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TWO NOTES ON INDEPENDENT SUBSETS
IN LATTICES

G. CZEDLI and ZS. LENGVARSZKY (Szeged)*

The present paper deals with two kinds of independent subsets in lattices.
A subset H of a lattice L is called weakly independent (cf. [1]) iff for all
h,hy, by, ..., h,€ H satisfying h=h,Vh,V...Vh, there is an ic{l, 2, ..., n} such that
h=h;. Analogously, let us call a subset H of L x-independent iff for all
h, hy, hy, ..., h,€ H satisfying h=h,Vhy,V...Vh, thereis an i€{l, 2, ..., n} such that
h=h;. A maximal weakly independent subset, resp. maximal x-independent subset,
is called a weak basis, resp. *-basis, of L.

Denoting the set of join-irreducible elements of a lattice L by J,(L), it is well-
known that

THEOREM A (cf., e.g., Gritzer [2]). For every maximal chain C in a finite dis-
~ tributive lattice L, |Jo(L)|=|C]|.

As Jo(L), provided L is distributive, and every maximal chain are always weak
bases of finite lattices (cf. [1]), the following assertion is a generalization of The-
orem A.

Tueorem B ([1]). Any two weak bases of a finite distributive lattice have the
same number of elements.

Our first goal is to present another generalization of Theorem A. First we observe
that, for every maximal chain C={0=c,<¢<cCy<...<¢,_;<c¢,=1} in an arbi-
trary finite lattice L, |Jo(L)|=|C|. Indeed, let H,={0} and, for i€{1,2,...,n},
let H; be the set of minimal elements of (¢;]\(c¢;-;]. Then the H; are pairwise dis-
tinct and nonempty, and H,UH,U...UH,SJ,(L). Therefore the equality in Theo-
rem A is equivalent (modulo lattice theory) to the inequality |Jo(L)|=|C|. As
Jo(L) and all maximal chains are *-bases of a finite lattice L, the following statement
generalizes Theorem A, indeed.

THEOREM l. Every *-basis of a finite distributive lattice L has at least |Jo(L)| ele-
ments.

It was observed in [1] that Theorem B fails to hold for all finite modular lattices.
However, modularity is still relevant as we have

THEOREM 2. If any two weak bases of a finite lattice L have the same cardinality
then L is modular. :
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Proor oF THeOREM 1. Let H be a »-basis of L. It suffices to give a map ¢
from J(L) into P(H), the power set of H, such that xp=0 and xpNye=0 for
any two distinct x, y€J,(L). Define ¢ as follows. For x€J,(L) put xp={x}
if x¢H and put

xp={hcH: there is a positive integer n and there are Ry, h,, ..., h,€H such
that h& {x-, h]_, hh! ET hn} aﬂd h=xVh1thV ...V hn}

if x¢{H. As H is a maximal *-independent subset, x¢ is never empty. To check
xpNyp=0 for xs¢peJy(L), the following three cases have to be considered. If
x, yeH then xoNyp=90 is evident. If x¢H and ycH but xeMNyp=8 then
yexp. Thus y=xVh VhyV...Vh, and y¢ {x, hy, hs, ..., h,} for some hy, hy, ..., h,€H,
which contradicts yeJy,(L). If x¢ H and y4dH but xeNye=0, say héxepye,
then there are ay,a,, ..., a,, b1, by, ..., 0,6 H such that xVa,Va,V..Va,=h=
=yVh Vb V..Vb, and h§{x,a,,as, ..., au}U{y, b1, bs, ..., b}. We may assume
that x=Zy. Then, by distributivity, x=xAh=xA(pVbiVhV...Vh)=(xAy)V
VARV (xAb)V...V(xAb,). As xeJy(L) and x=xAy, we infer x=xAb;, i.e.
x=b;, for some i€{l,2,...,n}. Hence h=bVh=bVxVa,\Va,V...Va,=bVaV
Va,V...Va,. The x-independence of H yields hc{b;, a;,a,, ..., a,}, a contradic-
tion. Q.e.d.

ProoF oF THEOREM 2. In order to recall a result from Jakubik [3], let us call
a sublattice S of a lattice L a c-sublattice of L iff for any u, v€ S whenever v covers
u in S then v covers u in L. What we need here is only the following weakened ver-
sion of Jakubik [3, Theorem 1; note the misprint, “sublattice™ should be “c-sub-
fattice”]: If a finite lattice L is not modular then L includes a c-sublattice § such
that § has a four element chain and either 15, the greatest element of §, is the join
of two atoms of S or O is the meet of two coatoms of S. ‘

Now suppose L is a finite non-modular lattice and consider an above-mentioned
c-sublattice S. Let

{0, =co<¢,<c3<..<Cp_y<Cp=0s}
and . .
{]s = do - d1 - d2 - L. dn—l - du = IL}
be maximal chains in the intervals [0;,05] and [lg, 1.], respectively (0=m,n),
and let D be an at least four element maximal chain in S. Then C={c,, €3, ... Cu_1}U
UpU{d,, d,, ..., d,} is a maximal chain in L, whence it is a weak basis of L. Now
we distinguish two cases. (K both conditions hold, we can choose the first one.)

Case A. If 1g=qa,V a, for some atoms a, and a, of S then put G= {05, g, ali.

Case B. If 0g3=>byA b, for some coatoms b, and b, of § then put G={05, by, b1}.

We claim that H={e,, ¢;, ..., Cp1}UGU{d), de, ..., d,} is a weak basis of L.
It is easy to see that H is weakly independent, and we have to show that for every
x€LNH the subset HU{x} is not weakly independent. Suppose the contrary,
ie., let HU{x} be weakly independent for some xcI\H. We have x=dy=1s
as otherwise i=min {;j: x=d;} would be positive, and all the three possibilities
i=1 in Case A, i=1 in CaseB, i=1 would contradict the weak independence
of HU{x} via dy=aVa\Vx, dy=bVbVx, d;=d;_,Vx, respectively. Similarly,
x¥c,=0s as otherwise ¢,=c,_,Vx, where k=min {j: x=c,;}, would be a con-
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tradiction. In Case A, x=15=q,Va, implies x=ga; for some i€{0,1}. Since
x=£0s and q; covers Og in L, Og<0gVx=gq; yields a;=05Vx, which contradicts
the weak independence of H. In Case B, x#%£0g4=b,Ab, yields x=%b; for some
i€{0,1}. As 15 covers b; and x=1lg, lg=bh;Vx. But then b;_;=b;Vx implies
b, _;=x. Hence x=15=b,Vb,_; contradicts the weak independence of HU{x}.
Now we have seen that H is a weak basis, and the proof is complete by |H|<|C]|.

Concluding remarks. Theorem 1 is sharp in the sense that the distributivity
of L cannot be omitted and a *-basis may have more element than J,(L). The
five element non-distributive modular lattice and the eight element Boolean lattice
are appropriate counterexamples. However, we have the following open

ProBLEM. Does every x-basis of an arbitrary finite modular lattice L have
at least |C| elements where C is a maximal chain in L?

An affirmative answer would be a generalization of Theorem 1. Modularity
or some stronger assumption seems to be essential as we have the following example.
Let C={0<a<1} beathree element chain, and insert a new element into each of the
intervals [(0, 0), (0, @) and [(0, 0), (a, 0)] of C. Then {(0, 0), (0, 1), (a, 1), (1, 0), (1, @)}
is a five element *-basis of the eleven element lattice L we obtained, albeit all maxi-
mal chains in L have exactly six elements.
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