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Abstract. For a bounded lattice L, the principal congruences of L form a
bounded ordered set Princ(L). G. Grätzer proved in 2013 that every bounded

ordered set can be represented in this way. Also, G. Birkhoff proved in 1946
that every group is isomorphic to the group of automorphisms of an appro-

priate lattice. Here, for an arbitrary bounded ordered set P with at least two

elements and an arbitrary group G, we construct a selfdual lattice L of length
sixteen such that Princ(L) is isomorphic to P and the automorphism group of

L is isomorphic to G.

1. Introduction

1.1. Our motivation and the result. For a bounded lattice L, that is, a lattice
with 0 and 1, let Princ(L) = 〈Princ(L);⊆〉 be the ordered set (also known as
poset) of principal congruences of L. It is a bounded ordered set. G. Grätzer [16]
proved that every bounded ordered set is isomorphic to Princ(L) for some lattice
L of length 5. The ordered sets Princ(L) of countable but not necessarily bounded
lattices L were characterized in Czédli [4]. Also, let Aut(L) = 〈Aut(L); ◦〉 stand
for the group of automorphisms of L. We know from G. Birkhoff [2] that every
group is isomorphic to Aut(L) for an appropriate lattice L. Our goal is to prove
the following “simultaneous representation theorem” or, in another terminology, an
“independence theorem”.

Theorem 1.1. If P is a bounded ordered set with at least two elements and G is

an arbitrary group, then there exists a selfdual lattice L of length sixteen such that

Princ(L) and Aut(L) are isomorphic to P and G, respectively. If P and G are

finite, then we can construct a finite L with these properties.

The theorem asserts that Princ(L) and Aut(L) are as independent as the trivial
implication |Princ(L)| = 1 =⇒ |Aut(L)| = 1 allows. Note that for finite lattices L,
the lattice Con(L) of all congruences and Aut(L) are also independent in the same
sense by a result V.A. Baranskĭı [1] and A. Urquhart [26]; their result is generalized
by G. Grätzer and E. T. Schmidt [21] and G. Grätzer and F. Wehrung [23].

Date: August 18, 2015; revised April 13, 2016.
2000 Mathematics Subject Classification. 06B10.
Key words and phrases. Principal congruence, lattice congruence, lattice automorphism, or-

dered set, bounded poset, quasi-colored lattice, preordering, quasiordering, monotone map, simul-

taneous representation, independence, automorphism group.
This research was supported by NFSR of Hungary (OTKA), grant number K 115518.

1



2 G. CZÉDLI

1.2. Method and outline. The rest of the paper is devoted to the proof of The-
orem 1.1. Due to earlier results, the present paper is not particularly long. For
those familiar with Czédli [7], the next paragraph and Examples 3.1–3.3, see later,
are sufficient to understand our construction and the idea of the proof.

Let P and G be as in Theorem 1.1. Each of the papers G. Grätzer [16] and [17]
and Czédli [4], [5], and [7] associates a lattice L with P such that Princ(L) ∼= P .
In these papers, we start with a set {[ap, bp] : 0 6= p ∈ P } of “key” prime intervals,
and add certain additional elements, which are organized into “gadgets”, to obtain
an appropriate L. Here, to get rid of the automorphisms inherited from P , we
replace the key prime intervals with distinct simple bounded lattices that have no
nontrivial automorphism. These lattices are constructed in Section 2. Next, the
result from G. Sabidussi [25] allows us to represent G as the automorphism group
of a graph 〈V ; E〉. For each v ∈ V , we add a prime interval [av, bv] to our lattice
together with appropriate gadgets to force that these new prime intervals generate
the largest congruence. (Later, to make these intervals recognizable, we enlarge
them to disjoint copies of an appropriate simple lattice.) Whenever 〈u, v〉 ∈ E, we
add a gadget between [au, bu] and [av, bv]. The new gadgets encode the graph into
the lattice without changing Princ(L). These details are discussed in Section 3,
where both the quasi-coloring technique developed in Czédli [3]–[7] and the ideas
of [4]–[7] and G. Grätzer [16] are intensively used. However, to follow the paper, it
suffices only to keep [7] nearby.

2. Graphs and rigid simple lattices

By a graph we mean a pair 〈V ; E〉 where V is a nonempty set and E is a subset
of the set of two-element subsets of V . We refer to V and E as the vertex set

and the edge set of the graph, respectively. The following statement is due to
G. Sabidussi [25]; see also R. Frucht [11] and [12] for the finite case.

Lemma 2.1 ([25]). For every group G, there exists a graph 〈V ; E〉 such that G is

isomorphic to Aut(〈V ; E〉).

