TWO NOTES ON INDEPENDENT SUBSETS IN LATTICES

G. CZÉDLI and ZS. LENGVÁRSZKY (Szeged)*

The present paper deals with two kinds of independent subsets in lattices. A subset H of a lattice L is called weakly independent (cf. [1]) iff for all $h, h_1, h_2, ..., h_n \in H$ satisfying $h \le h_1 \lor h_2 \lor ... \lor h_n$ there is an $i \in \{1, 2, ..., n\}$ such that $h \le h_i$. Analogously, let us call a subset H of L *-independent iff for all $h, h_1, h_2, ..., h_n \in H$ satisfying $h = h_1 \lor h_2 \lor ... \lor h_n$ there is an $i \in \{1, 2, ..., n\}$ such that $h = h_i$. A maximal weakly independent subset, resp. maximal *-independent subset, is called a weak basis, resp. *-basis, of L.

Denoting the set of join-irreducible elements of a lattice L by $J_0(L)$, it is well-known that

THEOREM A (cf., e.g., Grätzer [2]). For every maximal chain C in a finite distributive lattice L, $|J_0(L)| = |C|$.

As $J_0(L)$, provided L is distributive, and every maximal chain are always weak bases of finite lattices (cf. [1]), the following assertion is a generalization of Theorem A.

THEOREM B ([1]). Any two weak bases of a finite distributive lattice have the same number of elements.

Our first goal is to present another generalization of Theorem A. First we observe that, for every maximal chain $C = \{0 = c_0 < c_1 < c_2 < ... < c_{n-1} < c_n = 1\}$ in an arbitrary finite lattice L, $|J_0(L)| \ge |C|$. Indeed, let $H_0 = \{0\}$ and, for $i \in \{1, 2, ..., n\}$, let H_i be the set of minimal elements of $(c_i] \setminus (c_{i-1}]$. Then the H_i are pairwise distinct and nonempty, and $H_0 \cup H_1 \cup ... \cup H_n \subseteq J_0(L)$. Therefore the equality in Theorem A is equivalent (modulo lattice theory) to the inequality $|J_0(L)| \le |C|$. As $J_0(L)$ and all maximal chains are *-bases of a finite lattice L, the following statement generalizes Theorem A, indeed.

Theorem 1. Every *-basis of a finite distributive lattice L has at least $|J_0(L)|$ elements.

It was observed in [1] that Theorem B fails to hold for all finite modular lattices. However, modularity is still relevant as we have

THEOREM 2. If any two weak bases of a finite lattice L have the same cardinality then L is modular.

^{*} The authors' work was partially supported by Hungarian National Foundation for Scientific Research Grant No. 1813.

and

PROOF OF THEOREM 1. Let H be a *-basis of L. It suffices to give a map φ from $J_0(L)$ into P(H), the power set of H, such that $x\varphi \neq \emptyset$ and $x\varphi \cap y\varphi = \emptyset$ for any two distinct $x, y \in J_0(L)$. Define φ as follows. For $x \in J_0(L)$ put $x\varphi = \{x\}$ if $x \in H$ and put

 $x\varphi = \{h \in H: \text{ there is a positive integer } n \text{ and there are } h_1, h_2, ..., h_n \in H \text{ such that } h \in \{x, h_1, h_2, ..., h_n\} \text{ and } h = x \lor h_1 \lor h_2 \lor ... \lor h_n\}$

if $x \notin H$. As H is a maximal *-independent subset, $x\varphi$ is never empty. To check $x\varphi \cap y\varphi = \emptyset$ for $x \neq y \in J_0(L)$, the following three cases have to be considered. If $x, y \in H$ then $x\varphi \cap y\varphi = \emptyset$ is evident. If $x \notin H$ and $y \in H$ but $x\varphi \cap y\varphi \neq \emptyset$ then $y \in x\varphi$. Thus $y = x \lor h_1 \lor h_2 \lor \dots \lor h_n$ and $y \notin \{x, h_1, h_2, \dots, h_n\}$ for some $h_1, h_2, \dots, h_n \in H$, which contradicts $y \in J_0(L)$. If $x \notin H$ and $y \notin H$ but $x\varphi \cap y\varphi \neq \emptyset$, say $h \in x\varphi \cap y\varphi$, then there are a_1, a_2, \dots, a_m , $b_1, b_2, \dots, b_n \in H$ such that $x \lor a_1 \lor a_2 \lor \dots \lor a_m = h = y \lor b_1 \lor b_2 \lor \dots \lor b_n$ and $h \notin \{x, a_1, a_2, \dots, a_m\} \cup \{y, b_1, b_2, \dots, b_n\}$. We may assume that $x \not\equiv y$. Then, by distributivity, $x = x \land h = x \land (y \lor b_1 \lor b_2 \lor \dots \lor b_n) = (x \land y) \lor \lor (x \land b_1) \lor (x \land b_2) \lor \dots \lor (x \land b_n)$. As $x \in J_0(L)$ and $x \ne x \land y$, we infer $x = x \land b_i$, i.e. $x \leqq b_i$, for some $i \in \{1, 2, \dots, n\}$. Hence $h = b_i \lor h = b_i \lor x \lor a_1 \lor a_2 \lor \dots \lor a_m = b_i \lor a_1 \lor a_2 \lor \dots \lor a_m$. The *-independence of H yields $h \in \{b_i, a_1, a_2, \dots, a_m\}$, a contradiction. Q.e.d.

