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Abstract. A ternary term m(x, y, z) of an algebra is called a majority term if the algebra

satisfies the identities m(x, x, y) = x, m(x, y, x) = x and m(y, x, x) = x. A congruence α
of a finite algebra is called uniform if all of its blocks (i.e., classes) have the same number

of elements. In particular, if all the α-blocks are two-element then α is said to be a 2-
uniform congruence. If all congruences of A are uniform then A is said to be a uniform

algebra. Answering a problem raised by Grätzer, Quackenbush and Schmidt [2], Kaarli [3]
has recently proved that uniform finite lattices are congruence permutable.

In connection with Kaarli’s result, our main theorem states that for every finite algebra
A with a majority term any two 2-uniform congruences of A permute. Examples show that

we can say neither “algebra” instead of “algebra with a majority term”, nor “3-uniform”
instead of “2-uniform”.

Given two nonempty sets A and B, each relation ρ ⊆ A×B gives rise to a pair of closure
operators, which are called the Galois closures on A and B induced by ρ. Galois closures

play an important role in many parts of algebra, and they play the main role in formal

concept analysis founded by Wille [4]. In order to prove our main theorem, we introduce a
pair of smaller closure operators induced by ρ. These closure operators will hopefully find

further applications in the future.

1. Introduction and main results

A ternary term m(x, y, z) of an algebra is called a majority term if the algebra
satisfies the identities m(x, x, y) = x, m(x, y, x) = x and m(y, x, x) = x. Lattices
are known to have majority terms: m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) and its
dual. A congruence α of an algebra A is called a 2-uniform congruence if all the
α-blocks (in other words, α-classes) are two-element. If all of its blocks have the
same number of elements then α is called a uniform congruence. A finite algebra
is said to be a uniform algebra if all of its congruences are uniform. A finite lattice
is called isoform if all blocks of any of its congruences are isomorphic lattices.
Clearly, isoform lattices are uniform. Grätzer, Quackenbush and Schmidt [2] raised
the question if finite isoform lattices are congruence permutable. Recently Kaarli
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[3] has shown even more: every finite uniform lattice is congruence permutable.
Our main result includes algebras more general than lattices and does not assume
that the algebra is uniform:

Theorem 1. Let A be a finite algebra with a majority term. Then any two 2-
uniform congruences of A permute.

The lattice L1 of Figure 1 with two non-permutable 3-uniform congruences, the
one visualized by solid blocks and the other one by dotted blocks, indicates that
Theorem 1 cannot be strengthened for 3-uniform congruences. Finiteness is also
essential, for the lattice (Z; max,min) has exactly two 2-uniform congruences but
they do not permute. The projection kernels of the algebra

{(a0, b0), (a0, b1), (a1, b1), (a1, b2), (a2, b2), (a2, b0)}
with no operation indicate that 2-uniform congruences need not permute in every
finite algebra.

a

L  : 12

0

b

L  :1

Figure 1
Notice that there are non-uniform finite lattices with 2-uniform congruences. For
example, the lattice L2 depicted in Figure 1 is not uniform, for its congruence
with blocks [0, a], [b, 1] is not uniform. Yet, it has two 2-uniform congruences:
one of them is depicted by solid blocks while the other with dotted blocks. Hence
Theorem 1 adds something to Kaarli’s result even for lattices, but this is not difficult
to deduce from his proof. Even the following version can easily be extracted from
his argument.

Proposition 1. (Implicit in Kaarli [3].) Let B be a finite algebra with a ternary
term m. Suppose that for each n ∈ {6, 7, . . . , |B|} the algebra has n-ary idempotent
terms pn and qn such that the identities

m(pn(x1, . . . , xn), xi, qn(x1, . . . , xn)) = xi,

m(xi, pn(x1, . . . , xn), qn(x1, . . . , xn)) = xi

hold in B for all i ∈ {1, . . . , n}. Then for any two uniform congruences α and β of
B if α ∧ β = 0B then α and β permute.