Next, we borrow some concepts from Czédli [7]. A quasiorder is a reflexive
transitive relation. For a lattice or ordered set L = 〈L;≤〉 and x, y ∈ L, 〈x, y〉 is
called an ordered pair of L if x ≤ y. If x = y, then 〈x, y〉 is a trivial ordered pair.
The set of ordered pairs and that of nontrivial ordered pairs of L are denoted by
Pairs≤(L) and Pairs<(L), respectively. If X ⊆ L, then Pairs≤(X) will stand for

X2 ∩Pairs≤(L). We also need the notation Pairs≺(L) := {〈x, y〉 ∈ Pairs≤(X) : x ≺
y} for the set of covering pairs. By a quasi-colored lattice we mean a structure

L = 〈L,≤; γ; H, ν〉

where 〈L;≤〉 is a lattice, 〈H ; ν〉 is a quasiordered set, γ : Pairs≤(L) → H is a

surjective map called coloring, and for all 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≤(L),

(C1) if
〈

γ(〈u1, v1〉) , γ(〈u2, v2〉)
〉

∈ ν , then con(u1, v1) ≤ con(u2, v2) and

(C2) if con(u1, v1) ≤ con(u2, v2), then
〈

γ(〈u1 , v1〉) , γ(〈u2, v2〉)
〉

∈ ν .

This concept is taken from Czédli [4] and [7]; for some earlier variants, the reader
is referred to G. Grätzer, H. Lakser, and E.T. Schmidt [19], G. Grätzer [14, page
39], and Czédli [3]. For a quasiordered set 〈H, ν〉, we let Θν = ν ∩ ν−1. Then Θν

is an equivalence relation, and the definition

(2.1) 〈x/Θν , y/Θν〉 ∈ ν/Θν
def
⇐⇒ 〈x, y〉 ∈ ν
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turns the quotient set H/Θν into an ordered set 〈H ; ν〉/Θν := 〈H/Θν; ν/Θν〉. The
importance of quasi-colored lattices is explained by the following lemma, which is
a straightforward consequence of (C1) and (C2); see Czédli [4, Lemma 2.1] or [7,
Lemma 4.7].

Lemma 2.2. If L = 〈L,≤; γ; H, ν〉 is a quasi-colored lattice, then Princ(L) is

isomorphic to 〈H ; ν〉/Θν.

To recall two concepts from G. Grätzer [14, pages 42–43], let L1 be a sublattice of
a lattice L2. If each congruence of L1 is the restriction of an appropriate congruence
of L2, then L2 is a congruence-reflecting extension of L1. If the “generation map”
Con(L1) → Con(L2), defined by α 7→ conL2

(α), is bijective or, equivalently, the
restriction map Con(L2) → Con(L1) is bijective, then L2 is a congruence-preserving

extension of L1. To give an example for congruence-reflecting extensions, which will
be important for us, we define an easy way to extend a prime interval into a bounded
lattice. Let L be a lattice, 〈a, b〉 ∈ Pairs≺(L), and let K be an arbitrary bounded
lattice. The extension L(a, b, K) of L at 〈a, b〉 with K is the union L ∪ K such
that a and b are identified with 0K and 1K , respectively but otherwise the union is
disjoint, that is, L ∩ K = {a, b} = {0K, 1K}, and the ordering is the extension of
both the orderings of L and K in the unique way such that L and K are sublattices.
In particular, for x ∈ L \ K and y ∈ K \ L, x ≤a,b,K y iff x ≤ a and y ≤a,b,K x iff
b ≤ x.

An ordered pair in a subdirectly irreducible lattice is called critical if it gener-
ates the smallest nontrivial congruence; see, for example, R. Freese, J. Ježek, and
J. B. Nation [10, page 55]. Motivated by this terminology, we say that a covering
pair 〈a, b〉 ∈ Pairs≺(L) is locally critical if the principal congruence con(x, a) =
conL(x, a) collapses 〈a, b〉 for every x < a and, dually, 〈a, b〉 ∈ con(b, y) for ev-
ery y > b. We emphasize that a locally critical pair is always a covering pair by
definition.

Lemma 2.3. If L is a lattice, 〈a, b〉 ∈ Pairs≺(L) is a locally critical pair, and K is

a bounded lattice, then L(a, b, K) is a congruence-reflecting extension of L. If, in

addition, L is simple, then this extension is congruence-preserving.

We cannot omit the stipulation that 〈a, b〉 is a locally critical pair; this is wit-
nessed by the four-element non-chain lattice playing the role of L and the five-
element modular non-distributive lattice M3 as K.

Proof of Lemma 2.3. For brevity, let L′ = L(a, b, K). For a lattice M and ordered

pairs 〈x1, y1〉, 〈x2, y2〉 ∈ Pairs≤(M), we define

(2.2)
〈x1, y1〉 �dn 〈x2, y2〉

def
⇐⇒ x2 = y2 ∧ x1 and y2 ≤ y1,

〈x1, y1〉 �up 〈x2, y2〉
def
⇐⇒ y2 = x2 ∨ y1 and x1 ≤ x2.

We write 〈x1, y1〉 � 〈x2, y2〉 for the disjunction of

〈x1, y1〉 �dn 〈x2, y2〉 and 〈x1, y1〉 �up 〈x2, y2〉.

