
Diagrams and rectangular extensions of planar
semimodular lattices
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Abstract. In 2009, G. Grätzer and E. Knapp proved that every planar semimodular
lattice has a rectangular extension. We prove that, under reasonable additional condi-

tions, this extension is unique. This theorem naturally leads to a hierarchy of special
diagrams of planar semimodular lattices. These diagrams are unique in a strong sense;

we also explore many of their additional properties. We demonstrate the power of
our new classes of diagrams in two ways. First, we prove a simplified version of our

earlier Trajectory Coloring Theorem, which describes the inclusion con(p) ⊇ con(q)
for prime intervals p and q in slim rectangular lattices. Second, we prove G.Grätzer’s

Swing Lemma for the same class of lattices, which describes the same inclusion more
simply.

1. Introduction

A planar lattice is a finite lattice that has a planar (Hasse) diagram. All

lattices in this paper are assumed to be finite. With the appearance of G.

Grätzer and E. Knapp [19] in 2007, the theory of planar semimodular lattices

became a very intensively studied branch of lattice theory. This activity is

witnessed by more than two dozen papers; some of them are listed in the Ref-

erences section while some others are discussed in the book chapter G. Czédli

and G. Grätzer [10].

The study of planar semimodular lattices and, in particular, slim planar

semimodular lattices is motivated by three factors.

First, these lattices are general enough; for example G. Grätzer, H. Lakser,

and E. T. Schmidt [21] proved that every finite distributive lattice can be repre-

sented as the congruence lattice of a planar semimodular lattice L. In addition,

one can also stipulate that every congruence of L is principal, see G. Grätzer

and E. T. Schmidt [23]. Even certain maps between two finite distributive lat-

tices can be represented; see G. Czédli [3] for the latest results in this direction,

and see its bibliography for many earlier results.
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Second, these lattices offer useful links between lattice theory and the rest

of mathematics. For example, G. Grätzer and J. B. Nation [22] and, by adding

a uniqueness part to it, G.Czédli and E. T. Schmidt [13], improve the classical

Jordan–Hölder theorem for groups from the nineteenth century. Also, these

lattices are connected with combinatorial structures, see G. Czédli [6] and [7],

and they raise interesting combinatorial problems, see G. Czédli, T. Dékány,

L. Ozsvárt, N. Szakács, and B. Udvari [8] and its bibliography.

Third, there are lots of tools to deal with these lattices; see, for exam-

ple, G.Czédli [2], [5], [6], G. Czédli and G. Grätzer [9], G.Czédli and E. T.

Schmidt [14], [15], and [16], and G. Grätzer and E. Knapp [19] and [20]; see

also G. Czédli and G. Grätzer [10], where most of these tools are discussed;

many of them are needed in this paper. Note at this point that some of the

available tools make it easy to see that our diagrams, with the exception of

Figure 5, define semimodular lattices; see, for example, G. Grätzer and E.

Knapp [19] or G.Czédli and E. T. Schmidt [14, Propositions 9 and 10 and

Theorems 11 and 12].

Target. The first goal is to extend a planar semimodular lattice to a unique

rectangular lattice. Definitions will be given soon. For a first impression on

our result, let D2 be the third lattice diagram given in Figure 1, consisting

of 34 empty-filled elements; if we add the three black-filled pentagon-shaped

elements together with the dotted edges to D2, then we obtain its rectangular

extension. While the existence of such an extension is known from G. Grätzer

and E. Knapp [20], its uniqueness needs some natural additional assumptions

and a nontrivial proof.

Figure 1. D0 ∈ C0 \ C1, D1 ∈ C1 \ C2, D2 ∈ C2 \ C3, and D3 ∈ C3

The second goal, motivated by the first one, is to associate a special diagram

with each planar semimodular lattice L. Besides the class C0 of planar dia-

grams of slim semimodular lattices, we define a hierarchy C0 ⊃ C1 ⊃ C2 ⊃ C3

of (classes of) diagrams. For a first impression, we present Figure 1, where

the black-filled pentagon-shaped elements do not belong to D2 and each of the

four diagrams determines the same planar semimodular lattice. Also, we list

some of the diagrams or lattices whose diagrams are depicted in the paper:

(i) In C1 \ C2, we have L and R of Figure 2 and Figures 6, 11, and 12.

(ii) In C2 \ C3, we have R̂ in Figure 2 and L1 and R1 in Figure 4.
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(iii) In C3, we have L2 and R2 in Figure 4, D and E in Figure 8, and

Figures 3 and 10.

Although the systematic study and several statements on C2, C3, even on

C0 and, mainly, on C1 are new, note that we often used diagrams from C1

and C2 previously. Choosing a smaller hierarchy class, the diagrams of L

become unique in a stronger sense. For example, in the plane of complex

numbers (with 0, 1 ∈ C fixed), a planar semimodular lattice has exactly one

diagram that belongs to C3. Besides introducing new diagrams, we prove

several useful properties for them. While C2 and C3 seem to have only some

aesthetic advantage over C1, the passage from C0 to C1 gives some extra insight

into the theory of planar semimodular lattices.

Finally, to demonstrate that our diagrams and the toolkit we elaborate are

useful, we improve the Trajectory Coloring Theorem from G.Czédli [5, Theo-

rem 7.3.(i)], which describes the ordered set of join-irreducible congruences of

a slim rectangular lattice. The improved version is based on C1; it is easier to

understand and apply the new version than the original one. As a nontrivial

joint application of the improved Trajectory Coloring Theorem and our toolkit

for C1, we prove G. Grätzer’s Swing Lemma for slim rectangular lattices. The

Swing Lemma gives a particularly elegant condition for con(p) ≥ con(q), where

p and q are prime intervals. Although we know from G. Grätzer [18] that this

lemma also holds for a larger class of lattices, the slim semimodular ones, the

lion’s share of the difficulty is to conquer the slim rectangular case.

Outline. The present section is introductory. In Section 2, we introduce the

concept of a normal rectangular extension of a slim semimodular lattice, and

state its uniqueness in Theorem 2.2. Also, this section contains some analysis

of this theorem and the way we prove it in subsequent sections. To make

the paper easier to read, some concepts and results are surveyed in Section 3.

Section 4 is devoted to the proof of Theorem 2.2, but many of the auxiliary

statements are of further interest. Namely, Lemma 4.1 on cover-preserving sub-

lattices of slim semimodular lattices, Lemmas 4.4 and 4.6 on join-coordinates,

Lemma 4.7 on the explicit description of normal rectangular extensions, and

Lemma 4.9 on the categorical properties of the antislimming procedure de-

serve separate mentioning here. In Section 5, a hierarchy C0 ⊃ C1 ⊃ C2 ⊃ C3 of

classes of diagrams of planar semimodular lattices is introduced and appropri-

ate uniqueness statements are proved. Here we only mention Proposition 5.1

on C0, which extends the scope of a known result from “slim semimodular”

to “planar semimodular”, and Theorem 5.5 on C1. Section 6 proves several

easy statements on diagrams in C1 and their trajectories. The rest of the pa-

per demonstrates the usefulness of C1 and the toolkit presented in Section 6.