Notice that for lattices we can choose m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z),
pn(x1, . . . , xn) = x1 ∧ · · · ∧ xn and qn(x1, . . . , xn) = x1 ∨ · · · ∨ xn. Note that the
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congruences of L2 given in Figure 1 belong to the scope of of Theorem 1 but not
to the scope of Proposition 1.

The reason that Proposition 1 occurs here is twofold: to make the present paper
self-contained, and to illuminate a connection between majority terms and uniform
congruences. The question if there are algebras without lattice reduct that satisfy
the conditions of Proposition 1 has not been investigated.

Now, as a crucial step towards Theorem 1, we are going to define some new
closure operators which, in general, are smaller than those induced by Galois con-
nections. The importance of these closure operators in knowledge systems (concept
lattices, association rules) and algebra is outlined in [1]. Following Wille’s termi-
nology from [4], a triplet

(A(0), A(1), ρ)
is called a context if A(0) and A(1) are nonempty sets and ρ ⊆ A(0) ×A(1), a binary
relation. From what follows, we fix a context (A(0), A(1), ρ) and let ρ0 = ρ and
ρ1 = ρ−1. From now on, unless otherwise stated, i will be an arbitrary element of
{0, 1}. So whatever we say including i without specification, it will be understood
as prefixed by ∀i.

The set of all subsets of A(i) will be denoted by P (A(i)).
It is often, especially in the finite case, convenient to depict our context in the

usual form: a binary table with column labels from A(0), row labels from A(1) and a
cross in the intersection of the x-th column and y-th row iff (x, y) ∈ ρ. (A concrete
example will be given later, in Figure 2.) We will refer to this table as the context
table, and we will use it to visualize some of the notions we introduce.

A mapping D(i) : P (A(i)) → P (A(i)) is called a closure operator if it is extensive
(i.e., X ⊆ D(i)(X) for all X ∈ P (A(i))), monotone (i.e., X ⊆ Y =⇒ D(i)(X) ⊆
D(i)(Y )), and idempotent (i.e., D(i)(D(i)(X)) = D(i)(X) for all X ∈ P (A(i)). By
a pair of closure operators we always mean a pair D = (D(0),D(1)) where D(0) :
P (A(0)) → P (A(0)) and D(1) : P (A(1)) → P (A(1)) are closure operators. If E =
(E (0, E (1)) is another pair of closure operators then D ⊆ E means that D(0)(X) ⊆
E (0)(X) and D(1)(Y ) ⊆ E (1)(Y ) for all X ∈ P (A(0)) and Y ∈ P (A(1)).

Associated with (A(0), A(1), ρ), we define a sequence Cn = (C(0)
n , C(1)

n ) of pairs of
closure operators. (It will be shown later that the C(i)

n we are defining are closure
operators indeed.) For X ∈ P (A(i)) let

Xρi = {y ∈ A(1−i) : for all x ∈ X, (x, y) ∈ ρi},
and, for X ∈ P (A(i)), define

C(i)
0 (X) := (Xρi)ρ1−i =

⋂
y∈Xρi

({y}ρ1−i) .

So, C0 = (C(0)
0 , C(1)

0 ) is the well-known pair of Galois closure operators.
If Cn is already defined then let

Xψi := {Y ∈ P (A(1−i)) : there is a surjection ϕ : X → Y

such that (x, xϕ) ∈ ρi for all x ∈ X},
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and set
C(i)
n+1(X) := C(i)

n (X) ∩
⋂

Y ∈ Xψi

⋃
y ∈ C(1−i)

n (Y )

{y}ρ1−i . (1)

Finally, throughout the paper, let

C = (C(0), C(1)) := (
∞⋂
n=0

C(0)
n ,

∞⋂
n=0

C(1)
n ),

which means that, for all X ∈ P (A(i)),

C(i)(X) =
∞⋂
n=0

C(i)
n (X).

