(156; 2; 34),

γ := eq(12; 35; 46), and δ := eq(13; 246; 5),

{α, β, γ, δ} generates Eq(6) and h(α) = h(β) = h(γ) = h(δ) = 3.
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Lemma 12. With

α := eq(1; 24; 35; 6; 7), β := eq(14; 26; 3; 5; 7),

γ := eq(1; 2; 34; 5; 67), and δ := eq(17; 2; 3; 4; 56),

{α, β, γ, δ} generates Eq(7) and h(α) = h(β) = h(γ) = h(δ) = 2.

Lemma 13. With

α := eq(13; 24; 567), β := eq(125; 3; 467)

γ := eq(1357; 26; 4), and δ := eq(126; 35; 47),

{α, β, γ, δ} generates Eq(7) and h(α) = h(β) = h(γ) = h(δ) = 4.

Lemma 14. With

α := eq(18; 2; 35; 4; 67), β := eq(1; 24; 37; 5; 68),

γ := eq(16; 2; 34; 57; 8), and δ := eq(12; 3; 45; 6; 78),

{α, β, γ, δ} generates Eq(8) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 15. With

α := eq(137; 246; 58), β := eq(146; 257; 38),

γ := eq(136; 2; 4578), and δ := eq(1245; 37; 68),

{α, β, γ, δ} generates Eq(8) and h(α) = h(β) = h(γ) = h(δ) = 5.

6. Proving Theorem 1 and Proposition 1 with our lemmas

Since the proof of Theorem 1 relies on parts of Proposition 1 and the proof of Proposition
1 uses (2.2) from Theorem 1, we present a combined proof of both the theorem and the proposition.

P r o o f. (Proving Theorem 1 and Proposition 1) First, we deal with (2.2). Assume that
{α1, . . . , α4} is a four-element horizontal generating set of Eq(n) with height k. That is, k = h(αi)
for i ∈ [4]. We need to prove that

b(n− 1)/4c+ 1 ≤ k ≤ n− d 4
√
n e. (6.1)

By semimodularity, see Grätzer [7, Theorem IV.2.2 on page 226], the height of α1 ∨ · · · ∨ α4 is at
most h(α1) + · · ·+ h(α4) = 4k. The just-mentioned join is the largest element of the sublattice S
generated by {α1, . . . , α4}. But this sublattice is Eq(n), so this join is ∇n, whereby h(∇n) ≤ 4k. We
know from, say, (3.20) that h(∇n) = n− 1. Thus, the previous inequality turns into (n− 1)/4 ≤ k.
If (n− 1)/4 < k, then b(n − 1)/4c < k and we obtain the first inequality of (6.1) since k is an
integer. Hence, it suffices to exclude that (n− 1)/4 = k. To obtain a contradiction, suppose that
(n− 1)/4 = k, that is, n − 1 = h(∇n) = 4k. Let i ∈ [4]. As h(αi) = k, we can find k atoms
βk(i−1)+1, βk(i−1)+2, . . . , βki in Eq(n) such that αi is the join of these atoms; the existence of such
atoms is clear in Eq(n) and it is true even in any geometric lattice by Grätzer [7, Theorems IV.2.4
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and IV.2.5 on pages 228–229] or [8, Theorems 380 and 381]. As {α1, . . . , α4} generates Eq(n),
α1 ∨ · · · ∨ α4 = ∇n. Hence,

h
( 4k∨
j=1

βj
)

= h(α1 ∨ · · · ∨ α4) = h(∇n) = n− 1 = 4k.

Therefore, Grätzer [7, Theorem IV.2.4 on page 228] or [8, Theorem 380] yields that {β1, . . . , β4k}
is an independent set of atoms; this means that {β1, . . . , β4k} generates a Boolean sublattice T of
Eq(n). In particular, T is a distributive. As α1, . . . , α4 are in T , they generate a sublattice of T ,
which is distributive, too. This means that Eq(n) is distributive, which contradicts the assumption
that n ≥ 4. Therefore, (n− 1)/4 = k cannot occur and we have proved the first inequality in (6.1).

Clearly, α1 ∧ · · · ∧α4, which is the smallest element of S, is ∆n. Let b := NumB(αi); by (3.20),
b = n− k does not depend on i ∈ [4]. The largest block C1 of α1 has at least n/b elements. When
we form the meet α1 ∧ α2, then C1 splits into at most b blocks of α1 ∧ α2 and the largest one of
these blocks has at least (n/b)/b elements. So α1 ∧ α2 has a block C2 with at least n/b2 elements.
And so on; finally, ∆n = α1 ∧ · · · ∧ α4 has a block with at least n/b4 elements. But ∆n has only
one-element blocks, whereby n/b4 ≤ 1, that is, b ≥ 4

√
n. Thus b ≥ d 4

√
n e, since b ∈ N+. Therefore,

as we know from (3.20) that b = n− k, we obtain that k ≤ n− d 4
√
n e. This completes the proof of

(6.1) and that of (2.2).
Next, assume that A = (A,α, β, γ, δ, u, v). With the “extended system operator” introduced in

(3.8), we use the notation (C,α′′, β′′, γ′′, δ′′, u′′, v′′) for ES2(A) := ES(ES(A)). Clearly, (the Key)
Lemma 4 implies the following assertion.