Section 7 improves the Trajectory Coloring Theorem, while Section 8 proves

G. Grätzer’s Swing Lemma for slim rectangular lattices.
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Method. Our lattices are planar and they are easy to visualize. However,

instead of relying too much on geometric intuition, we give rigorous proofs for

many auxiliary statements. Fortunately, we can use a rich toolkit available in

the papers we reference, including D. Kelly and I. Rival [24] and G. Grätzer

and E. Knapp [19] and [20].

In order to prove Theorem 2.2 on normal rectangular extensions, we coor-

dinatize our lattices. Although our terminology is different, the coordinates

we use are essentially the largest homomorphic preimages with respect to the

2-dimensional case of M. Stern’s join-homomorphisms in [26], which were re-

discovered in G.Czédli and E. T. Schmidt [12, Corollary 2].

By a grid we mean the direct product of two finite nontrivial (that is, non-

singleton) chains. Once we have coordinatization, it is natural to position the

elements in a grid according to their coordinates. This leads to a hierarchy of

planar diagrams with useful properties. The emphasis is put on the properties

of trajectories, because they are powerful tools to understand slim rectangular

lattices and their congruences.

Although we mostly deal with slim rectangular lattices in this paper, many

of our statements can be extended to slim semimodular lattices in a straightfor-

ward but sometimes a bit technical way. Namely, one can follow G.Czédli [5,

Remark 8.5] or use Theorem 2.2. Because of space considerations, we do not

undertake this task.

2. Normal rectangular extensions

Following G.Czédli and E. T. Schmidt [15], a glued sum indecomposable lat-

tice is a finite non-chain lattice L such that each x ∈ L\{0, 1} is incomparable

with some element of L. Such a lattice consists of at least 4 elements. Follow-

ing G. Grätzer and E. Knapp [20], a rectangular lattice is a planar semimodular

lattice R such that R has a planar diagram D with the following properties:

(i) D\{0, 1} has exactly one double irreducible element on the left bound-

ary chain of D; this element, called left corner, is denoted by lc(D).

(ii) D \ {0, 1} has exactly one double irreducible element, rc(D), on the

right boundary chain of D. It is called the right corner of D.

(iii) These two elements are complementary, that is, lc(D)∧ rc(D) = 0 and

lc(D) ∨ rc(D) = 1.

Note that a rectangular lattice has at least four elements. Following G.Czédli

and E. T. Schmidt [13], a lattice L is slim, if it is finite and Ji(L), the (ordered)

set of (non-zero) join-irreducible elements of L, is the union of two chains.

It follows from G.Czédli and E.T. Schmidt [15, page 693] that, for a slim

semimodular lattice L,

L is rectangular iff Ji(L) is the union of two chains, W1 and

W2, such that w1 ∧ w2 = 0 for all 〈w1, w2〉 ∈W1 ×W2.
(2.1)
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We know from G. Czédli and G. Grätzer [10, Exercise 3.55] (which follows

from (2.1), [15, Lemma 6.1(ii)], and G. Czédli and G. Grätzer [10, Theorem

3-4.5]) that

if one planar diagram of a semimodular lattice L satisfies

(i)–(iii) above, then so do all planar diagrams of L.
(2.2)

Let us emphasize that slim lattices, planar lattices, and rectangular lattices

are finite by definition. Since a slim lattice is necessarily planar by G.Czédli

and E.T. Schmidt [13, Lemma 2.2], we usually say “slim” rather than “slim

planar”.

Definition 2.1. Let L be a planar semimodular lattice. We say that a lattice

R is a normal rectangular extension of L if the following hold.

(i) R is a rectangular lattice.

(ii) L is a cover-preserving {0, 1}-sublattice of R.

(iii) For every x ∈ R, if x has a lower cover outside L, then x has at most

two lower covers in R.

In Figure 2, R is a normal rectangular extension of L but R̂ is not; no matter

if we consider the pentagon-shaped grey-filled elements with the dotted edges

or we omit them. This example witnesses that a normal rectangular extension

of L need not be a minimum-sized rectangular, cover-preserving extension of L.

Figure 2. R is the normal rectangular extension but |R̂| < |R|

If R1 and R2 are extensions of a lattice L and ϕ : R1 → R2 is a lattice

isomorphism whose restriction ϕeL to L is the identity map, then ϕ is a relative

isomorphism over L.

Theorem 2.2. If L is a planar semimodular lattice with more than two ele-

ments, then the following two statements hold.

(i) L has a normal rectangular extension.

(ii) L is slim iff it has a slim normal rectangular extension iff all normal

rectangular extensions of L are slim.

Moreover, if L is a glued sum indecomposable planar semimodular lattice, then

the following three statements also hold.

(iii) The normal rectangular extension of L is unique up to isomorphisms.
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(iv) If, in addition, L is slim, then its normal rectangular extension is

unique up to relative isomorphisms over L.

(v) Furthermore, if L is slim and ψ : L → L′ is a lattice isomorphism, R

is a normal rectangular extension of L, and R′ is a normal rectangular

extension of L′, then ψ extends to a lattice isomorphism R → R′.

Figure 3. Isomorphic but not relatively over L

For a variant of this theorem in terms of diagrams, see Proposition 5.10. The

two-element lattice cannot have a normal rectangular extension. Although a

finite chain C has a normal rectangular extension if |C| ≥ 3, it has non-

isomorphic normal rectangular extensions in case |C| ≥ 5. Figure 3, where

both R1 and R2 are normal rectangular extensions of L, shows that slimness

cannot be removed from part (iv). Figure 4 shows that glued sum indecom-

posability is also inevitable. In this figure, L1
∼= L2 are isomorphic slim semi-

modular lattices but they are not glued sum indecomposable. Their diagrams

are similar in the sense of D. Kelly and I. Rival [24], so they are the same in

C0-sense, to be defined in Section 5. For i ∈ {1, 2}, Ri is a normal rectangular

extension of Li. However, R1 � R2 since |R1| 6= |R2|.

Figure 4. L1 and L2 are isomorphic but R1 and R1 are not

Let L1 be a sublattice of another lattice, L2. We say that L2 is a congruence-

preserving extension of L1 if the restriction map ConL2 → ConL1 from the

congruence lattice of L2 to the congruence lattice of L1, defined by α 7→
α ∩ (L1 × L1), is a lattice isomorphism. We know from G. Grätzer and E.