Lemma 1. C and Cn, n = 0, 1, . . ., are pairs of closure operators. Further,

C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ C .
From now on we assume that (A(0), A(1), ρ) is finite. We say that (A(0), A(1), ρ)

is a subdirect context if the natural projections maps

πi : ρ→ A(i), (x0, x1) 
→ xi

are surjective. This means that the context table contains neither an empty column
nor an empty row. This notion corresponds to that of subdirect products. If ρ
happens to be a subalgebra of the direct product A(0) × A(1) of algebras A(0) and
A(1) then ρ is a subdirect product of A(0) and A(1) iff (A(0), A(1), ρ) is a subdirect
context. When A(0) and A(1) are algebras then ρ ≤sd A(0) ×A(1) will denote that
ρ is subdirect product of A(0) and A(1).

Our (A(0), A(1), ρ) will be said to be a decomposable context if there are nonempty
sets B(i) and C(i) with B(i) ∪ C(i) = A(i) and B(i) ∩ C(i) = ∅ such that

ρ = (ρ ∩ (B(0) ×B(1))) ∪ (ρ ∩ (C(0) ×C(1))).

Otherwise (A(0), A(1), ρ) is called an indecomposable context. If (A(0), A(1), ρ) is
subdirect then it is indecomposable iff the join of the kernels of the natural pro-
jection maps is the largest equivalence on ρ, i.e., ker(π0)∨ ker(π1) = 1ρ. Therefore
indecomposability in the subdirect case means that from any cross in the context
table we can reach any other cross by vertical and horizontal moves from cross to
cross.

We say that the context is uniform if |{x}ρi| = |{y}ρi| for all x, y ∈ A(i). In
the terminology of context tables, if any two columns contain the same number
of crosses and any two rows contain the same number of crosses. The context
is 2-uniform if |{x}ρi| = 2 for all x ∈ A(i). This means that any row and any
column contain exactly two crosses. Notice that if (A(0), A(1), ρ) is 2-uniform then
|A(0)| = |A(1)|.

We say that (A(0), A(1), ρ) contains a nondegenerate triangle iff there is an i ∈
{0, 1} and there are a, b, c ∈ A(i) such that

C(i)({a, b})∩ C(i)({a, c}) ∩ C(i)({b, c}) = ∅ .
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Notice that in this case |{a, b, c}| = 3.
The key role in the proof of Theorem 1 will be played by the following statement.

Proposition 2. If (A(0), A(1), ρ) is a finite 2-uniform indecomposable subdirect
context with |A(i)| ≥ 3 then it contains a nondegenerate triangle.

2. Proofs and further statements

Proof of Proposition 1. This argument is basically from [3], tailored to peculiarities
of the present paper. Clearly, m is an idempotent term. We can assume that B is
an idempotent algebra, for otherwise we can replace it by its full idempotent reduct.
Suppose α and β are uniform congruences of B with α∧β = 0B . It suffices to show
that for any block A of α ∨ β, the restriction of α and that of β to A permute.
But A is a subalgebra. So, instead of B, it is sufficient to deal only with A where
α ∨ β = 1A and α ∧ β = 0A. We may assume that |A| ≥ 6, for otherwise any two
uniform congruences (or equivalences) permute.

Consider the canonical embedding that maps A onto A′ ≤sd A/α × A/β, and
adopt the notations ρ := A′, A(0) := A/α and A(1) := A/β. Then (A(0), A(1), ρ) is a
uniform indecomposable subdirect context. It suffices to show that ρ = A(0)×A(1),
which will clearly imply that α and β permute.

Let ρ = {(a(0)
1 , a

(1)
1 ), . . . , (a(0)

n , a
(1)
n )}. Here A(i) = {a(i)

1 , . . . , a
(i)
n }. Note that

n = |ρ| = |A| ≥ 6 but |A(i)| need not be equal to n. Define

u = (u(0), u(1)) := (pn(a(0)
1 , . . . , a(0)

n ), pn(a
(1)
1 , . . . , a(1)

n )) =

pn((a
(0)
1 , a

(1)
1 ), . . . , (a(0)

n , a(1)
n )) ∈ ρ, and

v = (v(0), v(1)) := (qn(a
(0)
1 , . . . , a(0)

n ), qn(a
(1)
1 , . . . , a(1)

n )) =

qn((a
(0)
1 , a

(1)
1 ), . . . , (a(0)

n , a(1)
n )) ∈ ρ.