If x′ ≤ x ≤ y ≤ y′ in a lattice, then the ordered pair 〈x′, y′〉 is said to be superior

to the ordered pair 〈x, y〉. Let

(2.3) ~s : 〈x0, y0〉 � 〈x1, y1〉 � · · · � 〈xn, yn〉
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be a sequence of (congruence) perspectivities (over M). We say that n, 〈x0, y0〉, and
〈xn, yn〉 are the length, the initial ordered pair, and the terminal ordered pair of ~s,
respectively. Let S be a finite set of sequences of perspectivities, H ⊆ M2, and
〈u, v〉 ∈ Pairs≤(M). We say that S witnesses the containment 〈u, v〉 ∈ conM (H) if
there exist a nonnegative integer k and elements

(2.4) w0 < w1 < · · · < wk

in M such that w0 = u, wk = v, and for each i ∈ {1, . . . , k}, there is an ~s ∈ S with
initial ordered pair in H and terminal ordered pair superior to 〈wi−1, wi〉. Modifying
a well-known fact on generation of lattice congruences, see G. Grätzer [15, Section
III.1], in an obvious way, we obtain that

(2.5)
〈u, v〉 ∈ conM (H) iff there exists a finite set S of sequences of
perspectivities that witnesses the containment 〈u, v〉 ∈ conM(H).

We interrupt the proof to formulate the following auxiliary statement; remember
that 〈a, b〉 is a locally critical pair of L and L′ = L(a, b, K).

Claim 2.4. If 〈x, y〉 ∈ Pairs≤(L) and 〈x′, y′〉 ∈ Pairs≤(L′) \ Pairs≤(L) such that
〈x, y〉 �dn 〈x′, y′〉, then y′ ∈ K \ L and

(i) either x′ = y′ ∈ K \ L,
(ii) or x′ ≤ a and 〈x′, b〉 ∈ conL(x, y).

Proof of Claim 2.4. If we had y′ ∈ L, then x′ = x ∧ y′ would also be in L, con-
tradicting 〈x′, y′〉 /∈ Pairs≤(L). Hence, y′ /∈ L. Thus, a < y′ < b ≤ y. Assume
that x′ ∈ K \ L. Since x′ ≤ x ∈ L, we have that b ≤ x. But then y′ < x
and x′ = x ∧ y′ = y′ ∈ K \ L, which means the satisfaction of (i). So, we can
assume that x′ ∈ L. Since x′ ≤ y′ ∈ K \ L, we have that x′ ≤ a. We distin-
guish two cases. First, assume that x′ < a. Since x′ ≤ x ∧ a ≤ x ∧ y′ = x′, we
have that x′ = x ∧ a. Also, a ≤ y′ ≤ y, that is, 〈x, y〉 �dn 〈x′, a〉. Trivially,
or using (2.5) for the singleton set consisting of the sequence 〈x, y〉 �dn 〈x′, a〉 of
length 1, 〈x′, a〉 ∈ conL(x′, a) ≤ conL(x, y). Since 〈a, b〉 is a locally critical pair,
〈a, b〉 ∈ conL(x′, a) ≤ conL(x, y). By transitivity, 〈x′, b〉 ∈ conL(x, y), which means
that (ii) holds. Second, assume that x′ = a. Since x ≥ x′ = a, we have that
a ≤ x ∧ b ≤ b. These elements are in L, where a ≺L b, so either x ∧ b = b, or
x ∧ b = a. The former of these two equalities would give y′ < b ≤ x, leading to
a = x′ = x ∧ y′ = y′ /∈ L, which is impossible. Thus, x ∧ b = a. Since b ≤ y, we
have that 〈x, y〉 �dn 〈x′, b〉 = 〈a, b〉. Hence, 〈x′, b〉 = 〈a, b〉 ∈ conL(x, y) and (ii)
holds again. This proves Claim 2.4. �

We continue the proof of Lemma 2.3 by introducing the following concept. Be-
sides ~s from (2.3), let

(2.6) ~s ′ : 〈x′
0, y

′
0〉 � 〈x′

1, y
′
1〉 � · · · � 〈x′

n, y′n〉

be another sequence of perspectivities. We say that ~s ′ is superior to ~s if

• the two sequences are of the same length (which will be denoted by n),
• 〈xi−1, yi−1〉 �up 〈xi, yi〉 iff 〈x′

i−1, y
′
i−1〉 �up 〈x′

i, y
′
i〉, for all i ∈ {1, . . . , n}

(that is, ~s and ~s ′ are of the same pattern),
• and 〈x′

i, y
′
i〉 is superior to 〈xi, yi〉 for i ∈ {0, . . . , n}.

