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Abstract. A semimodular lattice L of finite length will be called an almost-geometric

lattice, if the order J(L) of its nonzero join-irreducible elements is a cardinal sum of at
most two-element chains. We prove that each finite distributive lattice is isomorphic

to the lattice of congruences of a finite almost-geometric lattice.

1. Introduction

We say that an order P = (P,≤) is a cardinal sum of at most two-
element chains, if for every a ∈ P , both of ↓a = {x ∈ P :x ≤ a} and
↑a = {x ∈ P :x ≥ a} are at most two-element. By an almost-geometric
lattice we mean an (upper) semimodular lattice L of finite length such that
J(L), the set of non-zero join-irreducible elements of L, is a cardinal sum of
at most two-element chains. Notice that in an almost-geometric lattice, each
join-irreducible element is of height at most two. The converse is not true: if
we obtain L by adding a new 0 to the four-element Boolean lattice, then every
a ∈ J(L) is of height at most two but L is not an almost-geometric lattice.

Geometric lattices of finite length are almost-geometric and simple. Hence
we cannot drop “almost” from our main result, the following representation
theorem.

Theorem 1. Every finite distributive latticeD is isomorphic to the congruence
lattice of a finite almost-geometric lattice G.

Notation. We use the notation of Grätzer [4]. The Glossary of Notation of
[4] is available as a pdf file at

http://mirror.ctan.org/info/examples/Math_into_LaTeX-4/notation.pdf
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2. Proofs and auxiliary statements

Firstly, we recall some notions and three lemmas. The idea of the proof will
be outlined right after the “proof” of Lemma 4.

In this section, all lattices are assumed to be finite. Let L be a lattice.
The set of atoms of L will be denoted by A(L). For x, y ∈ L with x ‖ y, the
four-element sublattice H = {x ∧ y, x, y, x ∨ y} is called a square of L. We
call H a lower covering square, if x ∧ y ≺ x and x ∧ y ≺ y. Upper covering
squares are defined dually. By a covering square we mean a square that is
both lower covering and upper covering. It is well-known that a finite lattice
L is semimodular iff it has the following property:

every lower covering square of L is upper covering. (1)

Following [10] and [11], by a chopped lattice we mean a partial algebra
C = (C,∧,∨) such that ∧ is a (meet-)semilattice operation and ∨ is a partial
operation such that a ∨ b is defined iff {a, b} has a least upper bound, and
a ∨ b equals this least upper bound, provided that it exists. By an ideal of C
we mean an order-ideal closed with respect to existing joins. The ideals of C
form a lattice denoted by IdC. Via the canonical identification of x ∈ C with
↓x ∈ IdC, we usually assume that C ⊆ IdC; this way the (partial) operations
of C are the restrictions of the operations of IdC.

Given a finite chopped lattice C, let MaxC = {t1, . . . , tk} denote the set
of its maximal elements. Notice that k = |MaxC| = 1 iff C is a lattice. A
k-tuple ~x = (x1, . . . , xk) ∈ ↓t1 × · · · × ↓tk is called a compatible vector, if, for
all 1 ≤ i < j ≤ k,

xi ∧ tj = xj ∧ ti. (2)

Notice that in the important particular case when ti ∧ tj = a is an atom, (2)
is equivalent to the following, more manageable condition

either a ≤ xi and a ≤ xj, or a 6≤ xi and a 6≤ xj. (3)

If ti ∧ tj = 0, then (2) holds automatically. Let CmpvC denote the set of
compatible vectors. For ~x, ~y ∈ CmpvC, let ~x ≤ ~y mean that xi ≤ yi for
i = 1, . . . , k. Then CmpvC = (CmpvC,≤) is a finite order.

Lemma 2 (Lemma 4.4 and its surrounding in Grätzer [4]).

• CmpvC is a lattice, and it is isomorphic with IdC.
• The meet in CmpvC is defined componentwise.
• ↓ti, which is a lattice, is embedded in CmpvC in the following canonical

way:
↓ti → CmpvC, x 7→ x̃ := (x ∧ t1, . . . , x∧ tk). (4)

Based on this lemma, we will always replace Id with the more comfortable
Cmpv in what follows. The congruences of a chopped lattice C are, by defini-
tion, congruences Θ of (C,∧) such that if both x1 ∨x2 and y1 ∨ y2 are defined
and (x1, y1), (x2, y2) ∈ Θ, then (x1 ∨ x2, y1 ∨ y2) ∈ Θ.
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Lemma 3 ([10], see also Thm. 4.6 in Grätzer [4]). Let C be a finite chopped lat-
tice. Then CmpvC is a congruence-preserving extension of C. Consequently,
Con(CmpvC) ∼= ConC.

Let Q be a finite lattice with two distinguished atoms p and q. Then
Q = (Q,∧,∨, p, q), a lattice with two constants, will be called a basic gadget,
if

• Q has exactly three congruences, ωQ < µQ < ιQ,
• con(0, p), the smallest congruence collapsing 0 and p, is ιQ = Q2, and
• con(0, q) = µQ.

For example, T0 = (T0,∧,∨, p′1, q), the right-hand lattice in Figure 1, is a basic
gadget. (The only nontrivial congruence is indicated by dotted ovals.)

Figure 1. M3 and T0

Figure 2. M∧
0

Next, we consider the meet-semilattice

M∧
0 = {0, a1, . . . , an}, (5)

given in Figure 2. Let

Gm = {(b1, c1), . . . , (bm, cm)} (6)

be an m-element irreflexive and antisymmetric relation on {a1, . . . , an}. That
is, bi, ci ∈ {a1, . . . , an} such that bi 6= ci for i = 1, . . . ,m, and i 6= j implies
{bi, ci} 6= {bj, cj}. For i = 1, . . . ,m, let Si be a finite lattice with distinct
atoms pi, qi. For each i ∈ {1, . . . ,m}, we glue Si to M∧

0 by the identifications
0M∧

0
= 0Si , bi = pi and ci = qi, but collapsing nothing else. This way we

obtain a chopped lattice

Cm =
(
M∧

0 ∪
m⋃

i=1

Si : b1 = p1, c1 = q1, . . . , bm = pm, cm = qm

)
. (7)
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Since this construction plays the main role in [10], we call this chopped lattice
a 1960-merging of the lattices Si. Similarly, the lattice

[
M∧

0 ∪
m⋃

i=1

Si : b1 = p1, c1 = q1, . . . , bm = pm, cm = qm

]
:= CmpvCm (8)

is called a 1960-amalgam of the lattices Si.
Let D be a finite distributive lattice, and choose the meet-semilattice M∧

