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Abstract. Let Latsd5 and Pos+01 denote the category of selfdual bounded
lattices of length 5 with {0, 1}-preserving lattice homomorphisms and
that of bounded ordered sets with {0, 1}-preserving isotone maps, re-
spectively. For an object L in Latsd5 , the ordered set of principal con-
gruences of the lattice L is denoted by Princ(L). By means of congru-
ence generation, Princ : Latsd5 → Pos+01 is a functor. We prove that
if A is a small subcategory of Pos+01 such that every morphism of A
is a monomorphism, understood in A, then A is the Princ-image of
an appropriate subcategory of Latsd5 . This result extends G. Grätzer’s
earlier theorems where A consisted of one or two objects and at most
one non-identity morphism, and the author’s earlier result where all
morphisms of A were 0-separating and no hom-set had more the two
morphisms. Furthermore, as an auxiliary tool, we derive some families
of maps, also known as functions, from injective maps and surjective
maps; this can be useful in various fields of mathematics, not only in
lattice theory. Namely, for every small concrete category A, we define
a functor Fcom, called cometic functor, from A to the category Set of
sets and a natural transformation πcom, called cometic projection, from
Fcom to the forgetful functor of A into Set such that the Fcom-image of
every monomorphism of A is an injective map and the components of
πcom are surjective maps.

1. Prerequisites and outline

This paper consists of an easy category theoretical part followed by a
more involved lattice theoretical part.

The category theoretical first part, which consists of Sections 2 and 3, is
devoted to certain families of maps, also known as functions. Only some easy
concepts are needed from category theory; their definitions will be recalled
in the paper. Hence, there is no prerequisite for this part. Our purpose is to
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derive some families of maps from injective maps and surjective maps. This
part can be interesting in various fields of algebra and even outside algebra.

The lattice theoretical second part is built on the first part. The readers
of the second part are not assumed to have deep knowledge of lattice theory;
a little part of any book on lattices, including Grätzer [8] and Nation [15],
is sufficient.

Outline. The paper contains two theorems and it is structured as follows.
Section 2 recalls some basic concepts from category theory. In Section 3, we
introduce cometic functors and cometic projections, and prove Theorem 3.6
on them. In Section 4, we formulate Theorem 4.7 on the representation of
families of isotone maps by principal lattice congruences. The rest of the
sections are devoted to the proof of this theorem. First, Section 5 gives a
heuristic overview of the proof. Section 6 tailors the toolkit developed for
quasi-colored lattices in Czédli [4] to the present environment; when reading
this section, [4] should be nearby. In Section 7, we prove a lemma that
allows us to work with certain homomorphisms efficiently. Finally, with the
help of cometic functors and cometic projections, Section 8 completes the
proof of Theorem 4.7.

2. Introduction to the category theory part

2.1. Notation, terminology, and the rudiments. Recall that a category
A is a system 〈Ob(A),Mor(A), ◦〉 formed from a class Ob(A) of objects,
a class Mor(A) of morphisms, and a partially defined binary operation ◦
on Mor(A) such that A satisfies certain axioms. Each f ∈ Mor(A) has
a source object X ∈ Ob(A) and a target object Y ∈ Ob(A); the collec-
tion of morphisms with source object X and target object Y is denoted by
Mor(X,Y ) or MorA(X,Y ). The axioms require that Mor(X,Y ) is a set
for all X,Y ∈ Ob(A), every Mor(X,X) contains a unique identity mor-
phism 111X , f ◦ g is defined and belongs to Mor(X,Z) iff f ∈ Mor(Y,Z)
and g ∈ Mor(X,Y ), this multiplication is associative, and the identity mor-
phisms are left and right units with respect to the multiplication. Note that
Mor(X,Y ) is often called a hom-set of A and Mor(A) is the disjoint union
of the hom-sets of A. If A and B are categories such that Ob(A) ⊆ Ob(B)
and Mor(A) ⊆ Mor(B), then A is a subcategory of B. If A is a category
and Ob(A) is a set, then A is said to be a small category.

Definition 2.1. If A is a category such that

(i) every object of A is a set, possibly with a structure on it,
(ii) for all X,Y ∈ Ob(A) and f ∈ Mor(X,Y ), f is a map from X to Y ,

and
(iii) the operation is the usual composition of maps,

then A is a concrete category. Note the rule (f ◦g)(x) = f
(
g(x)

)
, that is, we

compose maps from right to left. Note also that Mor(X,Y ) does not have



COMETIC FUNCTORS AND PRINCIPAL LATTICE CONGRUENCES 3

to contain all possible maps from X to Y . The category of all sets with all
maps between sets will be denoted by Set.

Remark 2.2. In category theory, the concept of concrete categories is usu-
ally based on forgetful functors and it has a more general meaning. Since
this paper is not only for category theorists, we adopt Definition 2.1, which
is conceptually simpler but, apart from mathematically insignificant techni-
calities, will not reduce the generality of our result, Theorem 3.6.

For an arbitrary category A and f ∈ Mor(A), if f ◦ g1 = f ◦ g2 implies
g1 = g2 for all g1, g2 ∈ Mor(A) such that both f ◦ g1 and f ◦ g2 are defined,
then f is a monomorphism in A. Note that if A is a subcategory of B, then
a monomorphism of A need not be a monomorphism of B. In a concrete cat-
egory, an injective morphism is always a monomorphism but not conversely.
The opposite (that is, left-right dual) of the concept of monomorphisms is
that of epimorphisms. We say that f ∈ Mor(A) is an isomorphism in A
if there is a g ∈ Mor(A) such that both f ◦ g and g ◦ f are identity mor-
phisms. Every isomorphism is both a monomorphism and epimorphism.
Next, let A and B be categories. An assignment F : A→ B is a functor if
F (X) ∈ Ob(B) for every X ∈ Ob(A), F (f) ∈ MorB(F (X), F (Y )) for every
f ∈ MorA(X,Y ), F commutes with ◦, and F maps the identity morphisms
to identity morphisms. If F (f) = F (g) implies f = g for all X,Y ∈ Ob(A)
and all f, g ∈ MorA(X,Y ), then F is called a faithful functor. Although
category theory seems to avoid talking about equality of objects, to make
our theorems stronger, we introduce the following concept.

Definition 2.3. For categories A and B and a functor F : A → B, F is a
totally faithful functor if, for all f, g ∈ Mor(A), F (f) = F (g) implies that
f = g.

Remark 2.4. Let F : A→ B be a functor. Then F is totally faithful iff it
is faithful and, for all X,Y ∈ Ob(A), F (X) = F (Y ) implies that X = Y .

Proof. First, assume that F is totally faithful. Clearly, F is faithful. Let
X,Y ∈ Ob(A) such that F (X) = F (Y ). Then F (111X) = 111F (X) = 111F (Y ) =
F (111Y ). Using that F is totally faithful, we obtain that 111X = 111Y , whereby
X = Y . Second, to see the converse implication, assume that F is faithful
and, in addition, it satisfies the implication from Remark 2.4. Let f1 ∈
MorA(X1, Y1) and f2 ∈ MorA(X2, Y2) such that F (f1) = F (f2). Then
F (f1) = F (f2) belongs to MorB(F (X1), F (Y1)) ∩MorB(F (X2), F (Y2)), so
this intersection is not empty. Since Mor(B) is the disjoint union of the
hom-sets of B, we obtain that 〈F (X1), F (Y1)〉 = 〈F (X2), F (Y2)〉. Hence,
by our additional assumption on F , 〈X1, Y1〉 = 〈X2, Y2〉. This allows us to
apply that F is faithful, and we conclude that f1 = f2, showing that F is
totally faithful. �

For a concrete category A, the well-known

forgetful functor GA
forg : A→ Set will often be denoted by Gforg (2.1)
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if the superscript A is understood from the context. (The mnemonic in
the subscript comes from “forgetful”.) This functor sends objects, which
are structures, to their underlying sets and acts identically on morphisms,
which are maps. For a functor F : A→ B, the F -image of A is the category

F (A) = 〈{F (X) : X ∈ Ob(A)}, {F (f) : f ∈ Mor(A)}, ◦〉. (2.2)

Next, let F and G be functors from a category A to a category B. A natu-
ral transformation κ : F → G is a system 〈κX : X ∈ Ob(A)〉 of morphisms of
B such that the component κX of κ at X belongs to MorB(F (X), G(X)) for
every X ∈ Ob(A), and for every X,Y ∈ Ob(A) and every f ∈ MorA(X,Y ),
the diagram

F (X)
F (f)−−−−→ F (Y )

κX

y κY

y
G(X)

G(f)−−−−→ G(Y )

commutes, that is, κY ◦ F (f) = G(f) ◦ κX . If all the components κX
of κ are isomorphisms in B, then κ is a natural isomorphism. If there is
a natural isomorphism κ : F → G, then F and G are naturally isomorphic
functors. Naturally isomorphic functors are, sometimes, also called naturally
equivalent.

3. Cometic functors and projections

Our purpose is to derive some families of maps from injective and sur-
jective maps. In order to do so, we introduce some concepts. The third
component of an arbitrary triplet 〈x, y, z〉 is obtained by the third projection
pr(3), in notation, pr(3)(〈x, y, z〉) = z.

Definition 3.1. Given a small concrete category A, a triplet c = 〈f, x, y〉
is an eligible triplet of A if there exist X,Y ∈ Ob(A) such that f ∈
MorA(X,Y ), x ∈ X, y ∈ Y , and f(x) = y. The third component of
c = 〈f, x, y〉 will also be denoted by

πcom
Y (〈f, x, y〉) := pr(3)(〈f, x, y〉) = y = f(x), provided that y ∈ Y .

For x ∈ X ∈ Ob(A),

~v triv(x) = ~v trivX (x) denotes 〈111X , x, x〉,
the trivial triplet at x. Note the obvious rule

πcom
X (~v trivX (x)) = x, for x ∈ X. (3.1)

Definition 3.2. Given a small concrete category A (see Definition 2.1), we
define the cometic functor

Fcom = FA
com : A→ Set

associated with A as follows. For each Y ∈ Ob(A), we let

Fcom(Y ) := {〈f, x, y〉 : 〈f, x, y〉 is an eligible triplet of A and y ∈ Y }.
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For Y,Z ∈ Ob(A) and g ∈ MorA(Y,Z), we define Fcom(g) as the map

Fcom(g) : Fcom(Y )→ Fcom(Z), defined by

〈f, x, y〉 7→ 〈g ◦ f, x, g(y)〉.

The map X → Fcom(X), defined by x 7→ ~v triv(x), will be denoted by ~v trivX .

We could also denote an eligible triplet 〈f, x, y〉 by x
f7→ y, but techni-

cally the triplet is a more convenient notation than the f -labeled “\mapsto”
arrow. However, in this paragraph, let us think of eligible triplets as ar-
rows. The trivial arrows ~v trivX (x) with x ∈ X correspond to the elements
of X. Besides these arrows, Fcom(X) can contain many other arrows, which
are of different lengths and of different directions in space but with third
components in X. This geometric interpretation of Fcom(X) resembles a real
comet; the trivial arrows form the nucleus while the rest of arrows the coma
and the tail. This explains the adjective “cometic”.