Knapp [20, Theorem 7] that every planar semimodular lattice has a rectangular

congruence-preserving extension. Analyzing their proof, it appears that they

construct a normal rectangular extension. Hence, using the uniqueness granted

by Theorem 2.2, we obtain the following statement; note that it also follows

from G. Czédli [3, Lemmas 5.4 and 6.4].
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Corollary 2.3 (compare with G. Grätzer and E. Knapp [20, Theorem 7]). If

L is a glued sum indecomposable planar semimodular lattice, then its normal

rectangular extension is a congruence-preserving extension of L.

Remark 2.4. Omit the dotted edges and the three pentagon-shaped grey-

filled elements from Figure 2. Then, as opposed to the normal rectangular

extension R of L, R̂ is a rectangular extension but not a congruence-preserving

extension of L, because 〈x, y〉 ∈ con(0, x) holds in R̂ but fails in L. Also, if

we omit 1 and the rightmost coatom from this L, then the remaining planar

semimodular lattice has two non-isomorphic normal rectangular extensions

but only one of them is a congruence-preserving extension.

Remark 2.5. Consider the lattices in Figure 2 together with the pentagon-

shaped grey-filled elements and the dotted edges. Then R is a normal rectan-

gular extension of L, |R̂| < |R|, and R̂ is a congruence-preserving extension of

L since both L and R̂ are simple lattices.

These two remarks explain why we deal with normal rectangular exten-

sions rather than with minimum-sized ones or with congruence-preserving

ones. Note that the construct in G. Grätzer and E. Knapp [20, Theorem 7]

turns out to be a normal rectangular extension of L, but this fact does not

imply Theorem 2.2.

For a given n, up to isomorphism, there are finitely many slim semimodular

lattices of length n; their number is determined in G. Czédli, L. Ozsvárt, and

B. Udvari [11]. With the notation f(n) = max{|L| : L is a slim semimodular

lattice of length n}, one may have the idea of proving Theorem 2.2(iii) by

induction on f(length(L)) − |L|. Although such a proof seems to be possible

and, probably, it would be somewhat shorter than the proof we are going

to present here, our approach has two advantages. First, it gives an explicit

formula for the normal rectangular extension rather than a recursive one; see

Lemmas 4.6 and 4.7. Second, it is the present approach that leads us directly

to a better understanding of slim semimodular lattices; see Sections 5 and

7. In particular, the explicit description of a normal rectangular extension is

heavily used in the proof of Theorem 5.5.

3. Preparations for the proof of Theorem 2.2

For the reader’s convenience, this section collects briefly the most important

conventions, concepts, and tools needed in our proofs. Note that, with much

more details, the majority of this section is covered by the book chapter G.

Czédli and G. Grätzer [10]. This paper is on planar semimodular lattices.

Unless otherwise stated, we always assume that a fixed planar diagram of the

lattice under consideration is given. Some concepts, such as “left” of “right”,

may depend on the diagram. However, the choice of the diagram is irrelevant

in the statements and proofs. Later in Sections 5, 7, and 8, we focus explicitly
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on diagrams rather than lattices, and we apply lattice adjectives, like “slim”

or “semimodular”, to the corresponding diagrams as well. Also, if Di is a

planar diagram of Li for i ∈ {1, 2}, then we do not make a distinction between

a map from L1 to L2 and the corresponding map from D1 to D2. This allows

us to speak of lattice isomorphisms between diagrams. Similarly, we can use

the statements and concepts that are introduced in Section 4 both for lattices

and for diagrams.

For a maximal chain C of a planar lattice L, the set of elements x ∈ L that

are on the left of C is the left side of C, and it is denoted by LS(C). The

right side of C, RS(C), is defined similarly. Note that C = LS(C) ∩ RS(C).

If x ∈ LS(C) \ C, then x is strictly on the left of C; “strictly on the right” is

defined analogously. Let us emphasize that, for an element x and a maximal

chain C, “left” and “right” is always understood in the wider sense that allows

x ∈ C. We need some results from D. Kelly and I. Rival [24]; the most

frequently used result is the following.

Lemma 3.1 (D. Kelly and I. Rival [24, Lemma 1.2]). Let L be a finite planar

lattice, and let x ≤ y in L. If x and y are on different sides of a maximal

chain C in L, then there exists an element z ∈ C such that x ≤ z ≤ y.

Next, let x and y be elements of a finite planar lattice L, and assume that

they are incomparable, in formula, x ‖ y. If x ∨ y has lower covers x1 and y1
such that x ≤ x1 ≺ x ∨ y, y ≤ y1 ≺ x ∨ y, and x1 is on the left of y1, then

the element x is on the left of the element y. In notation, x λ y. If x λ y,

then we also say that y is on the right of x. Let us emphasize that whenever

λ, that is “left”, or “right” are used for two elements, then the two elements

are incomparable. That is, the notation x λ y implies that x ‖ y. Note the

difference; while λ is an irreflexive relation for elements, “left” and “right” are

used in the wider sense if an element and a maximal chain are considered.

Lemma 3.2 (D. Kelly and I. Rival [24, Propositions 1.6 and 1.7]). Let L be

finite planar lattice. If x, y ∈ L and x ‖ y, then the following hold.

(i) x λ y if and only if x is on the left of some maximal chain through y

if and only if x is on the left of all maximal chains through y.

(ii) Exactly one of x λ y and y λ x holds.

(iii) If z ∈ L, x λ y, and y λ z, then x λ z.

Let L be a slim semimodular lattice. According to the general convention in

the paper, a planar diagram of L is fixed. Let pi = [xi, yi] be prime intervals,

that is, edges in the diagram, for i ∈ {1, 2}. These two edges are consecutive

if they are opposite sides of a covering square, that is, of a 4-cell in the dia-

gram. Following G. Czédli and E. T. Schmidt [13], an equivalence class of the

transitive reflexive closure of the “consecutive” relation is called a trajectory.
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Recall from [13] that

A trajectory begins with an edge on the left boundary chain

Cl(L), it goes from left to right, it cannot branch out, and it

terminates at an edge on the right boundary chain, Cr(L).