0 =
{0, a1, . . . , an} in (5) such that J(D) = {a1, . . . , an}. Notice that J(D) is an
antichain in M∧

0 = (M∧
0 ,≤M∧

0
), and it is a suborder of (D,≤D). The covering

relation of J(D) will be denoted by ≺J(D). As a particular case of (6), we will
assume that

Gm =
{
(b1, c1), . . . , (bm, cm)

}
:=

{
(x, y) : x, y ∈ J(D) and y ≺J(D) x

}
(9)

is an enumeration of the relation �J(D). Fix a basic gadget Q = (Q,∧,∨, p, q).
For i = 1, . . . ,m, let Si = Q, pi = p and qi = q. Then the 1960-amalgam of
these Si makes sense; let

Con−1(D,Q) (10)
denote this 1960-amalgam, see (8). The crucial idea is taken from [10]:

Lemma 4 ([10]). If D is a finite distributive lattice and Q is a basic gadget,
then Con

(
Con−1(D,Q)

)
is isomorphic with D.

Instead of the proof of Lemma 4. For convenience, we outline the main ideas
of [10] and [11]; the reader may skip this part. We refer to an excellent
secondary source, Grätzer [4], also.

By Lemma 3 and Con−1(D,Q) = CmpvCm, it suffices to prove that D ∼=
ConCm, that is, J(D) ∼= J(ConCm), as orders. Let Θ ∈ ConCm. It is
determined by its covering pairs, that is, by {(x, y) :x ≺ y and (x, y) ∈ Θ}.
Since each covering pair of Cm belongs to some Si, which is (isomorphic to)
a basic gadget, we easily obtain that Θ is the join of some congruences of the
form con(0, pi) and con(0, qj). Since 0 ≺ pi, we obtain that con(0, pi) is a join-
irreducible element of ConCm, and so is con(0, qi). Since pi, qj ∈ {a1, . . . , an},
we conclude that

J(ConCm) = {con(0, a1), . . . , con(0, an)}.

It is shown in [10] that

ai ≤D aj ⇐⇒ con(0, ai) ≤ con(0, aj), (11)

whence J(ConCm) ∼= J(D), which implies the lemma.
Some easy details of (11) are as follows. Let ai ≺J(D) aj , and denote

con(0, aj) by Θ ∈ ConCm. Let (bk, ck) = (aj , ai) ∈ Gm, see (9). Then
(0, aj) = (0, bk) = (0, p) ∈ ΘeSk . Since con(0, p) = ιQ, we obtain that ΘeSk =
ιSk . Hence (0, ai) = (0, ck) = (0, q) ∈ ΘeSk . This shows that con(0, ai) ≤
con(0, aj). The reverse direction is much more complex: using Lemma 4.5
of Grätzer [4], the reader can easily check that con(0, ai) is the congruence
Θ ∈ ConCm determined by the property that (0, ak) ∈ Θ iff ak ≤D ai. �
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Idea of the proof (of Theorem 1). Armed with Lemma 4, it is sufficient to find
an appropriate basic gadget Q such that Con−1(D,Q) is an almost-geometric
lattice. Since the 1960-amalgam (8) is a rather complicated construction, we
will reach it in m easier amalgamating steps. The natural assumption that Q
should be almost-geometric will not be sufficient in itself. Therefore, we will
construct a “perfect gadget”, to be defined later. Perfect gadgets will have
reasonable properties preserved by the amalgamating steps.

In order to define the simplest amalgamation we need, let L1 and L2 be
finite lattices, and let pi ∈ A(Li) for i = 1, 2. By the identification p1 = p2

and 01 = 02, we obtain a chopped lattice denoted by

(L1 ∪ L2 : p1 = p2).

This chopped lattice is called an atomic merging of the lattices L1 and L2. An
example (with slightly different notation) is given in Figure 3. Let

[L1 ∪L2 : p1 = p2] := Cmpv(L1 ∪ L2 : p1 = p2); (12)

we call this lattice an atomic amalgam of the lattices L1 and L2. If x ∈ Li,
then x̃ denotes the image of x under the canonical Li 7→ [L1 ∪ L2 : p1 =
p2] embedding, see (4). Analogous notation will apply for other amalgams.
Sometimes we identify x and x̃; this allows us to say that the atomic merging
is a generating subset of the atomic amalgam.

Lemma 5. Every atomic amalgam of two finite semimodular lattices is semi-
modular.

Proof. Let C = (L1 ∪ L2 : p1 = p2) and L = [L1 ∪ L2 : p1 = p2]. By (3), L
consists of vectors ~x = (x1, x2) ∈ L1 × L2 such that

either x1 ≥ p1 and x2 ≥ p2, or x1 6≥ p1 and x2 6≥ p2 . (13)

Let ~p = (p1, p2). It belongs to L. For ~x ∈ L, ~x 6≥ ~p is equivalent to the
conjunction of x1 6≥ p1 and x2 6≥ p2; however, this is not necessarily true for
~x ∈ L1 × L2.

Let ∨d and ∨L denote the join taken in the direct product L1 × L2 and the
join taken in L, respectively. Similarly, the covering relation in L1 × L2 and
that in L will be denoted by ≺d and ≺L, respectively. (Analogous notation
will be used in similar environment later.) Clearly, for ~u,~s ∈ L,

~u ≺L ~s iff either ~u ≺d ~s, or ~p 6≤ ~u and ~s = ~u ∨d ~p = ~u ∨L ~p. (14)

Consider an arbitrary lower covering square

H = {~x = ~y ∧ ~z, ~y, ~z, ~v = ~y ∨L ~z} (15)

in L; we have to show that it is upper covering. We will use the well-known
trivial fact that L1 × L2 is semimodular, see [1] for a bit stronger result. Let

~w := ~y ∨d ~z . (16)
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Notice that

~v is the smallest element of L such that ~w ≤ ~v. (17)

If ~y ≥ ~p and ~z ≥ ~p, then ~x ≥ ~p and H is a lower covering square of L1 × L2.
Hence it is upper covering in L1 × L2, whence it is upper covering in L. So,
we will assume that, say

~z 6≥ ~p, whence ~x 6≥ ~p.

Case 1: ~y 6≥ ~p. Then (14) yields that ~x ≺d ~y and ~x ≺d ~z. Hence, up to y-z
and 1-2 symmetry, ~y = (y1, x2) where x1 ≺ y1 in L1.