Now let
{(u(0), a

(1)
i1

), . . . , (u(0), a
(1)
ik

)} (with exactly k elements)
be the ker(π0)-block of u, and let

{(a(0)
j1
, u(1)), . . . , (a(0)

j�
, u(1))} (with exactly � elements)

be the ker(π1)-block of u. Using the identities, we obtain for 1 ≤ r ≤ k and
1 ≤ s ≤ � that

(a(0)
js
, a

(1)
ir

) = (m(u(0), a
(0)
js
, v(0)), m(a(1)

ir
, u(1), v(1))) =

m((u(0), a
(1)
ir

), (a(0)
js
, u(1)), (v(0), v(1))) ∈ ρ.

This implies that

Xr := {(a(0)
j1
, a

(1)
ir

), . . . , (a(0)
j�
, a

(1)
ir

)} ⊆ ker(π1).

By uniformity, all ker(π1)-blocks are of size �, whence Xr is a ker(π1)-block for all
r ∈ {1, . . . , k}. Similarly, we obtain that

Ys := {(a(0)
js
, a

(1)
i1

), . . . , (a(0)
js
, a

(1)
ik

)} ⊆ ker(π0)
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is a ker(π0)-block for all s ∈ {1, . . . , �}. Hence

κ := {a(1)
j1
, . . . , a

(1)
j�

} × {a(1)
i1
, . . . , a

(1)
ik

} ⊆ ρ

and κ is closed with respect to ker(π0) ∨ ker(π1). Since the context is indecompos-
able, we conclude κ = ρ, A(0) = {a(0)

j1
, . . . , a

(0)
j�

} and A(1) = {a(1)
i1
, . . . , a

(1)
ik

}. Hence
ρ = A(0) ×A(1). ��

Proof of Lemma 1. It is well-known that C0 is a pair of closure operators. Suppose
that Cn is a pair of closure operators.

Let X ⊆ U ∈ P (A(i)) and let u belong to C(i)
n+1(X), i.e. to the righthand side of

(1). Since C(i)
n (X) ⊆ C(i)

n (U), it suffices to show that u belongs to the intersection
in

C(i)
n+1(U) = C(i)

n (U) ∩
⋂

V ∈Uψi

⋃
y∈C(1−i)

n (V )

{y}ρ1−i . (2)

Let V be an arbitrary member of Uψi by means of a surjection ϕ : U → V with
(x, xϕ) ∈ ρi for all x ∈ U . Then Y := Xϕ|X is clearly in Xψi, and Y ⊆ Uϕ = V .
Since C(1−i)

n (Y ) ⊆ C(1−i)
n (V ) by the induction hypothesis,

u ∈
⋃

y∈C(1−i)
n (Y )

{y}ρ1−i ⊆
⋃

y∈C(1−i)
n (V )

{y}ρ1−i.

This shows that u ∈ C(i)
n+1(U), whence C(i)

n+1 is monotone.

Now let z ∈ X ∈ P (A(i)) and let Y ∈ Xψi by means of a surjection ϕ : X → Y
with (x, xϕ) ∈ ρi for all x ∈ X. In particular for y := zϕ we have (y, z) ∈ ρ1−i,
i.e., z ∈ {y}ρ1−i. Since C(1−i)

n is extensive, y ∈ Y ⊆ C(1−i)
n (Y ) shows that this

y actually occurs in the righthand-side of (1). Therefore, from z ∈ {y}ρ1−i and
z ∈ X ⊆ C(i)

n (X) we obtain x ∈ C(i)
n+1(X), showing that C(i)

n+1 is extensive.