(3.1)

These boundary chains are also important because of

Ji(L) ⊆ Cl(L) ∪ Cr(L); (3.2)

see G.Czédli and E. T. Schmidt [14, Lemma 6]. The boundary chains are

important for planar lattices K (with fixed planar diagrams) in general. It

follows from D. Kelly and I. Rival [24] that Cl(K) is the unique maximal

chain I of K such that RSK(I) = K, and analogously for Cr(K). Hence, by

Lemma 3.2 and its left-right dual, for arbitrary x ‖ y ∈ K,

if x ∈ Cl(K) or y ∈ Cr(K), then x λ y. (3.3)

According to G. Czédli and G. Grätzer [9] or [10], there are three types of

trajectories: an up-trajectory, which goes up (possibly, in zero steps), a down-

trajectory, which goes down (possibly, in zero steps), and a hat-trajectory,

which goes up (at least one step), then turns to the lower right, and finally it

goes down (at least one step). Let p1 = [x1, y1], p2 = [x2, y2], and p3 = [x3, y3]

be three consecutive edges of a trajectory T , listed from left to right. If

y1 < y2 < y3, then T goes upwards at p2. Similarly, T goes downwards at p2

if y1 > y2 > y3. The third possibility is that y1 < y2 > y3; then T is a hat-

trajectory and p2 is called its top edge. If x1 and y1 are on the left boundary

chain, then we say that the trajectory containing p1 = [x1, y1] and p2 = [x2, y2]

goes upwards or downwards at p1 if y1 < y2 or y1 > y2, respectively. Since

there are only three types of trajectories, if p1 is on the left of p2 in a trajectory

T of L, then

if T goes upwards at p2 then so it does at p1, and

if T goes downwards at p1 then so it does at p2.
(3.4)

4. Proving some lemmas and Theorem 2.2

If C1 and C2 are maximal chains of planar lattice L such that C1 ⊆ LS(C2),

then RS(C1) ∩ LS(C2) is called a region of L. For a subset X of a slim

semimodular lattice L, it follows from G. Czédli and G. Grätzer [10, Exercise

3.12 and Theorems 3-4.5 and 3-4.6] or G.Czédli and E. T. Schmidt [15, Lemma

4.7], see also Proposition 4.11 in this paper, that the predicate “X is a region

of L” does not depend on the choice of the planar diagram. The following

lemma is of separate interest.

Lemma 4.1. IfK is a cover-preserving {0, 1}-sublattice of a slim semimodular

lattice L, then K is also a slim semimodular lattice, it is a region of L, and

K = RSL(Cl(K)) ∩ LSL(Cr(K)).
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Proof. For x ∈ L, the left support and the right support of x, denoted by

lsp(x) = lspL(x) and rsp(x) = rspL(x), are the largest element of Cl(L) ∩ ↓x
and that of Cr(L) ∩ ↓x, respectively. Since Ji(L) ⊆ Cl(L) ∪ Cr(L) and Cl(L)

and Cr(L) are chains, it is straightforward to see that, for every x ∈ L, y ∈
[lspL(x), x], and z ∈ [rspL(x), x],

x = lspL(x) ∨ rspL(x), [lspL(x), x] and [rspL(x), x] are

chains, lspL(y) = lspL(x), and rspL(z) = rspL(x).
(4.1)

Let H = RSL(Cl(K))∩LSL(Cr(K)); it is the smallest region of L that includes

K. Consider an arbitrary element x ∈ H . Applying Lemma 3.1 to lspL(x) ≤ x

and Cl(K), we obtain an element y ∈ Cl(K) such that lspL(x) ≤ y ≤ x.

Similarly, there is an element z ∈ Cr(K) such that rspL(x) ≤ z ≤ x. Hence,

x = y ∨ z ∈ K by (4.1). This shows that K = H is a region, and it is a

slim lattice since Ji(K) ⊆ Cl(K)∪Cr(K). As a cover-preserving sublattice, K

inherits semimodularity. �

In the rest of this section, unless otherwise stated, we always assume that

L is a planar semimodular lattice of length n ≥ 2

and R is a normal rectangular extension of L.
(4.2)

A planar diagram of R, denoted by D, is fixed; it determines the diagram of L

as a subdiagram. Sometimes, we stipulate additional assumptions, including

L is a glued sum indecomposable. (4.3)

Sometimes, for emphasis, we repeat (4.2) and (4.3). By Lemma 4.1,

L = RSR(Cl(L)) ∩ LSR(Cr(L)). (4.4)

We know from G. Grätzer and E. Knapp [20, Lemmas 3 and 4] (see also

G. Czédli and G. Grätzer [10, Lemma 3-7.1]) that

The intervals [0, lc(R)] and [0, rc(R)] are chains. (4.5)

If R is slim, then we also know from (2.1), (3.2), and G. Grätzer and E.

Knapp [20, Lemma 3], see also G. Czédli and G. Grätzer [10, Exercises 3.51

and 3.52], that

Ji(R) =
(
Cll(R) ∪ Clr(R)

)
\ {0} = {c1, . . . , cml , d1, . . . , dmr}, (4.6)

where Cll(R) and Clr(R) are defined in Definition 4.2.

Definition 4.2. If condition (4.2) holds and L is slim, then we agree in the

following.

(i) Let

Cll(D) = [0, lc(D)]R = {0 = c0 ≺ c1 ≺ · · · ≺ cml}
(lower left boundary) and

Clr(D) = [0, rc(D)]R = {0 = d0 ≺ d1 ≺ · · · ≺ dmr}
(lower right boundary). Note that cml = lc(D) and cmr = rc(D).
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(ii) For x ∈ L, the left and right join-coordinates of x are defined by

ljcL(x) = |Cl(L) ∩ Ji(L) ∩ ↓x| and rjcL(x) = |Cr(L) ∩ Ji(L) ∩ ↓x|. It

follows from (3.2) that x is determined by the pair 〈ljcL(x), rjcL(x)〉 of

its join coordinates.

(iii) For x ∈ R, we obtain ljcR(x) and rjcR(x) by substituting R to L above.

Combining (i) and (3.2), we obtain that

x = cljcR(x) ∨ drjcR(x). (4.7)

By (4.6), understanding ∧ in 〈N0;≤〉, we have that

ljcR(x) = ml ∧ height(lspR(x)), rjcR(x) = mr ∧ height(rspR(x)).

Note that, for x, x′, y, y′ ∈ R with x 6> cml and y 6> dmr ,

lspR(x) = cljcR(x), rspR(y) = drjcR(y), (4.8)

ljcR(x′) < ljcR(y′) ⇒ lspR(x′) < lspR(y′),

rjcR(x′) < rjcR(y′) ⇒ rspR(x′) < rspR(y′).
(4.9)

The conditions x 6> cml and y 6> dmr right before (4.8) could be inconvenient

at later applications. Hence, we are going to formulate a related condition,

(4.12) below. As a preparation to do so, the set of meet-irreducible elements

of R distinct from 1 is denoted by Mi(R). For x ∈ R, x ∈ Mi(R) iff x has

exactly one cover. G. Grätzer and E. Knapp [20, Lemma 3] or G. Czédli and

G. Grätzer [10, Exercise 3.52] yields that

if 1 6= x ∈ (Cl(R)\Cll(R))∪ (Cr(R)\Clr(R)), then x ∈ Mi(R). (4.10)

This implies, see also G. Grätzer and E. Knapp [20, Lemma 4], that

[lc(R), 1] = ↑cml and [rc(R), 1] = ↑dmr are chains. (4.11)

By (4.7), for every x ∈ R, cljcR(x) ≤ lspR(x) and drjcR(x) ≤ rspR(x). Thus,

[lspR(x), x] ⊆ [cljcR(x), x] and [rspR(x), x] ⊆ [drjcR(x), x].