Claim 2.5. Let ~s be a sequence of perspectivities written in the form (2.3). If
〈x′

0, y
′
0〉 is an ordered pair superior to 〈x0, y0〉, then 〈x′

0, y
′
0〉 can be continued to a

sequence ~s ′ of perspectivities such that ~s ′ is superior to ~s.
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Proof of Claim 2.5. By duality, we can assume that 〈x0, y0〉 �dn 〈x1, y1〉. Let k be
the largest subscript such that 〈x0, y0〉 �dn 〈x1, y1〉 �dn . . . �dn 〈xk, yk〉, that is,
k is the number of the �dn (down arrows) at the beginning of ~s. For i ∈ {1, . . . , k},
let y′i := yi and x′

i := x′
0∧xi. Since x′

i−1 ∧ y′i = (x′
0 ∧xi−1)∧ y′i = x′

0 ∧ (xi−1∧ yi) =
x′

0 ∧ xi = x′
i, we obtain easily that 〈x′

0, y
′
0〉 �dn 〈x′

1, y
′
1〉 �dn . . . �dn 〈x′

k, y′k〉.
For j in the (possibly empty) set {k + 1, . . . , n}, we let 〈x′

j, y
′
j〉 := 〈xj , yj〉. Since

x′
k ≤ xk and y′k = yk, it is clear that, in case k < n, 〈x′

k, y′k〉 �up 〈x′
k+1, y

′
k+1〉, while

〈x′
t, y

′
t〉 � 〈x′

t+1, y
′
t+1〉 for t > k is obvious. Thus, ~s ′ : 〈x′

0, y
′
0〉 � · · · � 〈x′

n, y′n〉 is a
sequence of perspectivities, and it is clearly superior to ~s. This proves Claim 2.5 �

Now, to continue the proof of Lemma 2.3, consider a finite set S of sequences
of perspectivities. The total length of S is max{length(~s) : ~s ∈ S}. To prove
that L′ is a congruence-reflecting extension of L, it suffices to show that every
α ∈ Con(L) equals the restriction (conL′(α))eL of conL′(α) to L. The inclusion
α ⊆ (conL′(α))eL is obvious. To prove the converse inclusion, assume that 〈u, v〉 ∈

(conL′(α))eL, that is, 〈u, v〉 ∈ Pairs≤(L) and 〈u, v〉 ∈ conL′(α). In the sense of (2.5),
take a finite set S of sequences of perspectivities over L′ such that S witnesses the
containment 〈u, v〉 ∈ conL′(α) and S is of minimal total length. We assert that
this total length is zero. Suppose, for a contradiction, that the total length of S
is positive. To obtain a contradiction, it suffices to show that whenever ~s ∈ S is
of positive length, then ~s can be abbreviated. Let ~s ∈ S be of the form (2.3) such
that length(~s) > 0. We know that 〈x0, y0〉 ∈ α. We can assume that 〈x1, y1〉 /∈

Pairs≤(L), because otherwise 〈x1, y1〉 would belong to α and we could abbreviate
~s by omitting its initial pair. By duality, we can assume that 〈x0, y0〉 �dn 〈x1, y1〉,
If x1 = y1, then xi = yi for all i ∈ {1, . . . , length(~s)}, but this contradicts (2.4).
Therefore, Claim 2.4 yields that y1 ∈ K \ L, x1 ≤ a and 〈x1, b〉 ∈ conL(x0, y0) ≤
α. Observe that 〈x1, b〉 is superior to 〈x1, y1〉. Omit 〈x0, y0〉 from ~s, and apply
Claim 2.5 to the remaining sequence, which we denote by ~s−. In this way, we obtain
a sequence ~s ′ with initial pair 〈x1, b〉 ∈ α such that ~s ′ is superior to ~s−. Clearly, we
can replace ~s in S with ~s ′; note that length(~s ′) = length(~s−) = length(~s)−1. Thus,
each sequence in S with positive length can be replaced with a shorter sequence,
which contradicts the assumption that S was of minimal total length. Therefore,
the total length of S is 0, and all sequences of perspectivities in S are of length
0. By the convexity of α-blocks, all the 〈wi−1, wi〉, see (2.4), belong to α. So does
〈u, v〉 = 〈w0, wk〉 by transitivity. Consequently, α = (conL′(α))eL. This proves
that L′ is a congruence-reflecting extension of L.

Finally, assume that K is simple. To show that the restriction αeL of an arbitrary
α ∈ Con(L′) determines α, it suffices only to consider the nontrivial ordered pairs.

So let 〈x, y〉 ∈ Pairs≤(L′) be a nontrivial ordered pair. If 〈x, y〉 ∈ L, then αeL

clearly determines if 〈x, y〉 is in α or not. If 〈x, y〉 ∈ Pairs≤(K), then 〈x, y〉 ∈
α ⇐⇒ 〈0K , 1K〉 = 〈a, b〉 ∈ α ⇐⇒ 〈a, b〉 ∈ αeL. We are left with the case
where |{x, y} ∩ L| = 1; by duality, we can assume that x ∈ L and y /∈ L. Then
〈x, y〉 ∈ α iff 〈x, a〉 and 〈a, y〉 ∈ α, and both belong to the scope of the earlier cases.
Hence, L′ is a congruence-preserving extension of L. This completes the proof of
Lemma 2.3 �

In a simple lattice, every covering pair is a locally critical pair. Thus, we obtain
the following statement.
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Corollary 2.6. If L and K are simple lattices, K is bounded and 〈a, b〉 ∈ Pairs≺(L),
then L(a, b, K) is also a simple lattice.