Lemma 3.3. Fcom = FA
com from Definition 3.2 is a totally faithful functor.

Proof. First, we prove that Fcom := FA
com is a functor. Obviously, the Fcom-

image of an identity morphism is an identity morphism. Assume that
X,Y, Z ∈ Ob(A), f ∈ MorA(X,Y ), g ∈ MorA(Y,Z), c = 〈h, x, y〉 ∈
Fcom(X), and let us compute:(

Fcom(g) ◦ Fcom(f)
)
(c) = Fcom(g)

(
Fcom(f)(c)

)
= Fcom(g)

(
〈f ◦ h, x, f(y)〉

)
= 〈g ◦ (f ◦ h), x, g(f(y))〉

= 〈(g ◦ f) ◦ h, x, (g ◦ f)(y)〉 = Fcom(g ◦ f)(c).

Hence, Fcom(g)◦Fcom(f) = Fcom(g ◦f) and Fcom is a functor. In order to prove
that Fcom is faithful, assume that X,Y ∈ Ob(A), f, g ∈ MorA(X,Y ), and
Fcom(f) = Fcom(g); we have to show that f = g. This is clear if X = ∅.
Otherwise, for x ∈ X,

〈f ◦ 111X , x, f(x)〉 = Fcom(f)(~v triv(x)) = Fcom(g)(~v triv(x)) = 〈g ◦ 111X , x, g(x)〉.
Comparing either the third components (for all x ∈ X), or the first com-
ponents, we conclude that f = g. Thus, Fcom is faithful. Finally, if X,Y ∈
Ob(A) and X * Y , then there is an x ∈ X \ Y . Since ~v triv(x) ∈ Fcom(X) \
Fcom(Y ), we conclude that Fcom is totally faithful. �

Definition 3.4. Let A be a small concrete category, let GA
forg : A→ Set be

the forgetful functor, see (2.1), and keep Definition 3.2 in mind. Then the
transformation

πcom = πcom,A : Fcom → GA
forg

whose components are defined by

πcom
X : Fcom(X)→ X and πcom

X (c) := pr(3)(c),

for X ∈ Ob(A) and c ∈ Fcom(X), is the cometic projection associated with
A. (Note that πcom

X is simply the restriction of the third projection pr(3) to
Fcom(X).)
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Lemma 3.5. The cometic projection defined above is a natural transforma-
tion and its components are surjective maps.

Proof. Let X,Y ∈ A and f ∈ Mor(X,Y ). We have to prove that the
diagram

Fcom(X)
Fcom(f)−−−−−→ Fcom(Y )

πcom
X

y πcom
Y

y
X

f−−−−→ Y

(3.2)

commutes. For an arbitrary triplet c = 〈h, x, y〉 ∈ Fcom(X), we have that(
πcom
Y ◦ Fcom(f)

)
(c) = πcom

Y

(
Fcom(f)(c)

)
= πcom

Y

(
〈f ◦ h, x, f(y)〉

)
= f(y) = f

(
πcom
X (c)

)
= (f ◦ πcom

X )(c),

which proves the commutativity of (3.2). Finally, for X ∈ Ob(A) and
x ∈ X, x = πcom

X (~v triv(x)). Thus, the components of πcom are surjective. �

Now, we are in the position to state the main result of this section; it also
summarizes Lemmas 3.3 and 3.5.

Theorem 3.6. Let A be a small concrete category.

(A) For the cometic functor Fcom = FA
com and the cometic projection πcom =

πcom,A associated with A, the following hold.
(i) Fcom : A → Set is a totally faithful functor and πcom : Fcom →

GA
forg is a natural transformation whose components are surjective

maps.
(ii) For every f ∈ Mor(A), f is a monomorphism in A if and only

if Fcom(f) is an injective map.
(B) Whenever F : A → Set is a functor and κ : F → GA

forg is a natural
transformation whose components are surjective maps, then for ev-
ery morphism f ∈ Mor(A), if F (f) is an injective map, then f is a
monomorphism in A.

By part (B), we cannot “translate” more morphisms to injective maps
than those translated by Fcom. In this sense, part (B) is the converse of part
(A) (with less assumptions on the functor). A category A is finite if both
Ob(A) and Mor(A) are finite sets. The following remark will automatically
follow from the proof of Theorem 3.6.

Remark 3.7. If A in Theorem 3.6 is a finite concrete category, then so is
its Fcom-image, Fcom(A); see (2.2).

Proof of Theorem 3.6. (Ai) is the conjunction of Lemmas 3.3 and 3.5.
In order to prove part (B), let A be a small concrete category, let F : A→

Set be a functor, and let κ : F → GA
forg be a natural transformation with

surjective components. Assume that Y, Z ∈ Ob(A) and f ∈ MorA(Y, Z)
such that F (f) is injective. In order to prove that f is a monomorphism in
A, let X ∈ Ob(A) and g1, g2 ∈ MorA(X,Y ) such that f ◦ g1 = f ◦ g2; we
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have to show that g1 = g2. That is, we have to show that, for an arbitrary
x ∈ X, gi(x) does not depend on i ∈ {1, 2}. By the surjectivity of κX , we
can pick an element a ∈ Fcom(X) such that x = κX(a). Since f ◦ g1 = f ◦ g2,

F (f)
(
F (gi)(a)

)
=
(
F (f) ◦ F (gi)

)
(a) = F (f ◦ gi)(a)

does not depend on i ∈ {1, 2}. Hence, the injectivity of F (f) yields that
F (gi)(a) does not depend on i ∈ {1, 2}. Since κ is a natural transformation,

F (X)
F (gi)−−−−→ F (Y )

κX

y κY

y
X

gi−−−−→ Y

is a commutative diagram, and we obtain that

gi(x) = gi
(
κX(a)

)
= (gi ◦ κX)(a) =

(
κY ◦ F (gi)

)
(a) = κY

(
F (gi)(a)

)
.

Hence, gi(x) does not depend on i ∈ {1, 2}, because neither does F (gi)(a).
Consequently, g1 = g2. Thus, f is a monomorphism, proving part (B).

In order to prove the “only if” direction of (Aii), assume that X,Y ∈
Ob(Y) and f ∈ MorA(X,Y ) is a monomorphism in the category A. We
have to show that Fcom(f) is injective. In order to do so, let ci = 〈hi, zi, xi〉 ∈
Fcom(X) such that Fcom(f)(c1) = Fcom(f)(c2). Since the middle components
in

〈f ◦ h1, z1, f(x1)〉 = Fcom(f)(c1) = Fcom(f)(c2) = 〈f ◦ h2, z2, f(x2)〉

are equal, we have that z1 = z2. Since f is a monomorphism, the equality
of the first components yields that h1 = h2. Since c1 and c2 are eligible
triplets, the first two components determine the third. Hence, c1 = c2 and
Fcom(f) is injective, as required. This proves the “only if” direction of part
(Aii).

Finally, the “if” direction of (Aii) follows from (Ai) and (B). �

Remark 3.8. There are many examples of monomorphisms in small con-
crete categories that are not injective. For example, let f : X → Y be a
non-injective map between two distinct sets. Consider the category A with
Ob(A) = {X,Y } and Mor(A) = {111X ,111Y , f}; then f is a monomorphism in
A. For a bit more general example, see Example 4.10.

Remark 3.9. Let A be as in Theorem 3.6, X,Y ∈ Ob(A), and let f belong
to Mor(X,Y ). Since ~v trivX from Definition 3.2 is a right inverse of πcom

X , the
commutativity of (3.2) yields easily that f = πcom

Y ◦ Fcom(f) ◦ ~v trivX . Note,
however, that ~v triv is not a natural transformation in general.

Remark 3.10. Let A be as in Theorem 3.6. As an easy consequence of
the theorem, every monomorphism of Fcom(A) is an injective map. In this
sense, Fcom(A) is “better” than A. Since Fcom(A) is obtained by the cometic
functor, one might, perhaps, call it the celestial category associated with A.
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4. Introduction to the lattice theory part

From now on, the paper is mainly for lattice theorists. Motivated by
the history of the congruence lattice representation problem, which culmi-
nated in Wehrung [17] and Růžička [16], Grätzer in [9] has recently started
an analogous new topic of lattice theory. Namely, for a lattice L, let
Princ(L) = 〈Princ(L),⊆〉 denote the ordered set of principal congruences
of L. A congruence is principal if it is generated by a pair 〈a, b〉 of elements.
Ordered sets (also called partially ordered sets or posets) and lattices with
0 and 1 are called bounded. If L is a bounded lattice, then Princ(L) is a
bounded ordered set. Conversely, Grätzer [9] proved that every bounded
ordered set P is isomorphic to Princ(L) for an appropriate bounded lattice
L of length 5. The ordered sets Princ(L) of countable but not necessarily
bounded lattices L were characterized in Czédli [3]. There are also results
that represent two or more bounded ordered sets together with some iso-
tone maps simultaneously by means of principal congruences of lattices; the
present paper extends these results. In order to review these earlier results in
an economic way and to formulate our theorem later, we need the following
definition.

Definition 4.1. We define the following four categories.

(i) Lat+01 is the category of at least 2-element bounded lattices with {0, 1}-
preserving lattice homomorphisms.

(ii) Lat5 is the category of lattices of length 5 with {0, 1}-preserving lattice
homomorphisms.

(iii) Latsd5 is the category of selfdual bounded lattices of length 5 with
{0, 1}-preserving lattice homomorphisms.

(iv) Pos+

01 is the category of at least 2-element bounded ordered sets with
{0, 1}-preserving isotone (that is, order-preserving) maps.

The superscript + above is to remind us that the least structures, the
singleton ones, are excluded. Note that Latsd5 is a subcategory of Lat5,
which is a subcategory of Lat+01. Note also that if X and Y are ordered sets
and |Y | = 1, then Mor(X,Y ) consists of the trivial map and Mor(Y,X) 6= ∅
iff |X| = 1. Hence, we do not loose anything interesting by excluding the
singleton ordered sets from Pos+

01. A similar comment applies for singleton
lattices, which are excluded from Lat+01.

For an algebra A and x, y ∈ A, the principal congruence generated by
〈x, y〉 is denoted by con(x, y) or conA(x, y). For lattices, the following ob-
servation is due to Grätzer [10]; see also Czédli [2] for the injective case.
Note that Princ(A) is meaningful for every algebra A.

Lemma 4.2. If A and B are algebras of the same type and f : A→ B is a
homomorphism, then

Princ(f) = ζf,A,B : Princ(A)→ Princ(B), defined by

conA(x, y) 7→ conB(f(x), f(y)),
(4.1)
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is a 0-preserving isotone map. Thus, for every concrete category A of similar
algebras with all homomorphisms as morphisms, Princ is a functor from A
to the category of ordered sets having 0 with 0-preserving isotone maps.