If z1 = x1, then ~z = (x1, z2) with x2 ≺ z2 in L2. Therefore, ~w = ~y ∨d ~z =
(y1, z2). This belongs to L, since y1 6≥ p1 and z2 6≥ p2. Hence ~v = ~w and H is
a covering square in L1 × L2, so it is a covering square in L, indeed.

Otherwise, if z1 6= x1, then ~z = (z1, x2) with x1 ≺ z1 6= y1 in L1. If
~w = (y1 ∨ z1, x2) ∈ L, then ~v = ~w and the previous argument yields that H is
a covering square in L. Assume that ~w /∈ L, that is, p1 ≤ y1 ∨ z1 and p2 6≤ x2.
By (17), we see that ~v = (y1 ∨ z1, x2 ∨ p2). Since y1 < y1 ∨ p1 ≤ y1 ∨ z1 = v1
and, by the semimodularity of L1, we have that y1 ≺ v1, we conclude that
y1 ∨ p1 = v1. Hence ~v = ~y ∨d ~p and (14) implies ~y ≺L ~v. By ~y-~z symmetry, we
conclude that ~z ≺L ~v, whence H is a covering square in L.

Case 2: ~y ≥ ~p. We obtain from (14) that ~y = ~x ∨L ~p = ~x ∨d ~p. Then
~w = ~y ∨d ~z ≥ ~p yields that ~w = ~v, whence ~v = ~y ∨d ~z = ~p ∨d ~x ∨d ~z = ~p ∨d ~z

implies ~z ≺L ~v by (14). Further, since ~x ≺d ~z by (14), the semimodularity of
L1 × L2 implies that ~y ≺d ~w = ~v, whence ~y ≺L ~v. This shows that H is an
upper covering square in L. �

Let L be a semimodular lattice of finite length, and let p, q ∈ A(L). We say
that (p, x, q) ∈ L3 is a perspective triplet, if p∧x = q∧x = 0 and p∨x = q∨x.
(This terminology is explained by Lemma IV.3.7 in Grätzer [3].) We say that
p and q are non-perspective atoms, in notation p 6∼ q, if p 6= q and, for all
x ∈ L, the triplet (p, x, q) is not perspective. Clearly,

p 6∼ q implies that ↓(p ∨ q) = {0, p, q, p∨ q}; (18)

this is a particular case (namely, the case x = 0) of the second part of the
following easy lemma.

Lemma 6. Let p and q be distinct atoms of a finite semimodular lattice L,
and let x ∈ L. Then

• If p 6≤ x, q 6≤ x and q ≤ p ∨ x, then (p, x, q) is a perspective triplet.
• If p 6∼ q, p 6≤ x ∨ q and q 6≤ x ∨ p, then the interval [x, x ∨ p ∨ q] equals
{x, x∨ p, x∨ q, x∨ p ∨ q}, which consists of four distinct elements.

Proof. Since x ≺ x ∨ p by semimodularity and x < x ∨ q ≤ x ∨ p, the first
statement is evident.

To prove the second statement, let y = x∨p∨q, and notice that x ≺ x∨p ≺ y.
Assume, by way of contradiction, that x < t < y but t /∈ {x∨ p, x∨ q}. Then,
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by the well known Jordan-Hölder chain condition, x ≺ t ≺ y. Notice that
p ≤ t is impossible, since otherwise x ∨ p ≤ t ≺ y and x ∨ p ≺ y would
contradict x ∨ p 6= t. Hence t ∧ p = 0, and t ≺ t ∨ p ≤ y yields t ∨ p = y. The
same argument works for q instead of p, so we get that (p, t, q) is a perspective
triplet, contradicting p 6∼ q. �

A basic gadget Q = (Q,∧,∨, p, q) is called a perfect gadget, if

p 6∼ q, (19)

(Q,∧,∨) is a finite almost-geometric lattice, and (20)

J(Q) ∩ ↑p = {p} and J(Q) ∩ ↑q = {q}. (21)

In order to construct a perfect gadget, we need the following two lemmas.

Lemma 7. Let L = [L1 ∪ L2 : p1 = p2] = Cmpv(L1 ∪ L2 : p1 = p2) be an
atomic amalgam of two finite semimodular lattices L1 and L2.

• If a ∈ A(L1) and b ∈ A(L2), then ã, b̃ ∈ A(L).
• If a, b are non-perspective atoms in Li, then ã 6∼ b̃.
• If a ∈ A(L1), b ∈ A(L2), and either a 6∼ p1 or b 6∼ p2, then ã 6∼ b̃ in L.

Proof. The first part of the lemma is evident. Hence, in the rest of the proof,
we know that ã, b̃ ∈ A(L). By way of contradiction, we assume that T =
(ã, ~x, b̃) ∈ L3 is a perspective triplet. Let ~y = ã ∨L ~x = b̃ ∨L ~x. Lemma 5
yields that ~x ≺L ~y.

To prove the second part, we can assume that i = 1. The perspectivity of
T gives that a 6≤ x1 and b 6≤ x1.

Firstly, assume that p1 ∈ {a, b}. Say, b = p1, so b̃ = (p1, p2) = ~p and
ã = (a, 0). Then ã ≤ ~y = ~x ∨L b̃ = ~x ∨L ~p = ~x ∨d ~p yields that a ≤ x1 ∨ p1,
whence (a, x1, p1) ∈ L3

1 is a perspective triplet by Lemma 6, a contradiction.
Secondly, we consider the case p1 /∈ {a, b}. Then ã = (a, 0) and b̃ = (b, 0).

Since ~x ≺L ~y, we can distinguish two cases according to (14).
Case 1: ~x ≺d ~y. Then ~x < ã ∨d ~x ≤ ã ∨L ~x = ~y gives that (a ∨ x1, x2) =

ã ∨d ~x = ~y. Similarly, (b ∨ x1, x2) = ~y. Hence (a, x1, b) is a perspective triplet
in L1, a contradiction.

Case 2: ~p 6≤ ~x and ~x ∨d ~p = ~y. Then ã ∨d ~x ≤ ã ∨L ~x = ~y yields that
a ≤ y1 = x1 ∨ p1, whence (a, x1, p1) ∈ L3

1 is a perspective triplet by Lemma 6.
In particular, this implies a∨x1 = p1∨x1. We obtain b∨x1 = p1∨x1 similarly.
Hence (a, x1, b) is a perspective triplet in L1, contradicting a 6∼ b. This proves
the second part of the lemma.