Given a quasi-colored lattice L = 〈L,≤; γ; H, ν〉, a locally critical pair 〈a, b〉 ∈
Pairs≺(L), and a simple bounded lattice K, we define a new quasi-colored lattice

L(a, b, K) = 〈L(a, b, K),≤a,b,K; γa,b,K; H, ν〉

as follows. The lattice L(a, b, K) has already been defined; see Lemma 2.3. Since

Pairs≤(L) ⊆ Pairs≤(L(a, b, K)), we can define γa,b,K as the extension of γ such

that, for 〈x, y〉 ∈ Pairs≤(L(a, b, K)) \ Pairs≤(L),

(2.7) γa,b,K(〈x, y〉) =



















0, if x = y,

γ(〈a, b〉), if x, y ∈ K and x 6= y,

γ(〈a, y〉), if x ∈ K and y /∈ K,

γ(〈x, b〉), if x /∈ K and y ∈ K.

Let us emphasize that, as opposed to Lemma 2.3, we only define L(a, b, K) if K is
simple.

Lemma 2.7. L(a, b, K) is a quasi-colored lattice.

Proof. Let L′ = L(a, b, K) and L′ = L(a, b, K). We claim that, for 〈x, y〉 ∈

Pairs≤(L′) \ Pairs≤(L),

(2.8)
〈x, y〉 and the corresponding pair on the right
of (2.7) generate the same congruence of L′.

This is clear for the first two lines on the right of (2.7). Consider the third line,
that is, assume that x ∈ K \ L and y ∈ L \ K. Since K is simple, we have that
conL′(x, y) = conL′(x, b) ∨ conL′(b, y) = conL′ (a, b) ∨ conL′(b, y) = conL′(a, y). A
dual argument works for the fourth line, proving (2.8).

For 〈ui, vi〉 ∈ Pairs≤(L′), let 〈ûi, v̂i〉 be the “corresponding pair” in the sense
of (2.8). We know from Lemma 2.3 that L′ is a congruence-preserving extension
of L. Hence, the map Con(L) → Con(L′), defined by α 7→ conL′(α), is a lattice
isomorphism. Thus, using that conL′(conL(u, v)) = conL′(u, v),

(2.9) conL(û1, v̂1) ≤ conL(û2, v̂2) ⇐⇒ conL′(û1, v̂1) ≤ conL′ (û2, v̂2).

Using the definition of γa,b,K, the validity of (C1) and (C2) in L, (2.9), and (2.8),
we obtain that

〈

γa,b,K(〈u1, v1〉) , γa,b,K(〈u2, v2〉)
〉

∈ ν

⇐⇒
〈

γ(〈û1, v̂1〉) , γ(〈û2 , v̂2〉)
〉

∈ ν ⇐⇒ conL(û1, v̂1) ≤ conL(û2, v̂2)

(2.9)
⇐⇒ conL′(û1, v̂1) ≤ conL′(û2, v̂2)

(2.8)
⇐⇒ conL′(u1, v1) ≤ conL′(u2, v2).

Therefore, (C1) and (C2) hold in L′, and L′ is a quasi-colored lattice. �

A lattice or a graph is automorphism-rigid if its automorphism group is one-
element. We are going to define a class {S(α) : α is an ordinal number} of pairwise
non-isomorphic automorphism-rigid simple lattices of length twelve. Let α be an
ordinal number, and let At(α) = {gι : ι < 6 + α} and CoAt(α) = {gιµ : ι < µ <
6 + α}. We agree that these two sets are disjoint from each other and from {0, 1}.
On the set T (α) := At(α) ∪ CoAt(α) ∪ {0, 1}, we define an ordering as follows: 0
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Figure 1. M ′
2×3 and M ′

3×3

Figure 2. S0(α) for α = 1

and 1 are the bottom and top elements, At(α) and CoAt(α) are the sets of atoms
and coatoms, respectively, and, for ι < 6 + α and κ < µ < 6 + α,

gι < gκµ def
⇐⇒ ι ∈ {κ, µ}.

Similarly, let At′(α) := {hιµ : ι < µ < 6 + α}, CoAt′(α) := {hι : ι < 6 + α}, and
T ′(α) := At′(α) ∪ CoAt′(α) ∪ {0, 1} such that At′(α) and CoAt′(α) are its sets of
atoms and coatoms, respectively, and

hκµ < hι def
⇐⇒ ι ∈ {κ, µ}.