We conclude from (4.1), (4.8), and (4.11) that for all x ∈ R, if y ∈ [cljcR(x), x]

and z ∈ [drjcR(x), x], then

ljcR(y) = ljcR(x) and rjcR(z) = rjcR(x). (4.12)

The elements of R on the left of Cl(L) form a region

RSR

(
Cl(R)

)
∩ LSR

(
Cl(L)

)
= LSR

(
Cl(L)

)
;

it is called the region on the left of L, and we denote it by S.

Lemma 4.3. Assume (4.2).

(i) The region on the left of L, denoted by S = LSR

(
Cl(L)

)
, is a cover-

preserving {0, 1}-sublattice of R and it is distributive.

(ii) R is slim iff L is slim.
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Proof. As a region of R, S is a cover-preserving sublattice of R by D. Kelly

and I. Rival [24, Proposition 1.4]. The inclusion {0R, 1R} ⊆ S is obvious.

As a cover-preserving sublattice, S is semimodular. As a region of a planar

diagram, S is a planar lattice. We know from G. Czédli and G. Grätzer [10,

Theorem 3-4.3], see also G. Czédli and E. T. Schmidt [13, Lemma 2.3], that

a planar semimodular lattice is slim if it contains

no cover-preserving diamond sublattice M3.
(4.13)

This property holds for S by Definition 2.1(iii), so S is slim. Recall from

G. Czédli and E. T. Schmidt [14, Lemmas 14 and 15] or G. Czédli and G.

Grätzer [10, Exercises 3.30 and 3.31] that

if no element of a slim semimodular lattice covers

more than 2 elements, then the lattice is distributive.
(4.14)

By Definition 2.1(iii) again, no element of S covers more than two elements.

Hence, S is distributive by (4.14) . This proves part (ii) .

By (4.13), if R is slim, then so is L. Suppose, for a contradiction, that L

is slim but R is not. By (4.13), some element x ∈ R is the top of a cover-

preserving diamond. By Definition 2.1(iii), none of the coatoms (that is, the

atoms) of this diamond are outside L. Hence, they are in L, the whole diamond

is L, which contradicts the slimness of L by (4.13). This proves part (ii) �

In the following statement, R is slim by Lemma 4.3(ii).

Lemma 4.4. If condition (4.2) holds, L is slim, and x, y ∈ L, then

x λ y ⇐⇒
(
ljcL(x) > ljcL(y) and rjcL(x) < rjcL(y)

)
, (4.15)

x ≤ y ⇐⇒
(
ljcL(x) ≤ ljcL(y) and rjcL(x) ≤ rjcL(y)

)
. (4.16)

If we substitute R to L, then (4.15) and (4.16) still hold.

Proof. The ⇒ part of (4.16) is evident. To show the converse implication,

assume that ljcL(x) ≤ ljcL(y) and rjcL(x) ≤ rjcL(y). For z ∈ L, let z′ and z′′

be the largest element of Ji(L) ∩ Cl(L) ∩ ↓z and that of Ji(L) ∩ Cr(L) ∩ ↓z,
respectively. By the inequalities we have assumed, x′ ≤ y′ and x′′ ≤ y′′. Since

x = x′∨x′′ and y = y′ ∨ y′′ by (3.2), we obtain that x ≤ y. Thus, (4.16) holds.

In order to prove (4.15), recall from G. Czédli [7, Lemma 3.15] that

x λ y ⇐⇒
(
lspL(x) > lspL(y) and rspL(x) < rspL(y)

)
. (4.17)

Assume that x λ y. Then lspL(x) > lspL(y) by (4.17), and we obtain that

ljcL(x) ≥ ljcL(y). Similarly, rjcL(x) ≤ rjcL(y). Both inequalities must be

sharp, because otherwise (4.16) would imply that x ∦ y. Therefore, the ⇒
implication of (4.15) follows. Conversely, assume that ljcL(x) > ljcL(y) and

rjcL(x) < rjcL(y). Clearly, lspL(x) > lspL(x) and rspL(x) < rspL(x). Hence,

x λ y by (4.17), which gives the desired converse implication of (4.15). �

In the following lemma, the subscripts come from “left” and “right” and so

they are not numbers. Hence, we write xl and xr rather than xl and xr .
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Lemma 4.5. Assume that condition (4.2) holds, L is slim, T is a trajectory

of R, and [x, y] ∈ T . Let [xl, yl] and [xr, yr] be the leftmost (that is, the first)

and the rightmost edge of T , respectively. If T goes upwards at [x, y], then

lspR(x) = xl < yl ≤ lspR(y). Similarly, if T goes downwards at [x, y], then

rspR(x) = xr < yr ≤ rspR(y).

Proof. By left-right symmetry, we can assume that T goes upwards at [x, y].

The segment of T from [xl, yl] to [x, y] goes up by (3.4). Combining this fact

with (4.10), it follows that the edge [xl, yl] belongs to Cll(R) and that y = yl∨x.
Hence, yl � x. Thus, we obtain that xl = lspR(x) and yl ≤ lspR(y). �

The following lemma is of separate interest.

Lemma 4.6. If conditions (4.2) and (4.3) hold, L is slim, and x ∈ L, then

the pair of join-coordinates of x is the same in L as in R.

Note that this lemma would fail without assuming that L is glued sum

indecomposable; this is witnessed by R = {0, a, b, 1}, the 4-element Boolean

lattice, and L = {0, a, 1}.

Proof. Since L is glued sum indecomposable,

Cl(L) ∩ Cr(L) = {0, 1} and |L| ≥ 4. (4.18)

By semimodularity, |Cl(L)| = length(L) + 1 = n + 1 = |Cr(L)|. Let

Cl(L) = {0 = e0 ≺ e1 ≺ · · · ≺ en = 1} and

Cr(L) = {0 = f0 ≺ f1 ≺ · · · ≺ fn = 1}.
We claim that, for i ∈ {1, . . . , n},

ei ∈ Ji(L) ⇐⇒ 〈ljcR(ei), rjcR(ei)〉 = 〈1 + ljcR(ei−1), rjcR(ei−1)〉. (4.19)

First, to prove the “⇐” direction of (4.19), assume that ljcR(ei) = 1 +

ljcR(ei−1) and rjcR(ei) = rjcR(ei−1). Suppose, for a contradiction, that ei /∈
Ji(L), and let y ∈ L \ {ei−1} be a lower cover of ei. Since ei−1 is on the left

boundary of L, ei−1 λ y. Hence, we obtain from (4.15) that rjcR(ei−1) <

rjcR(y). On the other hand, ei > y and (4.16) yield that rjcR(ei−1) =

rjcR(ei) ≥ rjcR(y), which contradicts the previous inequality. Thus, the “⇐”

part of (4.19) follows.