In case of the third part, ã = (a, 0) and b̃ = (0, b). Since ~y ≥ ã ∨d ~x and
~y ≥ b̃ ∨d ~x, we see that x1 6= y1 and x2 6= y2. Hence ~x ≺d ~y fails, whence we
obtain from (14) that ~p 6≤ ~x and ~y = ~x ∨d ~p = ~x ∨L ~p. Consequently, a ≤ y1 =
x1 ∨ p1 and b ≤ y2 = x2 ∨ p2 , and Lemma 6 shows that both (a, x1, p1) ∈ L3

1

and (b, x2, p2) ∈ L3
2 are perspective triplets, a contradiction. �
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Lemma 8. Let L = [L1 ∪ L2 : p1 = p2] = Cmpv(L1 ∪ L2 : p1 = p2) be an
atomic amalgam of two finite semimodular lattices L1 and L2. Then J(L) =
{ã :a ∈ J(L1) ∪ J(L2)}.

Roughly speaking, the lemma asserts that J(L) = J(L1) ∪ J(L2) modulo
canonical embedding. This is what one would expect by the alternative def-
inition of L as the ideal lattice of the chopped lattice (L1 ∪ L2 : p1 = p2).
Since the paper is based on the Cmpv(L1 ∪ L2 : p1 = p2) approach, it seems
to be reasonable to give a formal proof. (Another reason is that the proof of
Lemma 12 will refer to this proof.)

Proof of Lemma 8. Let a ∈ J(L1). If p1 6≤ a, then ã = (a, 0) ∈ J(L) is evident.
Assume that p1 ≤ a, that is, ã = (a, p2). Let ~b = (b1, b2) and ~c = (c1, c2) be
elements of L such that ~b < ã and ~c < ã. We want to show that ~b ∨L ~c < ã.

If we had b1 = a, then b2 ≥ p2 would give ~b ≥ ã, a contradiction. Hence
b1 < a. Similarly, c1 < a. We know from a ∈ J(L1) that b1 ∨ c1 < a. Since
~b,~c < ã, we have b2, c2 ≤ p2.

If p1 6≤ b1 ∨ c1, then p1 6≤ b1, c1 and ~b,~c ∈ L yield that b2 = c2 = 0. Hence
~b ∨d ~c = (b1 ∨ c1, 0) ∈ L gives b ∨L ~c = (b1 ∨ c1, 0) < ã, indeed.

If p1 ≤ b1 ∨ c1, then ã = (a, p2), and ã > (b1 ∨ c1, p2) ∈ L together with
~b,~c ≤ (b1 ∨ c1, p2) yields that ã > ~b ∨L ~c. Thus, ã ∈ J(L). The case of
a ∈ J(L2) is analogous. So, we have seen that J(L) ⊇ {ã :a ∈ J(L1)∪J(L2)}.

To show the reverse inclusion, let ~x = (x1, x2) ∈ J(L). Then x1 = a1∨· · ·∨
ak and x2 = b1 ∨ · · · ∨ b` for some a1, . . . , ak ∈ J(L1) and b1, . . . , b` ∈ J(L2);
here k, ` ≥ 0. Since ai ≤ x1, we have ãi ≤ x̃1 ≤ ~x. Similarly, b̃j ≤ ~y. Hence

~x ≤ ã1 ∨d · · · ∨d ãk ∨d b̃1 ∨d · · · ∨d b̃`

≤ ã1 ∨L · · · ∨L ãk ∨L b̃1 ∨L · · · ∨L b̃` ≤ ~x

So, the above inequalities are equalities, and the reverse inclusion follows. �

Figure 3. Q0 = (M3 ∪ T0 : q′1 = p′1)

Let M3 be the left-hand lattice in Figure 1. (Notice that Mk, the modular
lattice of length two with k atoms would also do for each k ≥ 3.) Define the
chopped lattice Q0 = (M3 ∪ T0 : q′1 = p′1), see Figure 3, and let

Q∗ = [M3 ∪ T0 : q′1 = p′1] = CmpvQ0.
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We have canonical embeddings of M3 and T0 into Q∗, see (4). In the spirit of
these embeddings, we will write p and q instead of p̃ = (p, 0) and q̃ = (0, q).
Notice that Q∗ consists of 22 elements and, without the previous lemmas, it
would be tedious to check its properties in the straightforward way.

Lemma 9. Q∗ = (Q∗,∧,∨, p, q) is a perfect gadget.

Proof. Using the fact that T0 = (T0, p
′
1, q) is a basic gadget, it is easy to see that

the chopped lattice Q0 has only one non-trivial congruence, the congruence
denoted by dotted ovals. Using Lemma 3, we conclude that (Q∗,∧,∨, p, q)
is a basic gadget. Based on (1), it is evident that T0 is semimodular. By
Lemma 5, Q∗ is a semimodular lattice. By Lemma 8, J(Q∗), as an order, is
(isomorphic to) J(Q0), the black-filled elements in Figure 3. Hence Q∗ is an
almost-geometric lattice, that is, (20) holds for Q∗. The black-filled elements
give (21). Since p′1 6∼ q in T0, Lemma 7 yields p 6∼ q, that is, (19). Hence
(Q∗,∧,∨, p, q) is a perfect gadget. �

For i = 1, 2, let Li be a finite semimodular lattice, and let pi 6∼ qi be atoms
of Li. By the identifications 01 = 02, p1 = p2, q1 = q2 and p1 ∨ q1 = p2 ∨ q2,
see (18), we obtain a chopped lattice

(L1 ∪ L2 : p1 = p2, q1 = q2),

which is called a biatomic merging of the lattices L1 and L2. Then the lattice

[L1 ∪ L2 : p1 = p2, q1 = q2] := Cmpv(L1 ∪ L2 : p1 = p2, q1 = q2) (22)

is called a biatomic amalgam of L1 and L2. Let us emphasize that this termi-
nology supposes that L1 and L2 are finite semimodular lattices and pi 6∼ qi for
i = 1, 2.

As usual, x̃ denotes the image of x ∈ Li under the canonical Li 7→ [L1∪L2 :
p1 = p2, q1 = q2] embedding. For example, if a ∈ A(L1) \ {p1, q1}, then
ã = (a, 0). However, p̃1 = ~p = (p1, p2) = p̃2 and q̃1 = ~q = (q1, q2) = q̃2.
Sometimes we identify x and x̃. For any subscript s occuring in the next
lemma, the covering relation in Ls will be denoted by ≺s, while that in L

and L1 × L2 will be denoted by ≺L and ≺d, respectively. Analogous notation
applies for the join operation.