Proof. We only have to prove that ζf,A,B is a well-defined map, since the rest
of the statement is obvious. That is, we have to prove that if conA(a, b) =
conA(c, d), then conB(f(a), f(b)) = conB(f(c), f(d)). Clearly, it suffices to
prove that if a, b, c, d ∈ A such that 〈a, b〉 ∈ conA(c, d), then 〈f(a), f(b)〉 ∈
conB(f(c), f(d)). According to a classical lemma of Mal’cev [14], see also
Fried, Grätzer and Quackenbush [5, Lemma 2.1], the containment 〈a, b〉 ∈
conA(c, d) is witnessed by a system of certain equalities among terms applied
for certain elements of A. Since f preserves these equalities, 〈f(a), f(b)〉 ∈
conB(f(c), f(d)), as required. �

It follows from Lemma 4.2 that

Princ : Latsd5 → Pos+

01, defined by

X 7→ Princ(X) for X ∈ Ob(Latsd5 ) and

f 7→ ζf,X,Y for f ∈ Mor(X,Y ),

(4.2)

is a functor. Note that Princ could similarly be defined with Lat+01 or Lat5
as its domain category. Prior to Definition 4.4, we observe the following.

Lemma 4.3. In the category Pos+

01, the monomorphisms, the epimorphisms,
and the isomorphisms are exactly the injective {0, 1}-preserving isotone maps,
the surjective {0, 1}-preserving isotone maps, and the order isomorphisms,
respectively.

Proof. All maps in the proof are assumed to be {0, 1}-preserving and isotone.
It is well-known that an injective map is a monomorphism and a surjective
map is an epimorphism. In order to prove the converse, assume that f : X →
Y is a non-injective morphism in Pos+

01. Pick x1 6= x2 ∈ X such that
f(x1) = f(x2), and let Z = {0 ≺ z ≺ 1} be a three-element chain. Define
the {0, 1}-preserving isotone map gi : Z → X by the rule gi(z) = xi. Since
g1 6= g2 but f ◦ g1 = f ◦ g2, f is not injective. Next, assume that f : X → Y
is a non-surjective morphism of Pos+

01, pick a y ∈ Y \ f(X), and pick two
elements, y1 and y2, outside Y . On the set Y ′ := (Y \ {y})∪{y1, y2}, define
the ordering relation by the rule u < v iff either {u, v} ∩ {y1, y2} = ∅ and
u <Y v, or u = yi and y <Y v, or v = yi and u <Y y for some i ∈ {1, 2}.
Note that y1 and y2 are incomparable. Let gi : Y → Y ′ be defined by u 7→ u
if u 6= y and y 7→ yi. Then g1, g2 ∈ Mor(Pos+

01), g1 ◦ f = g2 ◦ f but
g1 6= g2, showing that f is not an epimorphism. Finally, if h : X → Y
is an order isomorphism, then it is an isomorphism in category theoretical
sense. Conversely, if h ∈ MorPos+01

(X,Y ) is an isomorphism in category

theoretical sense, then it has an inverse in MorPos+01
(Y,X), whereby h is an

order isomorphism. �
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Definition 4.4. Let A be a small category and let Fpos : A → Pos+

01 be a
functor. Following Gillibert and Wehrung [6], we say that a functor

ELift : A→ Latsd5 or ELift : A→ Lat5

lifts the functor Fpos with respect to the functor Princ, if Fpos is naturally
isomorphic to the composite functor Princ ◦ ELift.

Note that the existence of ELift : A → Latsd5 above is a stronger require-
ment than the existence of ELift : A → Lat5. Every ordered set 〈P ;≤〉 can
be viewed as a small category whose objects are the elements of P and, for
X,Y ∈ P , |Mor(X,Y )| = 1 for X ≤ Y and |Mor(X,Y )| = 0 for X � Y .
Small categories obtained in this way are called categorified posets. Based
on Lemma 4.3, the known results on representations of isotone maps by
principal congruences can be stated in the following two propositions. A
map is 0-separating if the only preimage of 0 with respect to this map is 0.

Proposition 4.5 (Czédli [4]). Assume that A is a categorified poset. If
Fpos : A → Pos+

01 is a functor such that Fpos(f) is 0-separating for all f ∈
Mor(A), then there exists a functor ELift : A → Latsd5 that lifts Fpos with
respect to Princ.

Note that [4] extends the result of Czédli [2], in which A is the categorified
two-element chain but F (f) is still 0-separating. As another extension of
[2], Grätzer dropped the injectivity in the following statement, which we
translate to our terminology as follows.

Proposition 4.6 (Grätzer [10]). If A is the categorified two-element chain,
then for every functor Fpos : A → Pos+

01, there exists a functor ELift : A →
Lat5 that lifts Fpos with respect to Princ.

Equivalently, in a simpler language and using the notation given in (4.1),
Proposition 4.6 asserts that if X1 and X2 are nontrivial bounded ordered
sets and f : X1 → X2 is a {0, 1}-preserving isotone map, then there exist
lattices L1 and L2 of length 5, order isomorphisms κi : Princ(Li) → Xi for
i ∈ {1, 2}, and a {0, 1}-preserving lattice homomorphism g : L1 → L2 such
that the diagram

Princ(L1)
ζg,L1,L2−−−−−→ Princ(L2)

κ1

y κ2

y
X1

f−−−−→ X2

is commutative, that is, f = κ2 ◦ ζg,L1,L2 ◦ κ−11 .
Now we are in the position to formulate the second theorem of the paper.

Theorem 4.7. Let A be a small category such that

every f ∈ Mor(A) is a monomorphism in A. (4.3)
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Then for every faithful functor Fpos : A → Pos+

01, there exists a faithful
functor

ELift : A→ Latsd5

that lifts Fpos with respect to Princ. Furthermore, if Fpos is totally faithful,
then there exists a totally faithful ELift that lifts Fpos with respect to Princ.

Apart from some remarks and examples at the end of the present section,
the rest of the paper is devoted to the proof of this theorem. After the
necessary constructions and preparatory statements given in Sections 6 and
7, the proof is completed in Section 8 right after Corollary 8.2.

Remark 4.8. Based on Wehrung [18], an anonymous referee of Czédli [4]
has pointed out that a faithful functor from an arbitrary small category to
Pos+

01 cannot be lifted with respect to Princ in general; see [4, Observa-
tion 6.5] for details. Therefore, assumption (4.3) cannot be omitted from
Theorem 4.7

Remark 4.9. Subsection 2.3 of [4], which is due to the above-mentioned
referee, can be adopted to the present paper. That is, if PLat5 denotes
the category of polarity lattices of length 5 with polarity-preserving lattice
homomorphisms, then Theorem 4.7 remains valid if we replace by Latsd5 by
PLat5. (Keeping the size limited, we do not elaborate the straightforward
details.)

Observe that Propositions 4.5 and 4.6 are particular cases of Theorem 4.7,
since every morphism of a categorified poset is a monomorphism and the
functors in these statements are automatically faithful. In order to avoid
the feeling that Proposition 4.6 or similar situations are the only cases where
Theorem 4.7 takes care of non-injective isotone maps, we give an example.

Example 4.10. Let D1, D2 ⊆ Ob(Pos+

01) such that D1 and D2 are disjoint
sets and D1 is nonempty. We define a small category A = A(Pos+

01, D1, D2)
by the equalities Ob(A) = D1 ∪D2 and

Mor(A) = {f ∈ MorPos+01
(X,Y ) : either X,Y ∈ D1 and f is a

monomorphism in Pos+

01, or X ∈ D2 and Y ∈ D1,

or X = Y ∈ D2 and f = 111X}.
(4.4)

Then all morphisms in A are monomorphisms in A but, clearly, many of
them are not injective in general. (The same is true for all subcategories of
A. Also, the same holds even if we start from a variety of general algebras
rather than from Pos+

01. By Lemma 4.3, we can replace “monomorphism”
by “injective” in the second line of (4.4).) Now if Fpos : A → Pos+

01 is the
inclusion functor defined by X 7→ X for objects and f 7→ f for morphisms,
then Theorem 4.7 yields a totally faithful functor ELift : A→ Latsd5 that lifts
Fpos with respect to Princ.
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Proof. We prove that all morphisms in A above are monomorphisms in
A. Let f ∈ MorA(X,Y ), and assume that g1, g2 ∈ MorA(Z,X) such that
f ◦ g1 = f ◦ g2. If X ∈ D2, then Z = X and g1 = 111Z = g2. Otherwise
X,Y ∈ D1 and f is a monomorphism in Pos+

01, whence we conclude the
equality g1 = g2 again. Thus, f is a monomorphism in A. �

Example 4.11. In a self-explanatory (simpler but less precise) language,
we mention two particular cases of Example 4.10. First, we can represent
all automorphisms of a bounded ordered set simultaneously by principal
congruences. Second, if we are given two distinct bounded ordered sets X
and Y , then we can simultaneously represent all {0, 1}-preserving isotone
X → Y maps by principal congruences.

5. The main ideas for the proof of Theorem 4.7

5.1. Outlining the role of gadgets and quasi-colored lattices. In or-
der to construct a lattice L with a given Princ(L) (up to isomorphism), we
will use uniform building blocks, which are called gadgets; see Grätzer [7, 9]
for this terminology, and see Czédli [2, 3, 4] and Grätzer [9, 10] based on
similar gadgets. These gadgets and those in the present paper serve the
following purpose. Assume that we want to construct a lattice L =

⋃
ι<κ Lι

as a directed union of a well-ordered system of sublattices Lι to represent
an ordered set 〈X;≤〉 as Princ(L). Let conLι(ax, bx) and conLι(ay, by) be
incomparable congruences of Lι corresponding to x and y, respectively, such
that x < y in X. Then we merge Lι and a copy G of our gadget to obtain
Lι+1 such that {ax, bx, ay, by} ⊆ Lι ∩ G and conG(ax, bx) ≤ conG(ay, by)
forces that conLι+1(ax, bx) ≤ conLι+1(ay, by). In order to avoid that unde-
sired inequalities among principal congruences of Lι+1 enter, we need some
insight into the transition from Princ(Lι) to Princ(Lι+1). This insight will
be provided by quasi-colorings, which were introduced in Czédli [1] and were
successfully used for principal lattice congruences in Czédli [2, 3, 4]. Besides
that quasi-colorings conveniently determine the principal congruences (this
will be precisely formulated in Lemma 8.1 and Corollary 8.2), there is a nat-
ural way to merge them when the corresponding lattices are merged. See
Subsection 1.5 in Czédli [3] for an alternative introduction to these ideas.

5.2. On the rest of the ideas. This subsection is not necessary for the
rest of the paper, but it gives information for those who want to understand
the rest of ideas without reading the rigorous and long proofs and definitions
that we present in the remaining part of the paper.