In order to prove the converse direction of (4.19), assume that ei ∈ Ji(L).

By (4.16),

〈ljcR(ei), rjcR(ei)〉 > 〈ljcR(ei−1), rjcR(ei−1)〉 (4.20)

in the usual componentwise ordering “≤” of {0, 1, . . . , n}2. We claim that

rjcR(ei) = rjcR(ei−1). (4.21)

In order to prove this by contradiction, suppose rjcR(ei) > rjcR(ei−1). Ap-

plying Lemma 3.1 in R to rspR(ei) ≤ ei and the maximal chain Cr(L), we

obtain an element z ∈ Cr(L) ⊆ L such that rspR(ei) ≤ z ≤ ei. Combining

(4.9) and rjcR(ei) > rjcR(ei−1), we have that z � ei−1. Hence, ei−1 ≺ ei

gives that ei−1 ∨ z = ei ∈ Ji(L). So we conclude that z = ei, that is,
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0 6= ei ∈ Cl(L) ∩ Cr(L). From (4.18), we obtain that 1 = ei = fi and

i = n. Since 1 = ei = en ∈ Ji(L) has only one lower cover, we obtain that

en−1 = fn−1 ∈ Cl(L) ∩ Cr(L), which contradicts (4.18). This proves (4.21).

Combining (4.20) and (4.21), we obtain that ljcR(ei) > ljcR(ei−1). Let

T denote the trajectory of R that contains [ei−1, ei]. In the moment, there

are three possible ways how T can be related to [ei−1, ei] but we want to

exclude two of them. First, suppose that [ei−1, ei] is the top edge of a hat-

trajectory. Then ei has a lower cover to the left of ei−1 ∈ Cl(L), so outside

L, and ei has at least three lower covers. This possibility is excluded by

Definition 2.1(iii). Hence, [ei−1, ei] cannot be the top edge of a hat-trajectory.

(Note, however, that T can be a hat-trajectory whose top is above [ei−1, ei] in

a straightforward sense.) Second, suppose that T goes downwards at [ei−1, ei].

Then rspR(ei−1) is meet-reducible, because it is the bottom of the last edge

of T by Lemma 4.5 and T arrives downwards at this last edge by (3.4). So

(4.10) yields that rspR(ei−1) < dmr , and we have that ei−1 � dmr . Hence,

there is a unique j < mr such that rspR(ei−1) = dj, and (4.8) gives that

j = rjcR(ei−1). Since rjcR(ei) is also j by (4.21), dj+1 � ei, and we obtain

that rspR(ei) = dj = rspR(ei−1). This contradicts Lemma 4.5 and excludes

the possibility that T goes downwards at [ei−1, ei].

Therefore, T goes upwards at [ei−1, ei]. Let [ul, vl] be the first edge of T .

We know from Lemma 4.5 that ul = lspR(ei−1). The left-right dual of the

argument used in the excluded previous case yields that ul = lspR(ei−1) =

cljcR(ei−1) where ljcR(ei−1) < ml. If ljcR(ei−1) = ml − 1, then the required

equality ljcR(ei) = 1 + ljcR(ei−1) follows from ljcR(ei) > ljcR(ei−1) and

from the fact that ljcR(x) ≤ ml for all x ∈ R. Thus, we can assume that

ljcR(ei−1) ≤ ml − 2. Hence, by the first of the two displayed equalities below

(4.7), height(ul) = height(lspR(ei−1)) = ljcR(ei−1) ≤ ml − 2.

We need to show that ei ≯ cml . Suppose to the contrary that ei > cml ,

and list the edges of T from [ul, vl] to [ei−1, ei] from left to right as follows:

r0 = [ul, vl], r1, . . . , rs = [ei−1, ei]. These edges form an initial section of T ; we

denote this initial section by T0. Note that T0 goes upwards by (3.4). Since

height(vl) = height(ul) + 1 ≤ (ml − 2) + 1 = ml − 1 = height(cml) − 1, we

have that 1r0 = vl ≯ cml . On the other hand, 1rs
= ei > cml . Thus, there is

a smallest k ∈ {0, 1, . . . , s− 1} such that 1rk
≯ cml but 1rk+1 > cml . Clearly,

there is an x ∈ R such that cml ≤ x ≺ 1rk+1 . (Note that x is unique by (4.11),

but we do not need this fact.) Also, 1rk
and 0rk+1 are two distinct lower covers

of 1rk+1 . If cml < x, then x is distinct from 1rk
by the definition of k. If we

had 1rk
= x = cml , then height(0rk

) = height(1rk
) − 1 = height(cml) − 1 =

ml − 1 > ml − 2 ≥ height(ul) = height(0r0) would give that k 6= 0 and, since

T0 goes upwards, cml = 1rk
would be join-reducible in R, contradicting (4.6).

Hence, x is distinct from 1rk
. If we had x = 0rk+1 , then cml ≤ x = 0rk+1 ≤

0rs
= ei−1 would give ljcR(ei−1) = ml, contradicting ljcR(ei−1) ≤ ml − 2.

Consequently, x, 1rk
, and 0rk+1 are three distinct lower covers of 1rk+1 . By

Definition 2.1(iii), all the three belong to L. In particular, 1rk
∈ L. Using
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that T0 goes upwards, it follows that ei = 1rs
= 1rk

∨ 0rs
= 1rk

∨ ei−1 is a

nontrivial join in L. This contradicts ei ∈ Ji(L) and shows that ei ≯ cml .

Therefore, by ul = lspR(ei−1) = cljcR(ei−1) and (4.8), the desired equation

ljcR(ei) = 1 + ljcR(ei−1) and (4.19) will follow if we show that vl = lspR(ei).