Lemma 10. Let L = [L1 ∪ L2 : p1 = p2, q1 = q2], Lp = [L1 ∪ L2 : p1 = p2],
and Lq = [L1 ∪ L2 : q1 = q2]; note that L = Lp ∩ Lq . Let ~e, ~f ∈ L. Then
~e ≺L

~f iff exactly one of the following three possibilities holds:

~e ≺d
~f ; (23)

~e ≺p
~f, ~e 6≥ ~p and ~f = ~e ∨d ~p = ~e ∨L ~p ; (24)

~e ≺q
~f, ~e 6≥ ~q and ~f = ~e ∨d ~q = ~e ∨L ~q . (25)
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Further,

if ~p 6≤ ~e and ~p 6≤ ~f , or ~p ≤ ~e and ~p ≤ ~f , then ~e ≺L
~f iff ~e ≺q

~f , (26)

if ~q 6≤ ~e and ~q 6≤ ~f , or ~q ≤ ~e and ~q ≤ ~f , then ~e ≺L
~f iff ~e ≺p

~f . (27)

According to Lemma 10, each covering pair ~e ≺L
~f in L has a unique type.

Namely, if (23), (24) or (25) holds, then we will say that ~e ≺L
~f is of type

d, type p or type q, respectively. Notice that by (14) applied to Lp, (24) is
equivalent to the conjunction of ~e 6≥ ~p and ~f = ~e ∨d ~p = ~e ∨L ~p. Similarly,
~e ≺q

~f can be omitted from (25).

Proof of Lemma 10. The second part, stating (26) and (27), is evident.
If (24), then ~e ≺L

~f follows from L ⊆ Lp and (14). Similarly, each of (23)
and (25) implies ~e ≺L

~f , evidently.
The conjunction of (24) and (25) contradicts to p1 6∼ q1 (and also to p2 6∼

q2). Hence it is easy to see that no two of the conditions (23), (24) and (25)
can hold simultaneously.

Next, we assume that ~e ≺L
~f . We also assume that (23) fails. We want to

show that either (24) or (25) holds. If ~p ≤ ~e or ~p 6≤ ~f , then (26), combined
with (14) for Lq , yields (25). Similarly, if ~q ≤ ~e or ~q 6≤ ~f , then (27), combined
with (14) for Lp, yields (24). Therefore, we can assume that

~p 6≤ ~e, ~q 6≤ ~e, ~p ≤ ~f and ~q ≤ ~f .

We can also assume that ~e 6≺p
~f , since otherwise (14) for Lp would imply (24).

Since ~e ≺p ~e ∨d ~p by (14) for Lp, we see that ~e ∨d ~p 6= ~f . Hence ~e < ~e ∨d ~p < ~f .
We obtain from ~e ≺L

~f that ~e ∨d ~p is not in L. However, it is clearly in Lp,
so ~e ∨d ~p /∈ Lq . Hence there are i and j such that {i, j} = {1, 2}, ei ∨ pi ≥ qi

and ej ∨ pj 6≥ qj. Therefore, (pi, ei, qi) is a perspective triple by Lemma 6, a
contradiction. �

Lemma 11. Every biatomic amalgam is a semimodular lattice.

Proof. Motivated by (1), we consider a lower covering square H in L. We use
the notations given in (15) and (16). In particular, ~w := ~y ∨d ~z. If ~p ≤ ~x or
~p 6≤ ~v, then H is a covering square in Lq by (26) and Lemma 5, whence H is
a covering square in L as well. Since the same argument works for q instead
of p, we can assume that

~p 6≤ ~x , ~q 6≤ ~x , ~p ≤ ~v , and ~q ≤ ~v .

There are nine cases according to the types of ~x ≺L ~y and ~x ≺L ~z. However,
we have to deal only with the following four cases, since the rest are obviously
settled by p-q and y-z symmetries.

Case 1: ~x ≺d ~y and ~x ≺d ~z. Assume the x1 6= y1. (The other case, x2 6= y2
is quite the same.). Then x1 ≺ y1 and ~y = (y1, x2). Since ~y ∈ L, we have
p1, q1 6≤ y1.
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Subcase 1.1: z2 6= x2. Then ~z = (x1, z2) ∈ L and x2 ≺ z2 . Since ~z ∈ L,
we see that p2, q2 6≤ z2. Hence ~w = (y1, z2) ∈ L, so ~v = ~w. Since ~y, ~z ≺d ~w, we
obtain that ~y, ~z ≺L ~v. Hence H is a covering square in L, as desired.

Subcase 1.2: z2 = x2. Then x1 ≺ z1 6= y1, ~z = (z1, x2), ~w = (y1 ∨ z1, x2),
y1 ≺ w1 and z1 ≺ w1.

Sub-subcase 1.2.1: p1 6≤ w1 and q1 6≤ w1. Then ~w ∈ L, so ~v = ~w, and
~y, ~z ≺d ~w implies that H is an upper covering square in L.

Sub-subcase 1.2.2: p1 ≤ w1 and q1 ≤ w1. Then y1 ≺ w1 and y1 ≺ y1 ∨p1 ≤
w1 gives y1 ∨ p1 = w1. Since the same holds for q1, we obtain that (p1, y1, q1)
is a perspective triplet, which contradicts p1 6∼ q1. Hence this sub-subcase is
excluded.

Sub-subcase 1.2.3: p1 ≤ w1 and q1 6≤ w1. Then we obtain w1 = y1 ∨ p1 =
z1 ∨ p1 from y1, z1 ≺ w1. Let ~u := ~w ∨d ~p = (w1, x2 ∨ p2).

Firstly, assume that ~u ∈ L. Then, since ~u = ~w ∨d ~p ≤ ~v, we have that
~v = ~u. Hence ~q ≤ ~v gives that q2 ≤ v2 = u2 = x2 ∨ p2, and Lemma 6 implies
that (p2, x2, q2) is a perspective triplet, a contradiction.

Secondly, assume that ~u /∈ L. Then ~u /∈ Lq. Since q1 6≤ w1 = u1, we see
that q2 ≤ u2 = x2 ∨ p2. Hence (p2, x2, q2) is a perspective triplet by Lemma 6
again, a contradiction. Thus, Sub-subcase 1.2.3 is excluded

Sub-subcase 1.2.4: p1 6≤ w1 and q1 ≤ w1. By ~p -~q symmetry, the argument
for Sub-subcase 1.2.3 excludes this sub-subcase as well.