Assertion 1. If A = (A,α, β, γ, δ, u, v) is an eligible system and C = (C,α′′, β′′, γ′′, δ′′, u′′, v′′)
is ES2(A), then C is also an eligible system, h(α′′) = h(α) + 1, h(β′′) = h(β) + 1, h(γ′′) = h(γ) + 1,
and h(δ′′) = h(δ) + 1.

Resuming the proof, let us agree that, for any meaningful x, ALx denotes the eligible system
defined in Lemma x. For example, AL5 is defined in Lemma 5. W call an eligible system horizontal
if its four partitions have the same height; this common height is the height of the system.

By Lemma 5, AL5 is a 5-element horizontal eligible system of height 2. Applying Assertion 1
repeatedly, we obtain a 7-element horizontal eligible system, a 9-element horizontal eligible system,
etc. of heights 3, 4, . . . , respectively. Thus,

for n ≥ 5 odd, Eq(n) has a four-element horizontal generating set of height bn/2c. (6.2)

By Lemma 7 and (the Key) Lemma 4, ES(AL7) is a 9-element horizontal eligible system of height 5.
Applying Assertion 1 repeatedly, we obtain an 11-element horizontal eligible system, a 13-element
horizontal eligible system, etc. of heights 6, 7, . . . , respectively. Hence,

for n ≥ 9 odd, Eq(n) has a four-element horizontal generating set of height bn/2c+ 1. (6.3)

By Lemma 6 and (the Key) Lemma 4, ES(AL6) is an 8-element horizontal eligible system of height
4. Hence, the repeated use of Assertion 1 yields that

for n ≥ 8 even, Eq(n) has a four-element horizontal generating set of height bn/2c. (6.4)

By Lemma 8 and (the Key) Lemma 4, ES(AL8) is a 10-element horizontal eligible system of height
6. Hence, the repeated use of Assertion 1 yields that

for n ≥ 10 even, Eq(n) has a four-element horizontal generating set of height bn/2c+ 1. (6.5)
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We know from Lemma 9 that Eq(5) is generated by a four-element horizontal generating set of
height d5/2e + 1. By Lemma 13, Eq(7) has four-element horizontal generating set of height a
(b7/2c + 1). For Eq(8), a four-element horizontal generating set of height (b8/2c + 1) is provided
by Lemma 15. These three facts, (6.2), (6.3), (6.4), and (6.5) imply (2.1).

In what follows, we will implicitly use that Eq(n) has no four-element horizontal subset of height
0 or n− 1. Since there is no four-element subset of height 0 or 3 in Eq(4), Lemma 2 implies (2.3).

Since {2, 3} ⊆ HFHGS(5) by (2.2), (2.1) implies (2.4).
We obtain from (2.2) and Lemmas 10–11 that {2, 3} ⊆ HFHGS(6) ⊆ {2, 3, 4}. As the already

mentioned computer program yields that 4 /∈ HFHGS(6) in less than a second5, (2.5) holds.
Lemma 12, (2.1), and (2.2) imply that {2, 3, 4} ⊆ HFHGS(7) ⊆ {2, 3, 4, 5}. In 2 seconds, the

program excludes that 5 ∈ HFHGS(7). Thus, we have shown (2.6).
Lemma 14, (2.1) and (2.2) yield that {3, 4, 5} ⊆ HFHGS(8) ⊆ {2, 3, 4, 5, 6}, as required. The

program excludes 2 and 6 from HFHGS(8) in three and a half minutes and in one minute, respec-
tively. Thus, we proved the validity of (2.7) and that of Proposition 1.

Finally, the first sentence of Theorem 1 follows from (2.3), (2.4) or (2.1), the first inclusion in
(2.5), and from (2.1). The combined proof of Theorem 1 and Proposition 1 is complete. �

7. Conclusion (added on June 24, 2025)

Motivated by earlier results on four-element generating sets of finite equivalence lattices and
their link to cryptography, we have proved the existence of two four-element horizontal generating
sets of consecutive heights in these lattices. After the first submission of the paper, this result—and
the method behind it—motivated two subsequent papers on four-element generating sets of equiv-
alence lattices with other special properties (see [3] and [4]). We anticipate similar results in the
future.

References

1. Czédli G. Lattices embeddable in three-generated lattices. Acta Sci. Math. (Szeged), 2016.
Vol. 82. P 361–382. DOI: 10.14232/actasm-015-586-2

2. Czédli G. Generating Boolean lattices by few elements and exchanging session keys.
Novi Sad Journal of Mathematics, published online ahead of print October 8, 2024.
DOI: 10.30755/NSJOM.16637

3. Czédli G. Four generators of an equivalence lattice with consecutive block counts.
In: Model Theory and Algebra 2024. Collection of papers edited by y M. Shahryari,
S. V. Sudoplatov, Novosibirsk State University, 2024. P. 14–24. https://erlagol.ru/wp-
content/uploads/cbor/erlagol 2024.pdf

4. Czédli G. Atoms in four-element generating sets of partition lattices. Math. Pannonica, pub-
lished online ahead of print June 7, 2025. DOI: https://doi.org/10.1556/314.2025.00010
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