Examples 2.2 and 3.1 of Czédli [4] (with Figures 1–4 there) show most of
the ideas needed in the particular case where A is a categorified poset and
our isotone maps are 0-separating; see Proposition 4.5 here. Since we do not
assume 0-separation, we also need the quotients (see Figures 2 and 3 here)
of our gadgets, see Figure 1. (Of course, these quotients will be merged
with their duals to turn them selfdual quasi-colored lattices.) The isotone
map ψ31 in [4, Figure 1] is not injective since ψ31(q3) = ψ31(r3) = q1. It is
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described below [4, Figure 3] how the lattices Li are obtained from the aux-
iliary lattices Wi in [4, Figure 3]. Let ψ∗31 denote the lattice homomorphism
L3 → L1 that corresponds to ψ31 in the sense that Princ(ψ∗31) will represent
ψ31. Observe that ψ∗31 is injective on the set of (thin) basic edges; otherwise
the method of [4] would collapse.

In order to prove Theorem 4.7, we have a lot of isotone maps ψ and
we have to make them injective maps ψ∗ on the sets of basic edges. We
apply the cometic functor to obtain injective maps that can used to define
these maps ψ∗. Armed with these ψ∗, Figures 1, 2, and 3 (here), and the
above-mentioned ideas taken from [4], we have a rough idea how to prove
Theorem 4.7.

6. Gadgedts, quasi-colored lattices and a toolkit for them

6.1. Gadgets and basic facts. We follow the terminology of Czédli [4].
If ν is a quasiorder, that is, a reflexive transitive relation, then 〈x, y〉 ∈ ν
will occasionally be abbreviated as x ≤ν y. For a lattice or ordered set L =
〈L;≤〉 and x, y ∈ L, 〈x, y〉 is called an ordered pair of L if x ≤ y. If x = y,
then 〈x, y〉 is a trivial ordered pair. The set of ordered pairs of L is denoted
by Pairs≤(L). If X ⊆ L, then Pairs≤(X) will stand for X2 ∩Pairs≤(L). We
also need the notation Pairs≺(L) := {〈x, y〉 ∈ Pairs≤(X) : x ≺ y} for the set
of covering pairs. By a quasi-colored lattice we mean a structure

L = 〈L,≤; γ;H, ν〉

where 〈L;≤〉 is a lattice, 〈H; ν〉 is a quasiordered set, γ : Pairs≤(L)→ H is
a surjective map, and for all 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≤(L),

(C1) if γ(〈u1, v1〉) ≤ν γ(〈u2, v2〉), then con(u1, v1) ≤ con(u2, v2) and
(C2) if con(u1, v1) ≤ con(u2, v2), then γ(〈u1, v1〉) ≤ν γ(〈u2, v2〉).

This concept is taken from Czédli [4]; see Grätzer, Lakser, and Schmidt [13],
Grätzer [7, page 39], and Czédli [1, 3] for the evolution of this concept. It
follows easily from (C1), (C2), and the surjectivity of γ that if 〈L,≤; γ;H, ν〉
is a quasi-colored bounded lattice, then 〈H; ν〉 is a quasiordered set with a
least element and a greatest element; possibly with many least elements and
many greatest elements. Let U(H) stand for the set of greatest elements.
For 〈x, y〉 ∈ Pairs≤(L), γ(〈x, y〉) is called the color (rather than the quasi-
color) of 〈x, y〉, and we say that 〈x, y〉 is colored (rather than quasi-colored)
by γ(〈x, y〉). For T ⊆ H, we say that 〈x, y〉 is T -colored if γ(〈x, y〉) ∈
T . Usually, the following convention applies to our figures of quasi-colored
lattices that contain thick edges and, possibly, also thin edges: if γ is a
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quasi-coloring, then for an ordered pair 〈x, y〉,

γ(〈x, y〉) =


0, iff x = y,

w, if x ≺ y is a thin edge labeled by w,

u ∈ U(H), if the interval [x, y] contains is a thick edge,

γ(〈x′, y′〉), if [x, y] and [x′, y′] are transposed intervals.

(6.1)
If H has exactly one largest element 1 = 1H and so U(H) = {1}, then
our figures determine the corresponding quasi-colorings by convention (6.1).
Note, however, that this convention only partially applies to Figure 6, which
is not a quasi-colored lattice. The quasi-colored lattice

Gup

2 (p, q) := 〈Gup

2 (p, q), λup

2pq; γ
up

2pq;H2(p, q), ν2pq〉
in Figure 1, taken from Czédli [4] where it was denoted by Gup(p, q), is our
upward gadget of type 2. Its quasi-coloring is defined by (6.1); note that
γup

2pq(〈c
pq
4 , d

pq
4 〉) = q. Using the quotient lattices

Figure 1. The upward gadget of rank 2

Gup

0 (p, q) := Gup

2 (p, q)/con(aq, bq) and

Gup

1 (p, q) := Gup

2 (p, q))/con(ap, bp),
(6.2)

we also define the gadgets

Gup

0 (p, q) := 〈Gup

0 (p, q), λup

0pq; γ
up

0pq;H0(p, q), ν0pq〉 and

Gup

1 (p, q) := 〈Gup

1 (p, q), λup

1pq; γ
up

1pq;H1(p, q), ν1pq〉
of rank 0 and rank 1, respectively; see Figures 2 and 3. Note that the rank is
length([ap, bp])+ length([aq, bq]). We obtain the downward gadgets Gdn

2 (p, q),
Gdn
1 (p, q), and Gdn

0 (p, q) of ranks 2, 1, and 0 from the corresponding upward
gadgets by dualizing; see Czédli [4, (4.3)]. Instead of dpqij and, if applicable,

cpqij and epq, their elements are denoted by dijpq, c
ij
pq, and epq; see [4]. By a

single gadget we mean an upper or lower gadget. The adjective “upper” or
“lower” is the orientation of the gadget. A single gadget of rank j without
specifying its orientation is denoted by G∀j (p, q).
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Figure 2. The upward gadget of rank 1

Figure 3. The upward gadget of rank 0

In case of all our gadgets G∀j (p, q), we automatically assume that p 6= q.

Also, we always assume that for i, j ∈ {0, 1, 2}, the ordered pairs 〈p, q〉, 〈u, v〉,
and the strings s, t ∈ {up,dn} are such that 〈p, q, i, s〉 6= 〈u, v, j, t〉,

the intersection of Gt
i(p, q) and Gs

j(u, v) is
as small as it follows from the notation.

(6.3)

This convention allows us to form the union Gdb
i (p, q) of Gup

i (p, q) and Gdn
i (p, q),

for i ∈ {0, 1, 2}, which we call a double gadget of rank i. While Gdb
1 (p, q) and

Gdb
0 (p, q) are given in Figures 4 and 5, the double gadget Gdb

2 (p, q) of rank
2 is depicted in Czédli [4, Figure 4]. Observe that all the thin edges are
q-colored in Gdb

1 (p, q) and, in lack of thin edges, all the edges are 1-colored in
Gdb
0 (p, q). For i ∈ {0, 1, 2}, Gdb

i (p, q) is a selfdual lattice; we will soon point
out that Gdb

i (p, q) is a quasi-colored lattice. Note that

In each of G∀j (p, q), con(ap, bp) ≤ con(aq, bq); we will use
our gadgets to force this inequality in larger lattices.

(6.4)

Of course, the inequality in (6.4) is important only for j = 2, since it trivially
holds for j ∈ {0, 1}.

For S ⊆ X ×X, the least quasiorder including S is denoted by quo(S) =
quoX(S); we write quo(a, b) rather than quo({〈a, b〉}).
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Figure 4. The double gadget of rank 1

Figure 5. The double gadget of rank 0

Lemma 6.1. Assume that L = 〈L;≤L〉 = 〈L;λL〉 is a lattice of length
5, and let 0 < ap � bp < 1 and 0 < aq � bq < 1 in L such that, with
j := length([ap, bp]) + length([aq, bq]),

ap ∨L aq = 1, bp ∧L bq = 0, L ∩Gup

j (p, q) = {0, ap, bp, aq, bq, 1},
0 ≤ length([ap, bp]) ≤ length([aq, bq]) ≤ 1,

length([0, bp]) ≤ 2 + length([ap, bp]), length([ap, 1]) ≤ 2 + length([ap, bp]),

length([0, bq]) ≤ 2 + length([aq, bq]), length([aq, 1]) ≤ 2 + length([aq, bq]).

Let
LMMM := L ∪Gup

j (p, q) and λMMM := quo(λL ∪ λup

jpq);

see [4, Figure 8] for j = 2. Then LMMM = 〈LMMM;λMMM〉, also denoted by LMMM
jpq or

〈LMMM
jpq;≤MMM〉, is a lattice of length 5. Also, both L and Gup

j (p, q) are {0, 1}-
sublattices of LMMM.

Since the lattices required by Theorem 4.7 are selfdual, we will use selfdual
gadgets, which are defined under the name “double gadgets” as follows.

Definition 6.2. Within LMMM, the (sublattice) Gup

j (p, q) is the upper gadget

from 〈ap, bp〉 to 〈aq, bq〉. By duality, we can analogously glue the lower gadget
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Gdn
j (p, q) into L from 〈ap, bp〉 to 〈aq, bq〉. Applying Lemma 6.1, its dual, and

(6.3), we can glue the double gadget Gdb
j (p, q) into L from 〈ap, bp〉 to 〈aq, bq〉.

Proof of Lemma 6.1. For j = 2, the lemma coincides with [4, Lemma 4.5]
while the case j < 2 is analogous but simpler. Hence, it would suffice to
say that the proof in [4] works without any essential modification. However,
since we will need some formulas from the proof later, we give some details
for j ∈ {0, 1, 2}. In order to simplify our equalities below, we denoteGup

j (p, q)

by Gup

j and, in subscript position, by G. As in [4], we can still use the
sublattice

B = B(p, q) := {0, ap, bp, aq, bq, 1} = L ∩Gup

j (p, q),

the closure operators
∗ : Gup

j → B, where x∗ is the smallest element of B ∩ ↑Gx,
• : L→ B, where x• is the smallest element of B ∩ ↑Lx,

and, dually, the interior operators

∗ : Gup

j → B, where x∗ is the largest element of B ∩ ↓Gx,
• : L→ B, where x• is the largest element of B ∩ ↓Lx;

which were introduced in [4, (4.9) and (4.10)]. Since our gadgets are ”wide
enough” in some geometric sense, the operators above are well-defined. As
in [4, (4.11)],

λMMM is an ordering, λMMMeL = λL, λMMMeG = λup
pq,

for x ∈ L and y ∈ Gup

j , x ≤
MMM y ⇐⇒ x• ≤G y ⇐⇒ x ≤L y∗,

for x ∈ Gup

j and y ∈ L, x ≤MMM y ⇐⇒ x∗ ≤L y ⇐⇒ x ≤G y•.
(6.5)

Denote the lattice operations in L and Gup

j by ∨L, ∧L, and ∨G, ∧G, respec-
tively. For x, y ∈ LMMM, we have that

if x ∈ L \Gup

j and y ∈ Gup

j \ L, then x ∧MMM y = x ∧L y∗, (6.6)

if x ∈ L \Gup

j and y ∈ Gup

j \ L, then x ∨MMM y = x• ∨G y, (6.7)

if x, y ∈ L, then x ∧MMM y = x ∧L y, and x ∨MMM y = x ∨L y, (6.8)

if x, y ∈ Gup

j , then x ∧MMM y = x ∧G y, and x ∨MMM y = x ∨G y. (6.9)

Based on (6.5), these equations are proved by exactly the same argument as
their particular cases, [4, (4.12)–(4.15)] for j = 2. It follows from (6.6)–(6.9)
that LMMM is a lattice. �

6.2. Large lattices. In this subsection and the next one, we use our double
gadgets to build a “large” quasi-colored lattice for a given quasiordered set
of colors; this immediate plan will be verified by (the proof of) Lemma 6.4.
It will turn out later from Lemma 8.1 and Corollary 8.2 that Lemma 6.4
implies the representability of a given ordered set by principal congruences.
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Figure 6. M4×3 and L−(H,Z,U ;∅,∅), which is not quasi-colored

Moreover, Lemma 6.4 gives us even more; it gives sufficient flexibility, which
is needed to simultaneously represent many ordered sets and isotone maps.