Case 2: ~x ≺d ~y and ~x ≺p ~z. Let, say, y1 6= x1. Then x1 ≺ y1 and
~y = (y1, x2). Since ~z = (x1∨p1, x2∨p2), we get that ~w = (y1∨p1, x2∨p2). The
covering ~x ≺L ~z is not of type q by Lemma 10, so q2 6≤ z2 = w2. From y2 = x2

and ~y ∈ L we obtain that p1 6≤ y1 and q1 6≤ y1. If we had q1 ≤ w1 = y1 ∨ p1,
then (p1, y1, q1) would be a perspective triplet by Lemma 6. Hence q1 6≤ w1,
and we see that ~w ∈ L, so ~v = ~w. The semimodularity of L1 × L2 and ~x ≺d ~y

yields that ~z ≺d ~w = ~v. Part (24) of Lemma 10 implies ~y ≺L ~y ∨d ~p = ~w = ~v.
Hence H is a covering square in L.

Case 3: ~x ≺p ~y and ~x ≺p ~z. This would imply ~p ≤ ~x, so this case has been
excluded.

Case 4: ~x ≺p ~y and ~x ≺q ~z. Then ~y = ~x ∨d ~p, ~z = ~x ∨d ~q, and ~w =
~y ∨d ~z = ~y ∨d ~q and, similarly, ~w = ~z ∨d ~p. Since ~w ∈ L, we conclude that
~v = ~w. The covering ~x ≺L ~z is not of type p and ~p 6≤ ~x, so we get that ~p 6≤ ~z.
Similarly, ~q 6≤ ~y. Hence (24) and (25) yield that ~z ≺L ~w = ~u and ~y ≺L ~w = ~u,
respectively. This means that H is an upper covering square in L. �

The “biatomic” counterpart of Lemma 8 will need condition (28). Note
that p̃1 = p̃2 = (p1, p2) and q̃1 = q̃2 = (q1, q2) will be denoted by ~p and ~q,
respectively.

Lemma 12. Let L = [L1 ∪ L2 : p1 = p2, q1 = q2] = Cmpv(L1 ∪ L2 : p1 =
p2, q1 = q2) be a biatomic amalgam. Assume that

J(Li) ∩ ↑pi = {pi} and J(Li) ∩ ↑qi = {qi} for i = 1, 2. (28)
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Then

• J(L) = {ã :a ∈ J(L1) ∪ J(L2)}.
• If, in addition, L1 and L2 are almost-geometric, then L is almost geomet-

ric and
J(L) ∩ ↑~p = {~p} and J(L) ∩ ↑~q = {~q}. (29)

Proof. If a = p1, then ã = (p1, p2) ∈ J(L) is trivial. In fact, ã ∈ A(L).
Similarly, q̃1 ∈ J(L). Let a ∈ J(L1) \ {p1, q1}. Then

ã = (a, 0) (30)

by (28), whence ã ∈ J(L) again. Similarly, ã ∈ J(L) for every a ∈ J(L2).
Hence J(L) ⊇ {ã :a ∈ J(L1) ∪ J(L2)}.

Before dealing with the reverse inclusion, we show that

if ~x = (x1, x2) ∈ L, then x̃1 ≤ ~x and x̃2 ≤ ~x. (31)

Indeed, combining the definition of a biatomic amalgam with (4), we obtain
that the canonical embedding of L1 into L sends x1 to

x̃1 :=





(x1, 0) if p1 6≤ x1 and q1 6≤ x1

(x1, p2) if p1 ≤ x1 and q1 6≤ x1

(x1, q2) if p1 6≤ x1 and q1 ≤ x1

(x1, p2 ∨ q2) if p1 ≤ x1 and q1 ≤ x1

.

This implies (31). Armed with (31), the reverse inclusion follows exactly the
same way as in the proof of Lemma 8.

Finally, the second part of the lemma is an evident consequence of the first
part and (30). �

Lemma 13. Let L = [L1 ∪ L2 : p1 = p2, q1 = q2] = Cmpv(L1 ∪ L2 : p1 =
p2, q1 = q2) be a biatomic amalgam. For i = 1, 2, let Bi ⊆ A(Li) be a set of
pairwise non-perspective atoms such that {pi, qi} ⊆ Bi.

• If a, b ∈ Bi and a 6= b, then ã 6∼ b̃ in L.
• If a ∈ B1, b ∈ B2 and ã 6= b̃, then ã 6∼ b̃ in L.

Proof. Assume, by way of contradiction, that (ã, ~x, b̃) ∈ L3 is a perspective
triplet. Let ~y = ã ∨L ~x = b̃ ∨L ~x. Since ã, b̃ ∈ A(L) and L is semimodular by
Lemma 11, ~x ≺L ~y. Since p̃1 = p̃2 = (p1, p2) = ~p and q̃1 = q̃2 = ~q, there are
only four essentially different cases.

Case a = p1 and b = q1. Then, in L, we have ã = p̃1 = (p1, p2) = ~p and
b̃ = (q1, q2) = ~q. Since p̃ 6≤ ~x and ~p ≤ ~y, the covering ~x ≺L ~y is of type p, see
Lemma 10. Similarly, it is of type q, contradicting the uniqueness of types.

Case a = p1 and b ∈ L1 \ {p1, q1}. Then b̃ = (b, 0) ∈ L. Since type p is the
only possibility for ~x ≺L ~y, we have ~y = (x1 ∨ p1, x2 ∨ p2). Hence b ≤ x1 ∨ p1,
and Lemma 6 yields that (b, x1, p1) is a perspective triplet. This contradicts
b 6∼ p1.
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Case a, b ∈ L1 \ {p1, q1}. Then ã = (a, 0) and b̃ = (b, 0). If the covering
x ≺L y is of type d, then (a, x1, b) ∈ L3

1 is a perspective triplet, a contradiction.
Hence we can assume that this covering is of type p, that is, ~y = (x1 ∨ p1, x2 ∨
p2). Then b ≤ y1 = x1 ∨ p1, and Lemma 6 leads to the perspectivity of the
triplet (b, x1, p1), a contradiction again.

Case a ∈ L1 and b ∈ L2. Then ã = (a, 0) and b̃ = (0, b). Since ã ∨d ~x =
(a ∨ x1, x2) and b̃ ∨d ~x = (x1, b ∨ x2) are incomparable elements of L1 × L2

between ~x and ~y, the covering ~x ≺L ~y cannot be of type d. Hence, say, ~x ≺p ~y,
whence (a, x1, p1) ∈ L3

1 is a perspective triplet by Lemma 6. This contradicts
a 6∼ p1. �

Before stating the next lemma, recall that M∧
0 = {0, a1, . . . , an} and Gm ={

(b1, c1), . . . , (bm, cm)
}

are defined in (5) and (6). Assume that (a, b) such that
a 6= b ∈ {a1, . . . , an} and {(a, b), (b, a)} ∩ Gm = ∅. Let (bm+1, cm+1) = (a, b),
and let

Gm+1 = Gm ∪ {(a, b)} =
{
(b1, c1), . . . , (bm+1, cm+1)

}
.