Therefore, T ′(α) is the dual of T (α).
Next, consider the lattice M ′

3×3 given by Figure 1. The black-filled atom and the
black-filled coatom determine a principal ideal I and a principal filter F , respec-
tively. Form the Hall–Dilworth gluing of T (α) and M ′

3×3 along F and the principal
ideal ↓g0. In the next step, form the Hall–Dilworth gluing of the lattice we have
just obtained and T ′(α) along I and the principal filter ↑h0. The lattice we obtain
in this way is S0(α). For S0(1), see Figure 2.

For ι < µ < 6+α, an edge of the form 〈gι, g
ιµ〉, 〈gµ, gιµ〉, 〈hιµ, hι〉, and 〈hιµ, hµ〉

is called an upper left vertex edge, an upper right vertex edge, a lower left vertex

edge, and a lower right vertex edge, respectively. (This terminology is motivated
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by the connection between S0(α) and Frucht’s graphs; see in the proof later.) The
(upper and lower) left vertex edges are indicated by densely dotted lines in Figure 2.
The (upper and lower) right vertex edges are thick dotted lines, and there are also
“ordinary” edges, the solid lines. We replace each upper left vertex edge and each
lower right vertex edge of S0(α) with a copy of the lattice N11 from Figure 1, using
disjoint copies for distinct edges. Similarly, we replace each each lower left vertex

edge and upper right vertex edge of S0(α) with the dual N
(d)
11 of N11, using disjoint

copies for distinct edges again. The lattice we obtain is denoted by S(α).

Lemma 2.8. For every ordinal α, S(α) is an automorphism-rigid simple selfdual

lattice of length 12. Moreover, S(α) ∼= S(β) iff α = β.

Note that there are also results on automorphism-rigid and even endomorphism-
rigid families of lattices; see, for example, Czédli [6] and G. Grätzer and J. Sich-
ler [22].

Proof. With V := {ι : ι < 6 + α} and E := {{ι, µ} : ι < µ < α}, 〈V ; E〉 is a graph.
Notice that T (α) is the Frucht graph associated with 〈V ; E〉; see R. Frucht [13]
and G. Grätzer [14, Figure 15.1]. We know from G. Grätzer and H. Lakser [18] or
G. Grätzer [14, Page 188] that T (α) is a simple lattice. (This is why we use 6 + α
rather than α in its definition.) Since T ′(α), the dual of T (α), and M ′

3×3 are also
simple, it follows that S0(α) is simple. Finally, since N11 and its dual are simple,
Corollary 2.6 yields that S(α) is a simple lattice. Since S0(α) is of length 8, S(α)
is of length 12. Also, it is a ranked lattice, that is, any two maximal chains of S(α)
have the same number of elements. While the graph 〈V ; E〉 is encoded in S0(α),
the well-ordered set {ι : ι < 6 + α} is encoded in S(α) as follows: the elements
hι and gι can be recognized as the elements of height 4 and the elements of dual
height 4, respectively. Furthermore, ι < µ iff the interval [gι, gι ∨ gµ] is isomorphic

to N11 iff [gµ, gι ∨ gµ] ∼= N
(d)
11 iff [hι ∧ hµ, hι] ∼= N

(d)
11 iff [hι ∧ hµ, hµ] ∼= N11. Hence,

if S(α) ∼= S(β), then {ι : ι < 6 + α} is order isomorphic to {ι : ι < 6 + β}, which
yields that 6+α = 6+β, and we conclude that α = β. This proves the second part
of the lemma.

Clearly, S(α) is a selfdual lattice. Let f be an arbitrary automorphism of S(α).
As we have noticed above, the elements gι are recognized by a first-order property.
Hence, f({gι : ι < 6+α} ⊆ {gι : ι < 6+α}. Actually, we have equality here, because
the same kind of inclusion holds for f−1. However, since the well-ordering of {ι : ι <
6 + α} is encoded in the lattice, we obtain that f induces an order automorphism
on {ι : ι < 6 + α}. It is well-known, and it follows by a straightforward transfinite
induction, that 〈{ι : ι < 6 + α}; <〉 is automorphism-rigid. Therefore, f acts as
the identity map on {gι : ι < 6 + α}. By duality, the same holds for the set
{hι : ι < 6 +α}. Since these two sets generate T (α) and T ′(α), respectively, f acts
identically on T (α)∪ T ′(α). In particular, the black-filled elements are fixed points
of f , which implies that f acts identically on M ′

3×3. Consequently, so does f on

S0(α). Finally, since N11 and N
(d)
11 are automorphism-rigid, we obtain that f is the

identity map. Thus, S(α) is automorphism-rigid. �

3. A construction and the completion of the proof

Parallel to describing the construction in general, we also show how it works for
the following example.
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Example 3.1. Assume that we want to represent the ordered set P = 〈P ;≤〉 given
in Figure 3 and the dihedral group G := D4 of rank 4 simultaneously. First, we
represent G as the automorphism group of the graph 〈V ; E〉 given in Figure 3.