Let H be a set and Z,U ⊂ H such that

0 ∈ Z, 1 ∈ U, and Z ∩ U = ∅. (6.10)

This notation is explained by our intention: Z and U will be the set of
“zeros” (least elements) and that of “units” (largest elements) of H some-
what later. The selfdual simple lattice on the left of Figure 6 is denoted by
M4×3; see also [4, Figure 9] for another diagram. (The two square-shaped
gray-filled elements will play a special role in Lemma 7.2.) Also, we denote
by

L−(H,Z,U ;∅,∅) = 〈L−(H,Z,U ;∅,∅);λL−(H,Z,U ;∅,∅)〉 (6.11)

the lattice on the right, where Z = {0, x, y . . . } and H \Z = {1, u, v, w, . . . }.
Of course, 1 ∈ U ⊆ H \Z. The lattice given in (6.11) is almost the same as
that on the right of [4, Figure 9]. Note, however, that |Z| and |U | can be ar-
bitrarily large cardinals. Note also that for z ∈ Z, az = bz. The role of M4×3
in the construction is two-fold. First, it is a simple lattice and it guarantees
that all the thick edges are 1-colored, that is, they generate the largest con-
gruence, even if |H| = 2. Second, M4×3 guarantees that L−(H,Z,U ;∅,∅)
is of length 5. Since 〈a1, b1〉 is 1-colored according to labeling but this edge
does not generate the largest congruence, L−(H,Z,U ;∅,∅) is not a quasi-
colored lattice (at least, not if 1 is intended to be a largest elements in H).
So we cannot be satisfied yet. In order to make this edge and all the 〈ar, br〉,
for r ∈ U , generate the largest congruence, Definition 6.2 allows us

to glue, for each r ∈ U , a distinct copy of Gdb
2 (p, q)

into L−(H,Z,U ;∅,∅) from 〈a′1, b′1〉 to 〈ar, br〉.
(6.12)

(No matter if we glue the gadgets one by one by a transfinite induction or
glue them simultaneously, we obtain the same.) It follows from Lemma 6.1
that we obtain a lattice in this way; we denote this lattice by

L(H,Z,U ;∅,∅) = 〈L(H,Z,U ;∅,∅);λH,Z,U ;∅,∅〉.

Note that after adding the above-mentioned gadgets to L−(H,Z,U ;∅,∅),

all edges of the gadgets in (6.12) become thick; (6.13)
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this follows from (6.1) and (6.4). Let

νH,Z,U ;∅,∅ = quo((Z ×H) ∪ (H × U)),

and define γH,Z,U ;∅,∅ by convention (6.1). It is straightforward to see that

L(H,Z,U ;∅,∅) =

〈L(H,Z,U ;∅,∅), λH,Z,U ;∅,∅; γH,Z,U ;∅,∅;H, νH,Z,U ;∅,∅〉
(6.14)

is a quasi-colored lattice.
Next, to obtain larger lattices, we are going to insert gadgets into the

lattice L(H,Z,U ;∅,∅) in a certain way. It will prompt follow Lemma 6.1
that we obtain lattices; in particular, λH,Z,U ;I,J in (6.18) will be a lattice
order. Assume that

I and J are subsets of H ×H such that p 6= q and the
implications (q ∈ Z ⇒ p ∈ Z) and (p ∈ U ⇒ q ∈ U)
hold for every 〈p, q〉 ∈ I ∪ J .

(6.15)

With this assumption, we define the rank of a pair 〈p, q〉 ∈ I ∪ J as follows:

r(〈p, q〉) :=


0, if p, q ∈ Z,
1, if p ∈ Z and q ∈ H \ Z,
2, if p, q ∈ H \ Z.

(6.16)

Let us agree that, for every 〈p, q〉 ∈ I ∪ J and j := r(〈p, q〉),

Gup

j (p, q) ∩ L(H,Z,U ;∅,∅) = {0, ap, bp, aq, bq, 1} and

Gdn
j (p, q) ∩ L(H,Z,U ;∅,∅) = {0, ap, bp, aq, bq, 1}.

(6.17)

Taking Conventions (6.3) and (6.17) into account, we define

L(H,Z,U ; I, J) := L(H,Z,U ;∅,∅) ∪
⋃
〈p,q〉∈I

Gup

r(〈p,q〉)(p, q)

∪
⋃
〈p,q〉∈J

Gdn

r(〈p,q〉)(p, q), and

λH,Z,U ;I,J := quo
(
λH,Z,U ;∅,∅ ∪

⋃
〈p,q〉∈I

λup

r(〈p,q〉)pq

∪
⋃
〈p,q〉∈J

λdn

r(〈p,q〉)pq

)
.

(6.18)

Based on Lemma 6.1 and its dual, a trivial transfinite induction yields that

L(H,Z,U ; I, J) = 〈L(H,Z,U ; I, J);λH,Z,U ;I,J〉

is a lattice of length 5. Clearly, if I = J , then this lattice is selfdual. Let
us emphasize that whenever we use the notation L(H,Z,U ; I, J), (6.15) is
assumed.
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Remark 6.3. For later reference, we note that for lattices of the form

(6.18), we treat ap, bp, c
pq
ij , dpqij , cijpq, etc. as if they were tuples 〈a, p〉, 〈b, p〉,

〈c, p, q, i, j〉, 〈d, p, q, i, j〉, 〈cdual, p, q, i, j〉, etc.. Therefore,

L(H1, Z1, U1; I1, J1) = L(H2, Z2, U2; I2, J2) iff

〈H1, Z1, U1, I1, J1〉 = 〈H2, Z2, U2, I2, J2〉.

6.3. Large quasi-colored lattices. Assuming (6.10), let H−ZU := H \
(Z ∪ U). Also, let νH,Z,U ;∅,∅ = quo((Z × H) ∪ (H × U)). Note that each
z ∈ Z is a least element of 〈H; νH,Z,U ;∅,∅〉 and each u ∈ U is a largest

element. Also, for any two distinct p, q ∈ H−ZU , p and q are incomparable,
that is, none of 〈p, q〉 and 〈q, p〉 belongs to νH,Z,U ;∅,∅. With convention
(6.15), let

νH,Z,U ;I,J := quoH(νH,Z,U ;∅,∅ ∪ I ∪ J)

= quo((Z ×H) ∪ (H × U) ∪ I ∪ J).

Based on (6.17), it is easy to see that

γH,Z,U ;I,J := γH,Z,U ;∅,∅ ∪
⋃
〈p,q〉∈I

γup

r(〈p,q〉)pq ∪
⋃
〈p,q〉∈J

γdn

r(〈p,q〉)pq (6.19)

is a well-defined map from Pairs≤(L(H,Z,U ; I, J)) to H.

Lemma 6.4. Assume (6.15). Then

L(H,Z,U ; I, J)

:= 〈L(H,Z,U ; I, J), λH,Z,U ;I,J ; γH,Z,U ;I,J ;H, νH,Z,U ;I,J〉
(6.20)

is a quasi-colored lattice of length 5. If I = J , then it is a selfdual lattice.

Proof. If Z = {0} and r(〈p, q〉) = 2 for all 〈p, q〉 ∈ I ∪ J , then the statement
is practically the same as [4, Lemma 4.6]. (Although 1 /∈ U = ∅ in [4,
Lemma 4.6], this does not make any difference.) As in [4], the only nontrivial
task is to show (C2). This argument in [4] has two ingredients, and these
ingredients also work in the present situation.

First, let α be the equivalence on L(H,Z,U ; I, J) whose non-singleton
equivalence classes are the [ap, bp] for p ∈ H−ZU , the [cpqi , d

pq
i ] for 〈p, q〉 ∈ I

and i ∈ {1, . . . , 5}, and the [dipq, c
i
pq] for 〈p, q〉 ∈ J and i ∈ {1, . . . , 5}.

Using the Technical Lemma from Grätzer [11], cited in [4, Lemma 4.1], it
is straightforward to see that α is a congruence. Clearly, α is distinct from
∇L(H,Z,U ;I,J), the largest congruence of L(H,Z,U ; I, J). Like in [4, (4.28)],

this implies easily that, for any 〈x, y〉 ∈ Pairs≤(L(H,Z,U ; I, J)),

γH,Z,U ;I,J(〈x, y〉) = 1 ⇐⇒ con(x, y) = ∇L(H,Z,U ;I,J).

The second ingredient of the proof is to show that

if p, q ∈ H−ZU , con(ap, bp) ≤ con(aq, bq) 6= ∇L(H,Z,U ;I,J), and
p 6= q, then 〈p, q〉 = 〈γH,Z,U ;I,J(〈ap, bp〉), γH,Z,U ;I,J(〈aq, bq〉)〉
belongs to νH,Z,U ;I,J ;

(6.21)



COMETIC FUNCTORS AND PRINCIPAL LATTICE CONGRUENCES 21

compare this with [4, (4.29)]. The inequality con(ap, bp) ≤ con(aq, bq) is
equivalent to the containment 〈ap, bp〉 ∈ con(aq, bq). This containment is
witnessed by a shortest sequence of consecutive prime intervals in the sense
of the Prime-projectivity Lemma of Grätzer [12]; note that this lemma is
cited in [4, Lemma 4.2]. If one of the prime intervals in the sequence gener-
ates ∇L(H,Z,U ;I,J), then the easy direction of the Prime-projectivity Lemma
yields that con(aq, bq) = ∇L(H,Z,U ;I,J), a contradiction. Hence, none of these
prime intervals generates ∇L(H,Z,U ;I,J). Thus, since (C1) is easily verified
in the same way as in [4], none of these prime intervals is 1-colored. In
other words, all prime intervals of the sequence are thin edges. Gadgets of
rank 0 contain no thin edges, so the sequence avoids them. The same holds
for the gadgets mentioned in (6.12) and (6.13). Gadgets of rank 1 contain
too few thin edges, so the sequence can only make a loop in them; this is
impossible since we consider the shortest sequence. Thus, the sequence goes
in the sublattice that we obtain by omitting all gadgets of rank less than 2,
all gadgets occurring in (6.13), and all elements az = bz for z ∈ Z. So we
can work in this sublattice, which is the same as the lattice considered in
[4, (4.29)]. Consequently, the proof of [4, (4.29)] yields (6.21). Thus, (C2)
holds. �

7. From quasiorders to homomorphisms

For a quasiordered set 〈H; ν〉, we define

Z(H) = Z(H, ν) := {x ∈ H : (∀y ∈ H) (〈x, y〉 ∈ ν)} and

U(H) = U(H, ν) := {x ∈ H : (∀y ∈ H) (〈y, x〉 ∈ ν)}.
(7.1)

These are the set of smallest elements (the notation comes from “zeros”)
and that of largest elements (“units”). If ν is clear from the context, we
prefer the notations Z(H) and U(H) to Z(H, ν) and U(H, ν), respectively.
In this section, we are only interested in the following particular case of the
quasi-colored lattices L(H,Z,U ; I, J).