Now, to show that C(i)
n+1 is idempotent, let X ∈ P (A(i)), U = C(i)

n+1(X) and
v ∈ C(i)

n+1(U). We need to show that v ∈ U . The easy part is as follows:

v ∈ C(i)
n+1(U) = C(i)

n+1(C(i)
n+1(X)) ⊆ C(i)

n+1(C(i)
n (X)) ⊆ C(i)

n (C(i)
n (X)) = C(i)

n (X).

To deal with the other part of the righthand-side of (1), let Y be an arbitrary
member of ∈ Xψi by means of a surjection ϕ : X → Y with (x, xϕ) ∈ ρi for all
x ∈ X. We know from (1), which determines U , that for each z ∈ U \ X we can
choose an element yz ∈ C(1−i)

n (Y ) with z ∈ {yz}ρ1−i, i.e. (z, yz) ∈ ρi. We define a
map

µ : U → C(1−i)
n (Y ), z 
→

{
zϕ if z ∈ X

yz if z ∈ U \X .

Let V := Uµ ⊆ C(1−i)
n (Y ). Clearly, V ∈ Uψi, so V takes part in (2). Hence

v ∈
⋃

y∈C(1−i)
n (V )

{y}ρ1−i .
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So v ∈ {y}ρ1−i for a suitable y ∈ C(1−i)
n (V ). Using the induction hypothesis we

obtain y ∈ C(1−i)
n (V ) ⊆ C(1−i)

n (C(1−i)
n (Y )) = C(1−i)

n (Y ). Thus, after establishing
for an arbitrary Y ∈ Xψi that v ∈ {y}ρ1−i for a suitable y ∈ C(1−i)

n (Y ), we have
shown that C(i)

n+1 is idempotent, and so it is a closure operator.

Finally, C(i) is clearly extensive and monotone. For any n ∈ N0 andX ∈ P (A(i)),

C(i)(C(i)(X)) ⊆ C(i)(C(i)
n (X)) ⊆ C(i)

n (C(i)
n (X)) = C(i)

n (X),

which gives C(i)(C(i)(X)) ⊆ C(i)(X). Therefore C is a pair of closure operators. ��
Now we establish a connection between contexts and majority terms. In fact,

we do this in a slightly more general form than needed. For k ≥ 3, by a k-ary
near-unanimity term we mean a k-ary term m satisfying the identities

m(y, x, x, . . . , x) = x, m(x, y, x, . . . , x) = x, m(x, x, y, . . . , x) = x, . . . ,

m(x, x, x, . . ., y) = x.

Ternary near-unanimity terms are exactly the majority terms.

Proposition 3. Suppose (A(0), A(1), ρ) is also a subdirect product ρ ≤sd A
(0)×A(1)

such that the algebra ρ, and therefore its homomorphic images A(0) and A(1), have
a k-ary near-unanimity term m. Then for any a(i)

1 , . . . , a
(i)
k ∈ A(i) we have

m(a(i)
1 , . . . , a

(i)
k ) ∈ C(i)({a(i)

2 , . . . , a
(i)
k }) ∩ C(i)({a(i)

1 , a
(i)
3 , . . . , a

(i)
k })∩

C(i)({a(i)
1 , a

(i)
2 , a

(i)
4 , . . . , a

(i)
k }) ∩ · · · ∩ C(i)({a(i)

1 , . . . , a
(i)
k−1}).

Proof. By symmetry, it suffices to show that

m(a(j)
1 , . . . , a

(j)
k ) ∈ C(j)

n ({a(j)
1 , . . . , a

(j)
k−1}) (3)

for all j ∈ {0, 1} and n ∈ N0. This will be done via induction on n. Let u =
m(a(i)

1 , . . . , a
(i)
k ) and X = {a(i)

1 , . . . , a
(i)
k−1}.