Suppose, for a contradiction, that vl 6= lspR(ei). We have that vl <

lspR(ei), since vl ≤ lspR(ei) is clear by vl ≤ ei. Also, lspR(ei) � ei−1, since

lspR(ei) ≥ vl > ul = lspR(ei−1) and lspR(ei−1) is the largest element of

Cl(R) ∩ ↓ei−1. Since ul, vl, and lspR(ei) are on the leftmost chain Cl(R) of

R, these elements belong to S, the region on the left of L, defined before

Lemma 4.3. By Lemma 4.3(ii), R is a slim rectangular lattice. Observe that

lspR(ei) 6= 0S, since lspR(ei) > vl > ul in S. We obtain from ei 6> cml that

lspR(ei) ∈ Cll(R). Hence, (4.6) yields that lspR(ei) ∈ Ji(R), and we conclude

that lspR(ei) ∈ Ji(S). Using ei−1 ≺ ei and ei ≥ vl � ei−1, we conclude

that lspR(ei) ≤ ei = vl ∨ ei−1. Since S is distributive by Lemma 4.3 and the

elements in the previous inequality belong to S, we have that

lspR(ei) = lspR(ei) ∧ (vl ∨ ei−1) = (lspR(ei) ∧ vl) ∨ (lspR(ei) ∧ ei−1). (4.22)

Since lspR(ei) ∈ Ji(S) equals one of the two joinands above and lspR(ei) �
ei−1, we obtain that lspR(ei) ≤ vl. This contradicts vl < lspR(ei). In this

way, we have shown that vl = lspR(ei). This proves (4.19).

Next, with reference to the notation in Definition 4.2(i), we claim that

(∀j ∈ {0, . . . , ml})
(
∃ei ∈ Cl(L)

) (
ljcR(ei) = j

)
. (4.23)

In order to prove (4.23), let j ∈ {0, . . . , ml}. We can assume that j < ml,

since otherwise we can let ei := en = 1 ∈ Cl(L). Due to (4.8), it suffices to

find an ei ∈ Cl(L) such that lspR(ei) = cj. If cj ∈ L, then cj ∈ Cl(R) implies

cj ∈ Cl(L), and we have that cj = lspR(ei) with ei := cj. Hence, we can

assume that cj /∈ L. Consider the trajectory T that contains p0 = [x0, y0] :=

[cj, cj+1]. Let p0, p1 = [x1, y1], p2 = [x2, y2], . . . , ps = [xs, ys] be the edges that

constitute T in R, listed from left to right. Since p0 lies on Cl(R) and j < ml,

y0 = cj+1 ∈ Cll(R); see Definition 4.2(i). We conclude from ys ∈ Cr(R)

that ys is on the right of Cl(L); in notation, ys ∈ RSR(Cl(L)). Since y0 ∈
Cl(R), y0 ∈ LSR(Cr(L)). Thus, as opposed to ys, y0 = cj+1 /∈ RSR(Cl(L)),

because otherwise it would belong to RSR(Cl(L)) ∩ LSR(Cr(L)), which is L

by Lemma 4.1. Therefore, there exists a unique integer t ∈ {1, . . . , s} such

that y0, . . . , yt−1 are strictly on the left of Cl(L) but yt ∈ RS(Cl(L)). Since

y0 = cj+1 ∈ Ji(R) by (4.6), T departs in upwards direction and y0 ≺ y1. None

of y0, . . . , yt−1 belongs to L, so none of y0, . . . , yt can have more than two lower

covers by Definition 2.1(iii). Hence, none of p1, . . . , pt is the top edge of a hat

trajectory, and the section of T from p0 to pt goes upwards. That is, T goes

upwards at p0, . . . , pt. Thus, y0 ≺ y1 ≺ · · · ≺ yt. Applying Lemma 3.1 to

the maximal chain Cl(L) of R and to the elements yt−1 ≺ yt, we obtain that

yt ∈ Cl(L). Therefore, since cj < cj+1 = y0 < yt excludes that yt = 0, yt is of

the form yt = ei+1 for some i ∈ {0, 1, . . . , n−1}. Observe that yt−1 /∈ L, xt, and
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ei ∈ L are lower covers of yt. However, by Definition 2.1(iii), yt has at most two

lower covers. This implies that xt = ei, that is, pt = [xt, yt] = [ei, ei+1]. Since

T is also the trajectory through pt, Lemma 4.5 implies that cj = x0 = lspR(ei).

This proves (4.23).

Next, we claim that, for x, y ∈ R,

if x ≺ y, ljcR(x) < ljcR(y), and rjcR(x) < rjcR(y), then

there are u, v ∈ R such that u ≺ y, v ≺ y, u λ x, and x λ v.
(4.24)

In order to prove this, assume the first line of (4.24). We conclude from (4.9)

that lspR(x) < lspR(y) and rspR(x) < lspR(y). We have that cml ≮ y, because

otherwise cml ≤ x by (4.10) and (4.11), and so ljcR(x) = ml = ljcR(y) would

contradict our assumption. Similarly, dmr ≮ y. First we show that y /∈ Cl(R)

and y /∈ Cr(R). Suppose, for a contradiction, that y ∈ Cl(R). Then y ∈ Cll(R)

since cml ≮ y. We know from (2.1), (4.6), and Definition 4.2(i) that

for all 〈i, j〉 ∈ {0, . . . , ml} × {0, . . . , mr}, ci ∧ dj = 0. (4.25)

In particular, y ∧ dj for all j ∈ {0, . . . , mr}. But y 6= 0, so y � di for i ∈
{1, . . . , mr}, and we obtain that rspR(y) = 0. This contradicts rspR(x) <

rspR(y), and we conclude that y /∈ Cl(R). Similarly, y /∈ Cr(R). We know

from (4.1) that [lspR(y), y] is a chain. This chain is nontrivial, because y /∈
Cl(R). Thus, we can pick a unique element u of this chain such that lspR(y) ≤
u ≺ y. By (4.1), lspR(u) = lspR(y) > lspR(x). We claim that rspR(u) <

rspR(x). Suppose, for a contradiction, that rspR(u) ≥ rspR(x). Combining

this inequality with lspR(u) > lspR(x) and (4.16), we obtain that x < u. This

is a contradiction since both x and u are lower covers of y. Hence, (4.17)

applies and u λ x. By left-right symmetry, y also has a lover cover v ∈ R with

x λ v. This proves (4.24).

The next step is to show that, for x ∈ L,

lspL(x) = lspL

(
lspL(x)

)
and lspR(x) = lspR

(
lspL(x)

)
. (4.26)

The first equation is a consequence of (4.1). In order to prove the second,

we can assume that cml ≮ x, because otherwise lspR(x) = x = lspL(x) =

lspR(lspL(x)) by (4.10) and (4.11). Let u = lspL(x), v = lspR(u), and w =

lspR(x). Since x ≥ u ≥ v ∈ Cl(R), we have v ≤ w. Applying Lemma 3.1 to

w ≤ x and the maximal chain Cl(L), we obtain an element t ∈ Cl(L) such that

w ≤ t ≤ x. By the definition of u, we have that t ≤ u. By transitivity, w ≤ u.

Hence, the definition of v yields that w ≤ v. Thus, v = w, proving (4.26).