Definition 7.1. For a quasiordered set H = 〈H; ν〉, assume that

0 ∈ Z(H), 1 ∈ U(H), and 0 6= 1. (7.2)

With this assumption, we define

L(H, ν) = 〈L(H, ν), λH,ν ; γH,ν ;H, ν〉 as L(H,Z(H), U(H); ν, ν) (7.3)

according to (6.20); this is possible since (6.15) clearly holds. Let us note
that ν = νH,Z(H),U(H);ν,ν and, clearly, L(H, ν) is a selfdual lattice of length
5.

For quasiordered sets 〈H1; ν1〉 and 〈H2; ν2〉, a map f : H1 → H2 is isotone
if 〈x, y〉 ∈ ν1 implies 〈f(x), f(y)〉 ∈ ν2 for all x, y ∈ H1. Now, we are in
the position to state the main lemma of this subsection. By (6.18) and
(7.3), our lattices are extensions of lattices of the form given in Figure 6.
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So the parenthetical sentence above (6.11) explains what the distinguished
elements are in the following lemma.

Lemma 7.2. Let 〈H1; ν1〉 and 〈H2; ν2〉 be quasiordered sets, both with 0
and 1 such that 0 6= 1. If f : H1 → H2 is an injective isotone map such
that f(Z(H1)) ⊆ Z(H2) and f(U(H1)) ⊆ U(H2), then there exists a unique
{0, 1}-preserving lattice homomorphism g : L(H1, ν1)→ L(H2, ν2) such that

g(ap) = af(p) and g(bp) = bf(p), for all p ∈ H1, (7.4)

and the g-image of the square-shaped gray-filled atom and coatom, see Fig-
ure 6, is the square-shaped gray-filled atom and coatom, respectively.

By (7.1), 0 ∈ Z(Hi), 1 ∈ U(Hi), and Z(Hi) ∩ U(Hi) = ∅ hold for
i ∈ {1, 2}. The assumption of injectivity cannot be omitted from this lemma,
because if f is a non-injective {0, 1}-preserving homomorphism, then (7.4)
yields that the kernel of g collapses some ap 6= aq, so this kernel is the largest
congruence, contradicting g(0) = 0 6= 1 = g(1).

Proof of Lemma 7.2. First, we deal with the uniqueness of g. Since g(0) =
0 6= 1 = g(1), the kernel congruence ker(g) of g cannot collapse a thick (that
is, a U(H1)-colored) edge. Since all edges of M4×3 are thick, the restric-
tion geM4×3 of g to M4×3 is injective. Since no other sublattice of L2 than
M4×3 itself is isomorphic to M4×3, it follows that g(M4×3) is the unique
M4×3 sublattice of L(H2; ν2). Observe that except for the two doubly ir-
reducible atoms and the two doubly irreducible coatoms, each element of
M4×3 is a fixed point of all automorphisms of M4×3. Therefore, since g pre-
serves the “square-shaped gray-filled” property, we conclude that geM4×3 is
uniquely determined. The g-images of the ap and bp, p ∈ H1, are determined
by the assumption on g. Observe that an upper gadget Gup

2 (p, q) has ex-
actly two non-trivial congruences, con(ap, bp) and con(aq, bq); G

up

1 (p, q) has
only con(aq, bq), and Gup

0 (p, q) has none. The same holds for lower gadgets.
Therefore, since ker(g) cannot collapse a thick edge, it follows easily that
the restriction of g to any gadget is uniquely determined. Therefore, g is
unique.

In the rest of the proof, we intend to show the existence of g. We will define
an appropriate g as the union of some partial maps. Let gM4×3 denote the
unique isomorphism from the M4×3 sublattice of L(H1, ν1) onto the M4×3
sublattice of L(H2, ν2) such that gM4×3 preserves the “square-shaped gray-

filled” property. For i ∈ {1, 2}, we denote νi \{〈x, x〉 : x ∈ Hi} by ν+i . Next,

let 〈p, q〉 ∈ ν+1 and j := r(〈p, q〉); according to (6.16) with Z := Z(H1, ν1).
By the construction of L(H1, ν1), see (6.18), (7.3), and Definition 6.2, the
gadget Gup

j (p, q) is a {0, 1}-sublattice of L(H1, ν1) from 〈ap, bp〉 to 〈aq, bq〉.
Let p′ = f(p), q′ = f(q), and j′ = r(〈p′, q′〉). Besides that f is isotone, we
frequently need the assumption that it is injective; at present, we conclude
〈p′, q′〉 ∈ ν+2 from these assumptions. (Later, we will not always emphasize
similar consequences of these assumptions.) It follows from 〈p′, q′〉 ∈ ν+2 and
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the construction of L(H2, ν2) that Gup

j′ (p
′, q′) is a gadget in L(H2, ν2) from

〈ap′ , bp′〉 to 〈aq′ , bq′〉. We obtain from f(Z(H1)) ⊆ Z(H2) that

j′ ≤ j. (7.5)

According to (6.2), we can take the unique surjective {0, 1}-preserving lat-
tice homomorphism gup

pq : Gup

j (p, q) → Gup

j′ (p
′, q′) such that gup

pq(ap) = ap′ ,

gup
pq(bp) = bp′ , g

up
pq(aq) = aq′ , and gup

pq(bq) = bq′ . We take the {0, 1}-preserving
lattice homomorphism gdn

pq : Gdn
j (p, q) → Gdn

j′ (p
′, q′) analogously. Note that

gM4×3 maps a′1 ∈ L(H1, ν1) onto a′1 ∈ L(H2, ν2), and the same is true for b′1.
For u ∈ U(H1), we know that f(u) ∈ U(H2). By construction, there is an
upper gadget of rank 2 from 〈a′1, b′1〉 to 〈au, bu〉 in L(H1, ν1), and we have
an upper gadget of rank 2 from 〈a′1, b′1〉 to 〈af(u), bf(u)〉 in L(H2, ν2). The
unique isomorphism from the first gadget to the second such that a′1 7→ a′1,
b′1 7→ b′1, au 7→ af(u), and bu 7→ bf(u) is denoted by gup

1′u. Here 1′ in the
subscript is only a symbol, which does not belong to H1 ∪ H2. We define
the isomorphism gdn

1′u between the corresponding lower gadgets similarly.

For 〈p1, q1〉, 〈p2, q2〉 ∈ ν+1 and u ∈ U(H1), any two of the homomorphisms
gM4×3 , gup

p1q1 , gdn
p1q1 , gup

p2q2 , gdn
p2q2 , gup

1′u, and gdn
1′u agree on the intersection of

their domains. Therefore,

g := gM4×3 ∪
⋃

〈p,q〉∈ν+1

gup
pq ∪

⋃
〈p,q〉∈ν+1

gdn
pq ∪

⋃
u∈U(H1)

gup

1′u ∪
⋃

u∈U(H1)

gdn
1′u

is a well-defined {0, 1}-preserving map from L(H1, ν1) to L(H2, ν2).

Figure 7. 〈up, dn〉, q = r, and 〈j, j′, k, k′〉 = 〈2, 1, 2, 2〉
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Next, we are going to show that, for all x, y ∈ L(H1; ν1),

g(x ∨ y) = g(x) ∨ g(y) and g(x ∧ y) = g(x) ∧ g(y). (7.6)

Clearly, we can assume that {x, y}∩M4×3 = ∅ and no single gadget contains
both x and y. Therefore, {0, 1} ∩ {x, y} = ∅ and there are single gadgets
G∀j (p, q) and G∀k(r, s) containing x and y, respectively. Of course, p 6= q and

r 6= s; however, we do not know more than |{p, q, r, s}| ∈ {2, 3, 4}. (It may
even happen that 〈r, s〉 = 〈q, p〉.) We can work in the union S := G∀j (p, q)∪
G∀k(r, s), which is a sublattice by (6.6)–(6.9); see also the upper parts of
Figures 7, 8, and 9. Alternatively, S is a sublattice by Lemma 6.1. Let
p′ := f(p), q′ := f(q), r′ := r(p), s′ := f(s), and S′ := G∀j′(p

′, q′)∪G∀k′(r′, s′);
see the lower parts of Figures 7, 8, and 9, where g(x) is geometrically below
x for every x ∈ S. Again, S′ is a sublattice by (6.6)–(6.9). (Note that if
〈p, q〉 or 〈r, s〉 is of the form 〈1′, u〉 with u ∈ U(H1), then we have to extend f
by 1′ 7→ 1′, since 1′ /∈ H1.) Let j := r(〈p, q〉), k := r(〈r, s〉), j′ := r(〈p′, q′〉),
and k′ := r(〈r′, s′〉).

We know from (7.5) that j′ ≤ j and, similarly, k′ ≤ k. Hence, by the
definition of our gadgets of rank less than 2, there are congruences α1 and
α2 of G∀j (p, q) and G∀k(r, s) and surjective homomorphisms (namely, the

natural projections) g1 : G∀j (p, q)→ G∀j′(p
′, q′) and g2 : G∀k(r, s)→ G∀k′(r

′, s′)
such that α1 is the kernel of g1 and α2 is the kernel of g2. In Figures 7,
8, and 9, the nontrivial α1-blocks and nontrivial α2-blocks are indicated by
dotted lines.

By the definition of g, g1 ∪ g2 is the restriction geS of g to S. Thus, to
verify (7.6), we need to show that g1 ∪ g2 : S → S′ is a homomorphism.

It suffices to show that α1 ∪α2 is a congruence of S, (7.7)

because then S′ is the quotient lattice of S modulo α1∪α2 and g1∪g2 is the
natural projection homomorphism of S to this quotient lattice. There are
several cases but all of them can be settled similarly. We only discuss those
given by Figures 7, 8, and 9. By Grätzer [11], each of these cases would
be quite easy, although a bit tedious. However, to indicate that the rest of
cases are similar, we give slightly more sophisticated arguments for them.
Note that these figures also use the injectivity of f ; for example, this is why
p′ 6= s′ and q′ 6= r′ in Figure 8.