To prove u ∈ C(i)
0 (X) = (Xρi)ρ1−i, suppose y ∈ Xρi. Then (a(i)

1 , y), . . . , (a(i)
k−1, y) ∈

ρi. Since ρi ≤sd A(i) ×A(1−i) is a subdirect product, there exists a z ∈ A(1−i) with
(a(i)
k , z) ∈ ρi. It follows that

(u, y) = (m(a(i)
1 , . . . , a

(i)
k ), m(y, . . . , y, z)) = m((a(i)

1 , y), . . . , (a(i)
k−1, y), (a

(i)
k , z)) ∈ ρi ,

i.e., u ∈ {y}ρ1−i. Hence u ∈ C(i)
0 (X), indeed.

Now suppose that (3) holds for n ∈ N0. Then u ∈ C(i)
n (X). To show that u

belongs to the intersection in (1), consider an arbitrary Y ∈ Xψi together with a
surjection ϕ : X → Y , a(i)

1 
→ a
(1−i)
1 , . . . , a

(i)
k−1 
→ a

(1−i)
k−1 such that

(a(i)
1 , a

(1−i)
1 ), . . . , (a(i)

k−1, a
(1−i)
k−1 ) ∈ ρi.

Here {a(1−i)
1 , . . . , a

(1−i)
k−1 } = Y . Since the context is subdirect, there exists a c ∈

A(1−i) with (a(i)
k , c) ∈ ρi. Define y := m(a(1−i)

1 , . . . , a
(1−i)
k−1 , c). The induction hy-

pothesis yields
y ∈ C(1−i)

n ({a(1−i)
1 , . . . , a

(1−i)
k−1 }) = C(1−i)

n (Y ).
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Now

(u, y) = (m(a(i)
1 , . . . , a

(i)
k ), m(a(1−i)

1 , . . . , a
(1−i)
k−1 , c)) =

m((a(i)
1 , a

(1−i)
1 ), . . . , (a(i)

k−1, a
(1−i)
k−1 ), (a(i)

k , c)) ∈ ρi ,

i.e., u ∈ {y}ρ1−i. Therefore u ∈ C(i)
n+1(X). �

Proof of Proposition 2. Consider the bipartite graph (A(0) ∪̇ A(1), ρ0 ∪ ρ1). (Here ∪̇
indicates the assumption A(0) ∩A(1) = ∅, which does not hurt generality.) This is a
2-regular graph (every vertex has degree 2), and it is connected since (A(0), A(1), ρ)
is indecomposable. Hence, as it is easy to see, it contains a Hamiltonian circle. Due
to this circle we may assume that the vertices are indexed in the following way:

A(0) = {a(0)
0 , a

(0)
1 , . . . , a

(0)
k−1}, A(1) = {a(1)

0 , a
(1)
1 , . . . , a

(1)
k−1},

ρ =
⋃

j ∈ Zk

{(a(0)
j , a

(1)
j ), (a(0)

j , a
(1)
j+1)}.

Here and in the rest of the proof, all index additions and subtractions are understood
in Zk, i.e., modulo k. For k = 7 the situation is depicted in Figure 2.

a0
(0) a1

(0) a2
(0) a3

(0) a4
(0) a5

(0) a6
(0)

X X

X X

X X

X X

XX

XX

XX

a0
(1)

a1
(1)

a2
(1)

a3
(1)

a4
(1)

a5
(1)

a6
(1)

a0
(0)

a2
(0)a3

(0)

a4
(0)

a5
(0)

a6
(0)

a0
(1)a6

(1)
a5
(1)

a4
(1) a3

(1) a2
(1)

a1
(1) a1

(0)

Figure 2

The subsets {a(i)
j , a

(i)
j+1, . . . , a

(i)
j+t−1} of A(i) will be called arcs of length t or size t,

0 ≤ t ≤ k. We claim that for all arcs {a(i)
j , a

(i)
j+1, . . . , a

(i)
j+t−1} of A(i),

C(i)({a(i)
j , a

(i)
j+1, . . . , a

(i)
j+t−1}) = {a(i)

j , a
(i)
j+1, . . . , a

(i)
j+t−1} . (4)