PROOF OF THEOREM 2. In order to recall a result from Jakubík [3], let us call a sublattice S of a lattice L a c-sublattice of L iff for any $u, v \in S$ whenever v covers u in S then v covers u in L. What we need here is only the following weakened version of Jakubík [3, Theorem 1; note the misprint, "sublattice" should be "c-sublattice"]: If a finite lattice L is not modular then L includes a c-sublattice S such that S has a four element chain and either 1_S , the greatest element of S, is the join of two atoms of S or 0_S is the meet of two coatoms of S.

Now suppose L is a finite non-modular lattice and consider an above-mentioned c-sublattice S. Let

$$\{0_L = c_0 < c_1 < c_2 < \dots < c_{m-1} < c_m = 0_S\}$$

$$\{1_S = d_0 < d_1 < d_2 < \dots < d_{n-1} < d_n = 1_L\}$$

be maximal chains in the intervals $[0_L, 0_S]$ and $[1_S, 1_L]$, respectively $(0 \le m, n)$, and let D be an at least four element maximal chain in S. Then $C = \{c_0, c_1, ..., c_{m-1}\} \cup D \cup \{d_1, d_2, ..., d_n\}$ is a maximal chain in L, whence it is a weak basis of L. Now we distinguish two cases. (If both conditions hold, we can choose the first one.)

Case A. If $1_S = a_0 \vee a_1$ for some atoms a_0 and a_1 of S then put $G = \{0_S, a_0, a_1\}$. Case B. If $0_S = b_0 \wedge b_1$ for some coatoms b_0 and b_1 of S then put $G = \{0_S, b_0, b_1\}$. We claim that $H = \{c_0, c_1, ..., c_{m-1}\} \cup G \cup \{d_1, d_2, ..., d_n\}$ is a weak basis of L. It is easy to see that H is weakly independent, and we have to show that for every $x \in L \setminus H$ the subset $H \cup \{x\}$ is not weakly independent. Suppose the contrary, i.e., let $H \cup \{x\}$ be weakly independent for some $x \in L \setminus H$. We have $x \le d_0 = 1_S$ as otherwise $i = \min\{j: x \le d_j\}$ would be positive, and all the three possibilities i = 1 in Case A, i = 1 in Case B, i > 1 would contradict the weak independence of $H \cup \{x\}$ via $d_1 = a_0 \vee a_1 \vee x$, $d_1 = b_0 \vee b_1 \vee x$, $d_i = d_{i-1} \vee x$, respectively. Similarly, $x \ne c_m = 0_S$ as otherwise $c_k = c_{k-1} \vee x$, where $k = \min\{j: x \le c_j\}$, would be a con-

tradiction. In Case A, $x \le 1_S = a_0 \lor a_1$ implies $x \le a_i$ for some $i \in \{0, 1\}$. Since $x \ne 0_S$ and a_i covers 0_S in L, $0_S < 0_S \lor x \le a_i$ yields $a_i \le 0_S \lor x$, which contradicts the weak independence of H. In Case B, $x \ne 0_S = b_0 \land b_1$ yields $x \ne b_i$ for some $i \in \{0, 1\}$. As 1_S covers b_i and $x \le 1_S$, $1_S = b_i \lor x$. But then $b_{1-i} \le b_i \lor x$ implies $b_{1-i} \le x$. Hence $x \le 1_S = b_i \lor b_{1-i}$ contradicts the weak independence of $H \cup \{x\}$. Now we have seen that H is a weak basis, and the proof is complete by |H| < |C|.

Concluding remarks. Theorem 1 is sharp in the sense that the distributivity of L cannot be omitted and a *-basis may have more element than $J_0(L)$. The five element non-distributive modular lattice and the eight element Boolean lattice are appropriate counterexamples. However, we have the following open

PROBLEM. Does every *-basis of an arbitrary finite modular lattice L have at least |C| elements where C is a maximal chain in L?

An affirmative answer would be a generalization of Theorem 1. Modularity or some stronger assumption seems to be essential as we have the following example. Let $C = \{0 < a < 1\}$ be a three element chain, and insert a new element into each of the intervals [(0,0),(0,a)] and [(0,0),(a,0)] of C^2 . Then $\{(0,0),(0,1),(a,1),(1,0),(1,a)\}$ is a five element *-basis of the eleven element lattice L we obtained, albeit all maximal chains in L have exactly six elements.

References

- [1] G. Czédli, A. P. Huhn and E. T. Schmidt, Weakly independent subsets in lattices, *Algebra Universalis*, 20 (1985), 194—196.
- [2] G. Grätzer, General Lattice Theory, Akademie-Verlag (Berlin, 1978).
- [3] J. Jakubík, Modular lattices of locally finite length, Acta Sci. Math. (Szeged), 37 (1975), 79—82.

(Received August 26, 1986)

JATE BOLYAI INSTITUTE H—6720 SZEGED, ARADI VÉRTANÚK TERE 1. HUNGARY