In case of Figure 7, let H = {0, p, q, r, s, 1} and

ν = quo
(
{〈p, q〉, 〈q, r〉, 〈r, q〉, 〈r, s〉} ∪ ({0} ×H) ∪ (H × {1})

)
.

(In general, the quasiordered set 〈H; ν〉 is quite different from 〈H1; ν1〉 and
〈H2; ν2〉.) Using that S is a sublattice of the quasi-colored lattice L(H, ν), see
Lemma 6.4 and Definition 7.1, it is easy to see that α1 ∪α2 is a congruence
of S. Namely, we can quite easily show that α1∪α2 = conS(ap, bp). Clearly,
conS(ap, bp) collapses the p-colored edges. If it collapsed a t-colored edge for
some t ∈ {q, r, s, 1} in S, then it would collapse the same edge (with the
same color) in L(H, ν), but then (C2) would give t ≤ν p, a contradiction.
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Figure 8. 〈up,up〉, {p, q, r, s}| = 4, and 〈j, j′, k, k′〉 =
〈2, 1, 2, 1〉

In case of Figure 8, let 〈H; ν〉 be the six element lattice in which there
are exactly two maximal chains, {0 ≺ p ≺ q ≺ 1} and {0 ≺ r ≺ s ≺ 1}.
The same argument as above shows that conS(ap, bp) collapses the p-colored
edges and only those, while conS(ar, br) collapses exactly the r-colored edges.
In order to see that α1∪α2 is a congruence, it suffices to show that α1∪α2 =
conS(ap, bp)∨conS(ar, br). Clearly, α1∪α2 ⊆ conS(ap, bp)∨conS(ar, br). As-
sume that 〈x, y〉 ∈ Pairs≺(S) such that 〈x, y〉 ∈ conS(ap, bp)∨conS(ar, br). In
other words, conS(x, y) ≤ conS(ap, bp)∨conS(ar, br). Since a covering pair of
a lattice always generates a join-irreducible congruence and the congruence
lattice of a lattice is distributive, it follows that conS(x, y) ≤ conS(ap, bp) or
conS(x, y) ≤ conS(ar, br). Hence, 〈x, y〉 ∈ α1 or 〈x, y〉 ∈ α2, and we obtain
the required inclusion, α1 ∪α2 ⊇ conS(ap, bp) ∨ conS(ar, br).

For Figure 9, we use the same 〈H; ν〉 as for Figure 7 and, practically, the
same argument as for Figure 8 to show that α1 ∪ α2 = conS(ar, br). By
(7.7), this completes the proof of Lemma 7.2. �

8. Completing the lattice theoretical part

For a quasiordered set 〈H, ν〉, we let Θν = ν ∩ ν−1. It is known that Θν

is an equivalence relation, and the definition

〈x/Θν , y/Θν〉 ∈ ν/Θν
def⇐⇒ 〈x, y〉 ∈ ν (8.1)
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Figure 9. 〈up, dn〉, q = r, and 〈j, j′, k, k′〉 = 〈2, 0, 2, 1〉

turns the quotient set H/Θν into an ordered set 〈H; ν〉/Θν , which is also
denoted by 〈H/Θν ; ν/Θν〉. The following lemma is a straightforward conse-
quence of (C1) and (C2), see [2, Lemma 3.1], [3, Lemma 2.1], or [4, Lemma
4.7], where the inverse isomorphism is considered. Although the lemma was
only formulated for the particular quasi-colored lattices constructed in these
papers, its easy proof makes it valid for every quasi-colored lattice, so it is
time to formulate it more generally.

Lemma 8.1. For every quasi-colored lattice 〈L,≤; γ;H, ν〉, Princ(L) is iso-
morphic to 〈H; ν〉/Θν and the map 〈Princ(L);⊆〉 → 〈H; ν〉/Θν , defined by
con(x, y) 7→ γ(〈x, y〉)/Θν , is an order isomorphism.

As a consequence of this lemma and our construction, or (the proof of)
[4, Lemma 4.7], we obtain the following corollary.

Corollary 8.2. If 〈H; ν〉 is a quasiordered set satisfying (7.2), then the map

ζH,ν : 〈H; ν〉/Θν → 〈Princ(L(H, ν));⊆〉
defined by p/Θν 7→ con(ap, bp) is an order isomorphism.

Proof of Theorem 4.7. Let Fpos : A → Pos+

01 be a faithful functor as in the
theorem, and let

B := Fpos(A).

For X ∈ Ob(A) and f ∈ Mor(A), Fpos(X) is an ordered set and Fpos(f) is
an isotone map; we will use the notation

〈X;≤X〉 := Fpos(X) and f := Fpos(f).
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In B, two ordered sets with the same underlying set but different order-
ings are two distinct objects. Since we do not want to identify distinct
objects when we forget their orderings, we index the underlying sets as
follows. For 〈Y ; ν〉 ∈ Ob(B), we let G′forg(〈Y ; ν〉) := Y × {ν}. For g ∈
Mor(〈Y1; ν1〉, 〈Y2; ν2〉), we let

g′ = G′forg(g) : Y1 × {ν1} → Y2 × {ν2}, defined by 〈u, ν1〉 7→ 〈g(u), ν2〉.
In this way, we have defined a totally faithful functor G′forg : B → Set; the
subscript comes from “forgetful” and the prime reminds us that G′forg is
slightly different from the forgetful functor Gforg. For 〈X; ν〉 ∈ Ob(B) and
u ∈ X, if ν is understood, we often write X ′ and u′ instead of X × {ν}
and 〈u, ν〉. With this abbreviation, g′ = G′forg(g) : Y ′1 → Y ′2 is defined by

u′ 7→ (g(u))′. Hence, for X,Y ∈ A, f ∈ MorA(X,Y ), and u ∈ X,

X ′ = X × {≤X} = G′forg(Fpos(X)), u′ = 〈u,≤X〉 ∈ X ′,
f ′ = G′forg(Fpos(f)) : X ′ → Y ′, and f ′(u′) = (f(u))′ = 〈f(u),≤Y 〉.

(8.2)

The image
C := G′forg(B) = (G′forg ◦ Fpos)(A)

is a small concrete category, a subcategory of Set; its objects and morphisms
are the X ′ for X ∈ Ob(A) and the f ′ for f ∈ Mor(A), respectively, as
described in (8.2). We claim that

all morphisms of C are monomorphisms. (8.3)

Since Fpos is assumed to be faithful and G′forg is obviously faithful, (8.3) will
follow from the following trivial observation.

If F : U→ V is a faithful functor, V = F (U),
and f1 ∈ Mor(U) is a monomorphism, then
F (f1) is a monomorphism in V.

(8.4)

In order to show this, assume that f1 ∈ MorU(X,Y ) is a monomorphism
and f∗2 , f

∗
3 ∈ MorV(Z∗, F (X)) such that F (f1) ◦ f∗2 = F (f1) ◦ f∗3 . Since

V is the F -image of U, there exist Z ∈ Ob(U) and f2, f3 ∈ MorU(Z,X)
such that Z∗ = F (Z), f∗2 = F (f2), and f∗3 = F (f3). Since F (f1 ◦ f2) =
F (f1) ◦ F (f2) = F (f1) ◦ f∗2 = F (f1) ◦ f∗3 = F (f1) ◦ F (f3) = F (f1 ◦ f3) and
F is faithful, f1 ◦ f2 = f1 ◦ f3. Using that f1 is a monomorphism in U, we
obtain that f2 = f3. Hence, f∗2 = F (f2) = F (f3) = f∗3 , showing that F (f1)
is a monomorphism. This proves (8.4) and, consequently, (8.3).

Although X ′ = G′forg(〈X;≤X〉) = G′forg(Fpos(X)) is only a set for X ∈
Ob(A), we shall use the ordering ≤′X induced by ≤X on it as follows: for

x, y ∈ X,

〈x,≤X〉 ≤′X 〈y,≤X〉
def⇐⇒ x ≤X y, that is, x′ ≤′X y′

def⇐⇒ x ≤X y. (8.5)

The least element and the largest element of 〈X;≤X〉 = Fpos(X) will be
denoted by 0′X = 〈0〈X;≤X〉,≤X〉 and 1′X = 〈1〈X;≤X〉,≤X〉. By (8.5),

0′X resp. 1′X are the least resp. greatest element of 〈X ′,≤′X〉. (8.6)
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Next, denoting the cometic functor FC
com by Fcom, see Definition 3.2, we let

D := FC
com(C).

By (8.3) and Theorem 3.6,

all morphisms of D are injective maps; (8.7)

this is why we can apply Lemma 7.2 soon. Since we have three functors
already, it is worth defining their composite,

Gprod := Fcom ◦G′forg ◦ Fpos, from A to D.

For X ∈ Ob(A), the cometic projection from Definition 3.4 allows us to
define a relation νX on the set Gprod(X) = Fcom(X ′), as follows: for eligible
triplets c1, c2 ∈ Gprod(X) = Fcom(X ′),

〈c1, c2〉 ∈ νX
def⇐⇒ πcom

X′
(c1) ≤′X πcom

X′
(c1). (8.8)

Clearly, νX is a quasiorder. The set of least elements of 〈Gprod(X); νX〉 will
be denoted by Z(Gprod(X)). Similarly, U(Gprod(X)) will stand for the set of
largest elements. (8.6) and (8.8) make it clear that

Z(Gprod(X)) = {c ∈ Gprod(X) : πcom

X′
(c) = 0′X}, and

U(Gprod(X)) = {c ∈ Gprod(X) : πcom

X′
(c) = 1′X}.

(8.9)

It also follows from (8.8) that these sets are nonempty, because

~v triv(0′) = 〈111X′ , 0
′
X , 0

′
X〉 ∈ Z(Gprod(X)), and

~v triv(1′) = 〈111X′ , 1
′
X , 1

′
X〉 ∈ U(Gprod(X)).