Figure 3. A small example

For brevity, we will often use the notation

P−01 := P \ {0, 1}.

In general, Lemma 2.1 always allows us to take a graph 〈V ; E〉 whose automorphism
group is isomorphic to G. We shall assume that V is disjoint from P . Let H :=
P ∪ V , and consider the quasiordered set 〈H ; ν〉, where

ν := {〈x, y〉 ∈ P 2 : x ≤P y} ∪
(

H × (V ∪ {1})
)

.

So each vertex v ∈ V is added to P as an additional largest element and, conse-
quently, 〈H ; ν〉 has 1 + |V | many largest elements. We let

I := J := E ∪ {〈p, q〉 ∈ P−01 × P−01 : p < q} ∪ ({1} × V ).

Observe that I ∪ J ∪ ({0} × H) ∪ (H × {1}) generates ν , that is, Czédli [7, (4.23)]

holds. Let L̂0 = 〈L̂0,≤0; γ0; H, ν〉 be the same quasi-colored lattice as L(H, I, J)
from [7, (4.21) and Remark 6.61], except that we use M ′

2×3 rather than M4×3 in its
construction. (As opposed to M ′

2×3, which is automorphism-rigid, M4×3 has four
automorphisms; this is why the latter is not appropriate here.) With Θν defined in
(2.1), 〈H ; ν〉/Θν

∼= P . We know from [7, Lemma 4.6] that

(3.1) L̂0 = 〈L̂0,≤0; γ0; H, ν〉 is a quasi-colored lattice

and it is selfdual. Thus, Lemma 2.2 yields that

(3.2) Princ(L̂0) ∼= 〈H ; ν〉/Θν
∼= P .

Example 3.2. For the situation described in Example 3.1 and Figure 3, we visu-
alize L̂0 and I = J in Figure 4. We obtain the lattice in this figure by gluing M ′

2×3

from Figure 1 and the chains {0 ≺ ax ≺ bx ≺ 1} for x ∈ V ∪ P−01 at their bottom
and top elements. (Disregard the gray-filled ovals S(0), . . . , S(0), S(1), . . .S(4) in
the figure now.) The members of I = J are indicated by arrows: if 〈x, y〉 ∈ I, then
there is an arrow from the prime interval [ax, bx] to the prime interval [ay, by]. We
use two kinds of arrows: dotted arrows for 〈x, y〉 ∈ E and wavy arrows otherwise.
Note that a dotted arc represents two arrows; one from left to right and another

one from right to left. As it is explained in [7], we obtain L̂0 from Figure 4 by
replacing, for every 〈p, q〉 ∈ I = J , the corresponding arrow with the double gadget
Gdb(p, q) given in [7, Figure 4].

1Remark 6.6 in [7]: Instead of M4×3, we can use an arbitrary simple lattice having at least

four elements; however, then we cannot guarantee that L(H,I, J) is a lattice of length 5.
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Figure 4. L̂0 (without the gray-filled ovals) and L̂ (without the
vi-colored edges)

For each p ∈ P−01, pick an ordinal number ιp > 0. We assume that ιp 6= ιq if
p 6= q. Also, if P is finite, then let all the ιp be finite. To complete the construction,
we replace the prime interval [ap, bp] with S(ιp) for p ∈ P−01 and we replace [av, bv]
with S(0) for v ∈ V . The S(ιp) and all copies of the S(0) are pairwise disjoint,
of course. By [7, the remark before Lemma 4.72], the covering pairs 〈ax, bx〉, for
x ∈ P−01 ∪ V , are locally critical pairs. Using a trivial transfinite induction, it
follows from Lemma 2.7 that

(3.3) we obtain a quasi-colored lattice L̂ = 〈L̂,≤; γ; H, ν〉

in this way.

Example 3.3. For P and G in Example 3.1, Figure 4 gives the lattice L̂ with
Princ(L̂) ∼= P and Aut(L̂) ∼= G as follows. Each arrow indicates a gadget, as
explained in Example 3.2. An edge 〈x, y〉 ∈ Pairs≺(L) is thick iff it generates the
largest congruence iff 〈1, γ(〈x, y〉)〉 ∈ ν . The gray-filled ovals S(0), . . . , S(4) stand
for the lattices defined before Lemma 2.8; note that S(1) is derived from S0(1)
given in Figure 2.

Now, we are in the position to complete the paper as follows.