Assume that Si are finite semimodular lattices, and pi, qi ∈ A(Si) such that
pi 6∼ qi, for i = 1, . . . ,m + 1. Then, based on Gm, the chopped lattice Cm is
defined in (7). Let Cm+1 denote the analogously defined chopped lattice based
on Gm+1; notice that Gm is a sub-chopped-lattice of Gm+1.

Lemma 14. With the notations and assumptions of the paragraph above, let
Lm = CmpvCm, the 1960-amalgam given in (8), and let Lm+1 = CmpvCm+1

be understood analogously.

• Lm is a semimodular lattice, and a1, . . . , an are pairwise non-perspective
atoms in Lm.

• CmpvCm+1
∼= [Sm+1 ∪ CmpvCm : pm+1 = a, qm+1 = b].

Proof. For ai ∈ M∧
0 , the canonical embedding of M∧

0 into Lm allows us to say
ai ∈ Lm; however, we often use ãi ∈ Lm to denote the same element. The
number n of the atoms of M∧

0 is fixed. Let

H(m)

denote the first statement of the lemma. We prove H(m) by induction on
m. Note that (32) will settle the second part of the lemma. The initial step
of the induction, m = 0, is evident, because L0 is the Boolean lattice with
A(L0) = {a1, . . . , am}.

Let us assume that H(m) holds. To ease the notation, let

C′ = Cm and L′ = Lm = CmpvC′.
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By the induction hypothesis, L′ is a semimodular lattice and a1, . . . , an are
pairwise non-perspective atoms of L′. Let

U = {u ∈ MaxC′ :a ≤ u},
V = {v ∈ MaxC′ : b ≤ v}, and

W = {w ∈ MaxC′ :a 6≤ w, b 6≤ w}.

Then MaxC′ = U ∪V ∪W , see Figure 4. (Figure 4 tries to depict the general
case, some of its parts may be missing.) Notice that each x ∈ MaxC′ is
either the top element of some Si occurring in (7) or x ∈ {a1, . . . , an}. Since
(a, b) /∈ Gm, we see that U , V and W are pairwise disjoint. We denote the
greatest element of S := Sm+1 by g, and pm+1 and qm+1 by p and q. Remember
that p and q are non-perspective atoms of S. Let C = Cm+1, see Figure 5,
and L = Lm+1 = CmpvC. Notice that C = C′ ∪ S with the identifications
0C′ = 0S , a = p and b = q. We have to show H(m + 1).

Let ~u = (u1, u2 . . .), ~v = (v1, , v2, . . .) and ~w = (w1, w2, . . .) be fixed enu-
merations of U , V and W , respectively. (Notice that some of these vectors can
be empty.) Then L′ = CmpvC′ consists of compatible vectors (~x, ~y, ~z) where
xi ≤ ui, yj ≤ vj and zk ≤ wk for all meaningful i, j, k, see Figure 4. Consider
the biatomic amalgam

K = [S ∪ L′ : p = a, q = b] = Cmpv(S ∪ L′ : p = a, q = b).

It suffices to show that
there exists a lattice isomorphism ϕ : K → L

such that ϕ acts identically on M∧
0 .

(32)

Indeed, in virtue of Lemmas 11 and 13, H(m) and (32) will imply H(m + 1).
Moreover, (32) will clearly yield the second part of Lemma 14.

Apart from a-b-symmetry, there are three cases.

Figure 4. The chopped lattice C′ = Cm in Case 1

Case 1: a /∈ U and b /∈ V . We know that K consists of compatible vectors

~α = (t,~γ) = (t, (~x, ~y, ~z)), where t ∈ S and ~γ = (~x, ~y, ~z) ∈ L′; (33)

see Figure 4 for an illustration. (Note that, say, ↓w1 ∩ ↓u1 = {0, a1}; the
darker “common area” indicates disjointness.) On the other hand, MaxC =
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{g} ∪ U ∪ V ∪W , see Figure 5. Hence L = CmpvC consists of compatible
vectors

~β = (t, ~x, ~y, ~z) (34)

where t ≤ g, xi ≤ ui, yj ≤ vj and zk ≤ wk; see Figure 5. Keeping (33) and

Figure 5. The chopped lattice C = Cm+1 in Case 1

(34) in mind, we define

ϕ : K → L, ~α 7→ ~β and ψ : L → K, ~β 7→ ~α.

We have to show that ϕ maps into L and ψ maps into K, that is, both ϕ and
ψ send compatible vectors to compatible vectors. If this is shown, then ϕ and
ψ are clearly lattice isomorphisms, since they are reciprocal order-preserving
bijections.

Assume that ~α is compatible, that is, ~α ∈ CmpvC. Since ~γ ∈ L′, all
components of ~β but t are evidently “compatible” in the sense of (2), see also
(3). (Indeed, for example, consider xi and zk. If ui ∧wk = 0, then xi and zk

are always compatible. Otherwise, ui ∧ wk is an atom a` of C′ that belongs
to M∧

0 . Since ~γ ∈ L′, either a` ≤ xi, zk or a` 6≤ xi, zk, and xi and zk are
compatible components of ~β in both cases.)

We have to show that t is compatible with the rest of components of ~β.
Since g ∧wk = 0, it is clear that t and zk are compatible.

Consider t and xi, and remember that g ∧ ui = a. Firstly, if a ≤ t in C,
then p ≤ t in S. Since ~α is compatible, ã ≤ ~γ in L′. Here ã = (a, . . . , a,~0,~0)
by (4). Hence a ≤ xi, as desired. Secondly, if a 6≤ t in C, then p 6≤ t in S.
The compatibility of ~α yields that ã 6≤ ~γ in L′. Hence a 6≤ x` for some `. But
~γ ∈ L′ implies that xi and x` are compatible, whence a 6≤ xi, as desired. So,
t and xi are compatible.

Since a and b play symmetric roles, t and yj are compatible as well, and we
conclude that ~β is compatible.

Conversely, assume that ~β is compatible. Then ~γ = (~x, ~y, ~z) is clearly
compatible, so it belongs to L′. By symmetry, it suffices to check the com-
patibility of ~α “with respect to p = a ”. Firstly, suppose that p ≤ t in S.
Then a ≤ t in C, whence β ∈ L implies that a ≤ xi for all meaningful i.
So ã = (a, . . . , a,~0,~0) ≤ ~γ, as desired. Secondly, suppose that p 6≤ t in S.
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Then a 6≤ t in C, whence β ∈ L implies that a 6≤ xi for all meaningful i. So
ã = (a, . . . , a,~0,~0) 6≤ ~γ. This shows that ~α ∈ K, indeed.