Note the notational difference: 111X′ is the identity morphism on the set X ′,

which is the support set of 〈X;≤X〉, while 1′X is the top element of the

ordered set 〈X ′;≤′X〉, which is isomorphic to 〈X;≤X〉 = Fpos(X). Since the
ordered set Fpos(X) ∈ Pos+

01 consists of at least two elements, we obtain that
0′X 6= 1′X and the distinguished eligible triplets

~v triv(0′X) ∈ Z(Gprod(X)) and ~v triv(1′X) ∈ U(Gprod(X)) are distinct. (8.10)

Hence, for X ∈ Ob(A), Definition 7.1 allows us to consider the quasi-colored
lattice

L(Gprod(X), νX) =

〈L(Gprod(X), νX), λGprod(X),νX ; γGprod(X),νX ;Gprod(X), νX〉.
(8.11)

We are going to turn the assignment given in (8.11) functorial. For f in
Mor(A), f ′ = (G′forg ◦ Fpos)(f) and Gprod(f) are only maps between two sets.
However, (8.5) and (8.8), respectively, allow us to guess that these maps are
isotone; these properties are conveniently formulated in the form (8.12) be-
low and (8.13) later. We claim that for X,Y ∈ Ob(A) and f ∈ MorA(X,Y ),

f ′ = (G′forg ◦ Fpos)(f) : 〈X ′;≤′X〉 → 〈Y ′;≤′Y 〉 is an isotone map. (8.12)
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In order to show this, assume that x1, x2 ∈ X such that x′1 ≤′X x′2. By (8.5),

x1 ≤X x2. Since f = Fpos(f) is an isotone map, f(x1) ≤Y f(x2). Hence, by
(8.5) again, (f(x1))

′ ≤′Y (f(x2))
′. Thus, applying (8.2),

f ′(x′1) = (f(x1))
′ ≤′Y (f(x2))

′ = f ′(x′2),

which proves (8.12). Next, we are going to show that for X,Y ∈ Ob(A) and
f ∈ MorA(X,Y ),

Gprod(f) : 〈Gprod(X); νX〉 → 〈Gprod(Y ); νY 〉 is an isotone map. (8.13)

So let X,Y ∈ Ob(A) and f ∈ MorA(X,Y ). Since πcom is a natural trans-
formation by Theorem 3.6 and C, which is the domain of Fcom = FC

com, is a
subcategory of Set, the diagram

Gprod(X) = Fcom(X ′)
Gprod(f)−−−−−→ Gprod(Y ) = Fcom(Y ′)

πcom
X′

y πcom
Y ′

y
X ′

f ′−−−−→ Y ′

(8.14)

commutes. That is, for every eligible triplet c ∈ Gprod(X),

πcom

Y ′
(Gprod(f)(c)) = f ′(πcom

X′
(c)). (8.15)

Assume that 〈c1, c2〉 ∈ νX . By (8.8), πcom

X′
(c1) ≤′X πcom

X′
(c2). By (8.12), this

gives that f ′(πcom

X′
(c1)) ≤′Y f ′(πcom

X′
(c2)). Combining this inequality with

(8.8) and (8.15), we obtain that 〈Gprod(f)(c1), Gprod(f)(c2)〉 ∈ νY , proving
(8.13).

Our next task is to show that, for every f ∈ MorA(X,Y ),

Gprod(f)(Z(Gprod(X))) ⊆ Z(Gprod(Y )) and

Gprod(f)(U(Gprod(X))) ⊆ U(Gprod(Y )).
(8.16)

Let c ∈ Z(Gprod(X)). By (8.9), πcom

X′
(c) = 0′X . Since f = Fpos(f) belongs to

Mor(B) ⊆ Mor(Pos+

01), f is 0-preserving. Hence, by (8.2) and (8.15),

πcom

Y ′
(Gprod(f)(c)) = f ′(πcom

X′
(c)) = f ′(0′X) = (f(0〈X,≤X〉))

′ = (0〈Y ,≤Y 〉)
′ = 0′Y .

By (8.9), this means that Gprod(f)(c) ∈ Z(Gprod(Y )). This proves the first
half of (8.16); the second half follows in the same way.

Now, we are in the position to define a functor ELift : A → Latsd5 as
follows. For X ∈ Ob(A) and f ∈ MorA(X,Y ) ⊆ Mor(A), we let

ELift(X) := L(Gprod(X); νX), see (8.11),

ELift(f) := the unique {0, 1}-preserving lattice homomorphism

that Lemma 7.2 associates with Gprod(f);

(8.17)

it follows from (8.7), (8.10), (8.13), and (8.16) that Lemma 7.2 is applica-
ble. We are going to show that ELift is a functor from A to Latsd5 . By
Lemma 6.4, Definition 7.1, and (8.11), we have that ELift(X) ∈ Ob(Latsd5 ).
By Lemma 7.2, Gprod(f) ∈ Mor(Latsd5 ). If f = 1X ∈ MorA(X,X), then
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Gprod(f) is the identity map since Gprod is a functor, and it follows from
(7.4) and the uniqueness part of Lemma 7.2 that ELift(f) is the identity
map 1ELift(X). Finally, assume that X,Y, Z ∈ Ob(A), f1 ∈ MorA(Y, Z), and
f2 ∈ MorA(X,Y ). We have to show that ELift(f1 ◦ f2) = ELift(f1) ◦ELift(f2).
By (7.4) and the uniqueness part of Lemma 7.2, it suffices to show that

ELift(f1 ◦ f2)(ap) = (ELift(f1) ◦ ELift(f2))(ap) (8.18)

for all eligible triplets p ∈ Gprod(X), and similarly for bp. It suffices to deal
with ap. By (7.4) and (8.17), we have the following rule of computation:

ELift(f)(ap) = aGprod(f)(p). (8.19)

We know that Gprod, as a composite of three functors, is a functor. Therefore,
Gprod(f1 ◦ f2) = Gprod(f1) ◦Gprod(f2). Using this equality and (8.19), we have

ELift(f1 ◦ f2)(ap) = aGprod(f1◦f2)(p) = a(Gprod(f1)◦Gprod(f2))(p)

= aGprod(f1)(Gprod(f2)(p)) = ELift(f1)(aGprod(f2)(p))

= ELift(f1)(ELift(f2)(ap)) = (ELift(f1) ◦ ELift(f2))(ap).

Thus, (8.18) holds, and ELift : A→ Latsd5 is a functor, as required.
Clearly, the composite of faithful or totally faithful functors is a faithful

or totally faithful functor, respectively. By Theorem 3.6, Fcom is totally
faithful. So is G′forg. Therefore, Gprod = Fcom ◦ G′forg ◦ Fpos is faithful, and
it is totally faithful if so is Fpos. Hence, it follows from (8.19) that ELift is
faithful. Furthermore, if Fpos is totally faithful and X 6= Y ∈ Ob(A), then
the same property of Gprod gives that {ap : p ∈ Gprod(X)} is distinct from
{ap : p ∈ Gprod(Y )}. Hence, it follows from Remark 6.3 and (8.17) that
ELift(X) 6= ELift(Y ). Consequently, ELift is totally faithful if so is Fpos.

Finally, we are going to prove that ELift lifts Fpos with respect to Princ.
The isomorphism provided by Corollary 8.2 will be denoted by ζX . That is,

ζX : 〈Gprod(X); νX〉/ΘνX → 〈Princ(L(Gprod(X), νX));⊆〉
(8.17)

= (Princ ◦ ELift)(X),

defined by q/ΘνX 7→ con(aq, bq),

(8.20)

is an order isomorphism. For X ∈ Ob(A), the map from 〈Gprod(X); νX〉 =
〈Fcom(X ′); νX〉 to 〈X ′;≤′X〉, defined by q 7→ πcom

X (q), see Definition 3.1 or
around (8.14), is isotone by (8.8). By Theorem 3.6 (or Lemma 3.5), this map
is surjective. Furthermore, for p′, q′ ∈ X ′ (that is, for p, q ∈ X), if p′ ≤′X q′,
then 〈~v triv(p′), ~v triv(q′)〉 ∈ νX by (8.8) and, in addition, p′ = πcom

X (~v triv(p′))
and q′ = πcom

X (~v triv(q′)). So, the ordering ≤′X equals the πcom
X -image of νX .

Thus, using a well-known fact about orders induced by quasiorders, the map

〈Gprod(X); νX〉/ΘνX → 〈X
′;≤′X〉, defined by q/ΘνX 7→ πcom

X′
(q),

is an order isomorphism. So is its inverse map,

〈X ′;≤′X〉 → 〈Gprod(X); νX〉/ΘνX defined by p′ 7→ ~v triv(p′)/ΘνX .
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Since 〈X;≤X〉 → 〈X ′;≤′X〉, defined by x 7→ x′ = 〈x,≤X〉, is also an order
isomorphism by (8.5), the composite

ξX : 〈X;≤X〉 → 〈Gprod(X); νX〉/ΘνX , defined by p 7→ ~v triv(p′)/ΘνX ,
(8.21)

of the two isomorphisms is also an order isomorphism. So we can let

κX := ζX ◦ ξX , which is an order isomorphism (8.22)

from Fpos(X) = 〈X;≤X〉 to (Princ ◦ ELift)(X) by (8.20) and (8.21). As the
last part of the proof, we are going to show that κ : Fpos → Princ ◦ ELift

is a natural isomorphism. By (8.22), we have to show only that it is a
natural transformation. In order to do so, assume that X,Y ∈ Ob(A) and
f ∈ MorA(X,Y ). Besides f = Fpos(f) and f ′ = (G′forg ◦ Fpos)(f), we will use
the notation h := (Princ ◦ ELift)(f). We have to show that the diagram

Fpos(X) = 〈X;≤X〉
f=Fpos(f)−−−−−−−−−−−−−→ Fpos(Y ) = 〈X;≤Y 〉

κX

y κY

y
(Princ ◦ ELift)(X)

h=(Princ◦ELift)(f)−−−−−−−−−−−−−→ (Princ ◦ ELift)(Y )

(8.23)

commutes. First, we investigate the map h. For a triplet q ∈ Gprod(X), we
have that ELift(f)(aq) = aGprod(f)(q) by (8.19). Analogously, ELift(f)(bq) =

bGprod(f)(q). Therefore, applying the definition of Princ to the {0, 1}-lattice

homomorphism ELift(f) : ELift(X) → ELift(Y ), see (4.1) and (4.2), we have
that

h(con(aq, bq)) = con(aGprod(f)(q), bGprod(f)(q)). (8.24)

Consider an arbitrary p ∈ Fpos(X). By (8.20), (8.21), and (8.22),

κX(p) = ζX(ξX(p)) = ζX(~v triv(p′)/ΘνX ) = con(a~v triv(p′), b~v triv(p′)). (8.25)

Hence, (8.24) yields that

(h ◦ κX)(p) = con(aGprod(f)(~v triv(p′)), bGprod(f)(~v triv(p′))). (8.26)

On the other hand, using (8.25) for Y and f(p) instead of X and p,

(κY ◦ f)(p) = κY (f(p)) = con(a~v triv(f(p)′), b~v triv(f(p)′)). (8.27)

We are going to verify that (8.26) and (8.27) give the same principal con-
gruence. Motivated by (C1), we focus on the colors of the respective or-
dered pairs that generate these two principal congruences. By the construc-
tion of our quasi-colored lattices, see Figure 6 and (6.19), these colors are
c1 := Gprod(f)(~v triv(p′)), in (8.26), and c2 := ~v triv(f(p)′), in (8.27). By (3.1),
(8.2), and (8.15),

πcom

Y ′
(c1) = πcom

Y ′
(Gprod(f)(~v triv(p′)))

(8.15)
= f ′(πcom

X′
(~v triv(p′)))

(3.1)
= f ′(p′)

(8.2)
= f(p)′

(3.1)
= πcom

Y ′
(~v triv(f(p)′)) = πcom

Y ′
(c2).
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Hence, (8.8) yields that 〈c1, c2〉 ∈ νY and 〈c2, c1〉 ∈ νY . Thus, we conclude
from (C1) that (8.26) and (8.27) are the same principal congruences, which
means that the diagram given in (8.23) commutes. This proves that ELift

lifts Fpos with respect to Princ, as required. The proof of Theorem 4.7 is
complete. �
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