(To make a comparison with the Galois closure we notice that C(i)
0 (X) = A(i) holds

in Figure 2 whenever X is an arc with |X| ≥ 3.)
We prove (4) via induction on t. The case t = 0 is evident by |A(i)| ≥ 3. If t = 1

then

C(0)({a(0)
j }) ⊆ C(0)

0 ({a(0)
j }) = ({a(0)

j }ρ0)ρ1 = {a(1)
j , a

(1)
j+1}ρ1 = {a(0)

j }
yields C(0)({a(0)

j }) = {a(0)
j }, and C(1)({a(1)

j }) = {a(1)
j } follows similarly.
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Now let X = {a(0)
j , a

(0)
j+1, . . . , a

(0)
j+t} be an arc with length t+1 ≥ 2. Observe that,

with the notations of (1), the surjection a
(0)
j 
→ a

(1)
j+1, a

(0)
j+1 
→ a

(1)
j+1, a

(0)
j+2 
→ a

(1)
j+2,

. . . , a(0)
j+t 
→ a

(1)
j+t establishes that Y := {a(1)

j+1, a
(1)
j+2, . . . , a

(1)
t } ∈ Xψ0. Because of

finiteness we can choose an n such that C = Cn. The induction hypothesis gives
C(1−0)
n (Y ) = C(1−0)(Y ) = Y . This and the peculiarities of the context imply that,

for this Y , ⋃
y∈C(1−0)

n (Y )

{y}ρ1−0 ⊆ X,

and we conclude C(0)(X) = C(0)
n+1(X) = X. The case when X ⊆ A(1) is similar.

Now, armed with (4) we can show that C is trivial, i.e., C(i)(X) = X holds for
any X ∈ P (A(i)). Indeed, using that C(i) is monotone and A(i) \ {a(i)

j } is always
an arc, we obtain

C(i)(X) = C(i)(
⋂

a
(i)
j /∈ X

(A(i) \ {a(i)
j }) ) ⊆

⋂
a
(i)
j /∈ X

C(i)(A(i) \ {a(i)
j }) =

⋂
a
(i)
j /∈ X

(A(i) \ {a(i)
j }) = X.

We have proved that C is trivial. Thus, any triangle of three distinct elements
is nondegenerate. ��

Proof of Theorem 1. Let α0 and α1 be 2-uniform congruences of A, where A has
a majority term m(x, y, z). Since α0 and α1 are congruences of the algebra (A,m),
we may assume that A is the algebra (A,m). It suffices to show that the restrictions
of α0 and α1 to an arbitrary block of α0∨α1 permute. Since congruence blocks are
subalgebras by the idempotency of m, we may assume that A is an α0 ∨ α1-block,
i.e., α0 ∨ α1 = 1A. If |A| ≤ 4 then any two of its 2-uniform congruences permute
and there is nothing to prove.

Hence, seeking for a contradiction, we assume that |A| ≥ 5. Then 2-uniformity of
α0 and α1 together with α0∨α1 = 1A gives α0∧α1 = 0A. Let A(i) := A/αi. Clearly,
|A(i)| ≥ 3. Consider the canonical embedding that maps A onto ρ ≤sd A

(0) ×A(1).
Since the projection kernels of this subdirect product correspond to α0 and α1,
(A(0), A(1), ρ) is a 2-uniform indecomposable subdirect context. By Proposition 2
there is a nondegenerate triangle {a, b, c} ⊆ A(i) for some i ∈ {0, 1}. Applying
Proposition 3 we obtain

m(a, b, c) ∈ C(i)({a, b})∩ C(i)({a, c}) ∩ C(i)({b, c}) = ∅,
a contradiction. ��

3. Concluding remarks

Problem 1. How far can Kaarli’s theorem be extended beyond lattices?
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After examining thousands of contexts we formulate the following

Conjecture. Every finite uniform indecomposable subdirect context (A(0), A(1), ρ)
with |A(i)| ≥ 3 and ρ �= A(0) × A(1) has a nondegenerate triangle.

If this conjecture was proved, the following partial answer to Problem 1 would
follow: “finite uniform algebras with majority term are congruence permutable”.
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