Proof of Theorem 1.1. We are going to show that Princ(L̂) ∼= P and Aut(L̂) ∼=

G. Comparing L̂0 and L̂, see (3.1) and (3.3), we obtain from Lemma 2.2 that

Princ(L̂) ∼= Princ(L̂0). This equality and (3.2) give that Princ(L̂) ∼= P . Hence, it

suffices to deal with Aut(L̂). We say that a subset X of L̂ is rigid, if the restriction

of every member of Aut(L̂) to X is the identity map of X. If f(X) ⊆ X for all

f ∈ Aut(L̂), then X is an invariant subset. For such a subset X, X = f(f−1(X)) ⊆

f(X). That is, if X is an invariant subset, then f(X) = X holds for all f ∈ Aut(L̂).
Since M ′

2×3 is automorphism-rigid and it is isomorphic to no other cover-preser-

ving {0, 1}-sublattice of L̂, it follows that M ′
2×3 and, in particular, {a1, b1} are rigid

2This remark in [7] notes that for p ∈ H , x < ap, and y > bp, both 〈x, ap〉 and 〈bp, y〉 are

1-colored, so each of them generates the largest congruence of L(H,I, J).
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subsets. The elements ax, for x ∈ V ∪ P−01, are characterized by the properties
that [0, ax] is of length at most 2 and ax is covered by at least

(

6
2

)

= 15 elements.
(Remark 3.5, which we do not need in the moment, will shed more light on this
part of the proof.) Therefore, taking duality also into account,

(3.4) {ax : x ∈ V ∪ P−01} and {bx : x ∈ V ∪ P−01} are invariant subsets.

For distinct p, q ∈ P−01 and v ∈ V , observe that ap, aq, and av are the bottoms
of S(ιp), S(ιq), and S(0). Since S(ιp), S(ιq), and S(0) are pairwise non-isomorphic
by Lemma 2.8, no automorphism maps ap to aq or av. Hence,

(3.5) {ap : p ∈ P−01} is a rigid subset, and so is {bp : p ∈ P−01}

by duality. For x 6= y ∈ H , there is at most one gadget (that is, at most one arrow
in Figure 4) from [ax, bx] to [ay, by]. If there is a gadget from [ax, bx] to [ay, by] and

f ∈ Aut(L̂), then the restriction of f to {ax, bx, ay, by} determines its restriction to
the whole the gadget. Since ax ≤ by iff x = y, it follows that if f(ax) = ay, then
f(bx) = by. Also, [ax, bx] ∼= S(ιx) for x ∈ P−01 and [av, bv] ∼= S(0) for v ∈ V are
automorphism-rigid by Lemma 2.8. Putting all the above facts, including (3.4),
and (3.5), together, we obtain that

(3.6) {av : v ∈ V } is an invariant subset and f ∈ Aut(L̂) is
determined by its restriction to this subset.

For distinct x, y ∈ V ∪ {1}, f and f(−1) clearly preserve the property “there is a
gadget from [ax, bx] to [ay, by]”. But [a1, b1] = {a1, b1} ⊆ M ′

2×3 is a rigid subset, so
the case x, y ∈ V is only interesting from this point of view. In the spirit of Figure 2,
f preserves the dotted arrows, and also the absence of these arrows. Therefore,
f induces an automorphism of the graph 〈V ; E〉. Conversely, since the intervals

[av, bv], v ∈ V , of L̂ are isomorphic and they are only in connection with themselves
(and, all in the same way, with [a1, b1]), we conclude that each automorphism of
the graph induces a unique automorphism of the sublattice

⋃

{[av, bv] : v ∈ V } and,

consequently, of L̂. This proves that Aut(L̂) ∼= 〈V ; E〉, as required. �

Remark 3.4. Besides the lattices S(α), see Lemma 2.8, there are other ways
to construct automorphism-rigid simple selfdual lattices. For example, the CMn

lattices, the Kirby Baker lattices KBn, and the Ralph Freese lattices RFn from
G. Grätzer and R.W. Quackenbush [20] are simple lattices; see also R. Freese [9]
and the L′

n from Czédli and M. Maróti [8] for the original sources when available.
From those that are not selfdual we can easily obtain selfdual lattices; either by
gluing such a lattice K to their dual, or taking M3 = {0, a, b, c} and forming
M3

(

M3(0, a, K)(a, 1, Kdual)
)

, see Corollary 2.6. If necessary, we can get rid of
nontrivial automorphisms by adding some extra elements like we added the two
⊗-shaped elements to M2×3 in order to obtain M ′

2×3 in Figure 1. However, we
prefer the S(α) in the paper, because the proof benefits from the fact that they are
of the same finite length, twelve.

Remark 3.5. In the proof, we used that the elements ax can be recognized as
elements of length at most 2 with at least 15 covers. This gives the second reason
why we used 6 + α rather than α in the definition of S(α), since otherwise an
element of height 2 with many covers need not be of the form ax. Namely, if there
is no arrow from or to the edge 〈ap, bp〉 in L̂0 for some p ∈ P−01, then h01 of S(ιp)

has nine covers and it is of height 2 in L̂.
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Remark 3.6. Since our proof does not use G. Birkhoff’s result from [2], the present
paper gives a new proof of the fact that every group can be represented as the
automorphism group of an appropriate lattice L. Note, however, that [2] proves
more by constructing a distributive lattice in a shorter way.
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