Figure 6. The chopped lattice C′ = Cm in Case 2

Case 2: a ∈ U and b /∈ V . Then U = {a}, and K consists of compatible
vectors

~α = (t,~γ) = (t, (x, ~y, ~z)), where t ∈ S and ~γ = (x, ~y, ~z) ∈ L′, (35)

see Figure 6. Here x ∈ {0, a}. Since MaxC = {g} ∪ V ∪W , we know that
L = CmpvC consists of compatible vectors

~β = (t, ~y, ~z), (36)

see Figure 7. Let us define

ϕ : K → L, ~α 7→ ~β

ψ : L→ K, ~β 7→ ~α, where x = a ∧ t (in C).

Figure 7. The chopped lattice C = Cm+1 in Case 2

Assume that ~α is compatible; we have to show that so is ~β. The compatibil-
ity of the (~y, ~z) part of ~β is clear. So is the compatibility of t and zk. Observe
that b ≤ t in C iff q ≤ t in S iff b̃ = (0, b, . . . , b,~0) ≤ ~γ iff b ≤ yj for all j.
However, b ≤ yj for all j iff b ≤ yj for some j, since ~γ ∈ L′. This shows that
~β is compatible.
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Conversely, assume that ~β is compatible. Clearly, no matter if x = a ∧ t is
0 or a, the vector ~γ is compatible. Since

p ≤ t (in S) ⇐⇒ a ≤ t (in C) ⇐⇒ a = a ∧ t (in C)

⇐⇒ a = x (in C) ⇐⇒ a ≤ x (in C′)

⇐⇒ ã = (a,~0,~0) ≤ (x, ~y, ~z) = ~γ (in L′),

(37)

we conclude that t and ~γ are compatible with respect to p = a. Further, q ≤ t

in S iff b ≤ t in C iff b ≤ yj for all j iff b̃ = (0, b, . . . , b,~0) ≤ ~γ, which shows that
t and ~γ are compatible with respect to q = b as well. Hence ~α is compatible,
that is, ~α ∈ K, indeed.

Finally, to derive that ϕ is injective (equivalently, ϕ is the inverse of ψ), we
have to show that if ~α in (35) is compatible, then x is determined by t. But
this is evident, since x ∈ {0, a}, and p ≤ t in S iff (a,~0,~0) = ã ≤ ~γ = (x, ~y, ~z).

Case 3: a ∈ U and b ∈ V . Then U = {a}, V = {b}, and K consists of
compatible vectors

~α = (t,~γ) = (t, (x, y, ~z)), where t ∈ S and ~γ = (x, y, ~z) ∈ L′. (38)

Here x ∈ {0, a} and y ∈ {0, b}. Since MaxC = {g} ∪ W , we know that
L = CmpvC consists of compatible vectors

~β = (t, ~z) (39)

Let us define

ϕ : K → L, ~α 7→ ~β

ψ : L → K, ~β 7→ ~α, where x = a ∧ t and y = b ∧ t (in C);

Let ~α ∈ K. Since t and zi are always compatible, β ∈ L is evident. Moreover,
like in Case 2, t in (38) determines x and y.

Conversely, let ~β ∈ L. Then ~γ ∈ L′. An argument analogous to (37)
together with a-b symmetry gives that t and ~γ are compatible, whence ~α ∈
K. �

Lemma 15. Assume that (Si,∧,∨, pi, qi) is a perfect gadget for each i ∈
{1, . . . ,m}. Then the 1960-amalgam Lm of these Si, see (8), is an almost-
geometric lattice. Moreover, ↑ai ∩ J(Lm) = {ai} for i = 1, . . . , n.

Proof. The case m = 0, the finite Boolean algebra case, is evident. Suppose the
statement holds for Lm = CmpvCm. Combining the second part of Lemma 14
with Lemma 12, we obtain the statement for Lm+1. �

Proof of Theorem 1. Let G := Con−1(D,Q∗), see (10) and Lemma 9. Then G
is a finite almost-geometric lattice by Lemma 15, and D ∼= ConG by Lemma 4.

�
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3. Historical remarks

A classical theorem of R.P. Dilworth [2] states that each finite distributive
lattice is isomorphic to ConL for an appropriate finite lattice. Since 1962,
when the first proof of the above theorem was published by G. Grätzer and the
second author [10], very many stronger results have been proved. Grätzer [4]
gives an excellent survey up to 2005, so we mention only a few milestones,
focusing only on those results that yield an appropriate L with some nice
additional properties.

The proof in [10] produces a sectionally complemented L. Atomic amal-
gams (of finitely many lattices) play an important role in [10]. According to
a nontrivial result of G. Grätzer, H. Lakser and M. Roddy [6], “non-atomic”
amalgams need not preserve sectional complementedness. In our case, even less
amalgams are appropriate, because [T0∪T0 : p′1 = p′1] is clearly not an almost-
geometric lattice. Unfortunately, the present result cannot be combined with
[10], since a finite sectionally complemented almost-geometric lattice is neces-
sarily geometric and, therefore, simple.

Let n = |J(D)]. Another nice property of L is that |L|, the size of L, is small
compared with n. The present paper and [10] produce L with exponential size.
The best construction yields a planar L of size O(n2), see [7]. G. Grätzer,
H. Lakser and N. Zaguia [9] proved that we cannot do essentially better if
planarity is dropped.

If we require semimodularity, then L of size O(n3) can be constructed, see
[8]. Unless some additional property like that in Grätzer and Knapp [5] is
added, we do not know if O(n3) is optimal for the semimodular case.

Infinite distributive lattices are much less pleasant. Solving a very old prob-
lem, F. Wehrung [14] has recently constructed an infinite distributive algebraic
lattice D such that D ∼= ConL holds for no lattice L. His lattice has at least
ℵω+1 compact elements. A smaller D with ℵ2 compact elements is given by
P. Ružička[13]. This is the best result in this direction, because distributive
algebraic lattices with at most ℵ1 compact elements are of the form ConL by
A. P. Huhn [12].
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J.P.S. (eds) Birkhäuser, Boston (1990)

[3] Grätzer, G.: General Lattice Theory. Birkhäuser, Basel-Stuttgart (1978, 1998)
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Műegyetem rkp. 3, H-1521 Budapest, Hungary
e-mail : schmidt@math.bme.hu

URL: http://www.math.bme.hu/∼schmidt/