Now, we are in the position to complete the proof of Lemma 4.6. Let x ∈ L.

By left-right symmetry, it suffices to show that ljcR(x) = ljcL(x). However,

by (4.26), it is sufficient to show that

for x = ek ∈ Cl(L), ljcR(ek) = ljcL(ek). (4.27)

First, we assume that cml ≮ ek. Let t = ljcR(ek); by (4.8), this means that

lspR(ek) = ct. Consider the chainH := Cl(L)∩↓ek = {ek � ek−1 � · · · � e0 =

0}. When we walk down along this chain, at each step from ei to ei−1, (4.16)
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yields that at least one of the join-coordinates ljcR(ei) and rjcR(ei) decreases.

By the definition of ljcL(ek), it suffices to show that ljcR(ei) decreases iff

ei ∈ Ji(L), and it can decrease by at most 1. Therefore, by (4.19), it suffices

to show that, for i ∈ {1, . . . , k},

if ljcR(ei) > ljcR(ei−1), then ljcR(ei) − ljcR(ei−1) = 1, and (4.28)

if ljcR(ei) > ljcR(ei−1), then rjcR(ei) = rjcR(ei−1). (4.29)

Suppose, for a contradiction, that (4.29) fails. Since rjcR(ei) > rjcR(ei−1)

by (4.16), (4.24) yields u, v ∈ R such that u ≺ ei, v ≺ ei, u λ ei−1, and

ei−1 λ v. Since ei−1 ∈ Cl(L), u is strictly on the left of Cl(L), and so u /∈ L.

This contradicts Definition 2.1(iii), proving (4.29). The proof of (4.28) is even

shorter. By (4.16), for each ej ∈ Cl(L), either ej ≥ ei and ljcR(ej) ≥ ljcR(ei),

or ej ≤ ei−1 and ljcR(ej) ≤ ljcR(ei−1). So if the gap ljcR(ei)− ljcR(ei−1) > 1,

then (4.23) fails. Hence, (4.28) holds, and so does (4.27) if cml ≮ ek.

Second, we assume that cml < ek. Let t be the smallest subscript such that

cml ≤ et; note that 0 < t ≤ k. Since cml , et and et−1 belongs to S, which is

distributive by Lemma 4.3(i), so does cml∧et−1. By distributivity, cml∧et−1 ≺
cml . Hence (4.5) and (4.6) give that cml ∧ et−1 = cml−1. So cml−1 ≤ et−1. By

the definition of t, cml � et−1. Hence, ljcR(et−1) = ml − 1. Since cml ≮ et−1,

(4.27) is applicable and we have that ljcL(et−1) = ljcR(et−1) = ml −1. Hence,

for the validity of (4.27) for ek, we only have to show that |{et, . . . , ek} ∩
Ji(L)| = 1. This will follow from the following observation:

et ∈ Ji(L) but for all s, if t < s ≤ k, then es /∈ Ji(L). (4.30)

To show that et ∈ Ji(L), we can assume that et > cml , because otherwise et

belongs even to Ji(R) by (4.6) and (4.10). Hence, et has a lower cover y in

↑cml , which is a chain by (4.11). By the choice of t, y 6= et−1. We have that

y ‖ et−1 since both are lower covers of et. Using (3.3) and Lemma 3.2, we

obtain that y λ et−1 and y /∈ RSR(Cl(L)). Since y /∈ L by (4.4), et has exactly

two lower covers in R by Definition 2.1(iii). Exactly one of these lower covers,

y and et−1, belongs to L. Thus, et ∈ Ji(L), as desired. Next, to prove the

second half of (4.30), assume that t < s ≤ k. We want to show that es is

join-reducible in L. Since the join-reducibility of 1 = en in L follows promptly

from (4.18), we can assume that es 6= 1. Since cml ≤ et < es, we obtain from

(4.6) that es is join-reducible in R. Let z ∈ R be a lower cover of es such that

z 6= es−1. Since cml ≤ et ≤ es−1, (4.11) gives that es−1 ∈ Cl(R). By (3.3),

es−1 λ z, so the left-right dual of Lemma 3.2(i) gives that z ∈ RSR(Cl(L)).

We claim that z ∈ LSR(Cr(L)) and then, by (4.4), z ∈ L. Suppose, for a

contradiction, that this is not the case and z is strictly on the right of Cr(L).

Since es ∈ Cl(L) belongs to LSR(Cr(L)) and z ≺ es, Lemma 3.1 yields that

es ∈ Cr(L). Hence, es = 1 by (4.18), but this possibility has previously been

excluded. This shows that z ∈ L is another lower cover of es. Therefore, es is

join-reducible in L, as required. This proves (4.27) and Lemma 4.6. �
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Next, we still assume that (4.2) and (4.3) hold and L is slim. We define the

following sets of coordinate pairs; the acronyms come from “Internal”, “Left”,

“Right”, and “All” Coordinate Pairs, respectively.

ICPL(L) := {〈ljcL(x), rjcL(x)〉 : x ∈ L},
ICPR(L) := {〈ljcR(x), rjcR(x)〉 : x ∈ L},
LCPR(L) := {〈ljcR(x), rjcR(x)〉 : x ∈ R is strictly on the left of Cl(L)},
RCPR(L) := {〈ljcR(x), rjcR(x)〉 : x ∈ R is strictly on the right of Cr(L)},
ACPR(L) := ICPR(L) ∪ LCPR(L) ∪ RCPR(L).

For a simpler notation for these sets, see Remark 4.8 later. We know from

(4.15) and (4.16) that

these sets describe R and, in an appropriate sense, its diagram. (4.31)

As an important step towards the uniqueness of R, the following lemma states

that these sets do not depend on R. The following lemma would fail without

assuming (4.3); for instance, it would fail if L is a chain.

Lemma 4.7. Assume (4.2), (4.3), and that L is slim. With the notation given

in Definition 4.2 and G := {0, . . . , ml} × {0, . . . , mr}, the following hold.

ml = max{ljcL(x) : x ∈ L}, mr = max{rjcL(x) : x ∈ L}, (4.32)

ICPR(L) = ICPL(L), (4.33)

LCPR(L) = {〈i, j〉 : 〈i, j〉 ∈ G \ ICPL(L) and ∃x ∈ Cl(L)

such that i > ljcL(x) and j = rjcL(x)}, (4.34)

RCPR(L) = {〈i, j〉 : 〈i, j〉 ∈ G \ ICPL(L) and ∃x ∈ Cr(L)

such that j > rjcL(x) and i = ljcL(x)}. (4.35)

Also, LCPR(L) and RCPR(L) are given in terms of ICPL(L) as follows:

LCPR(L) = {〈i, j〉 ∈ G \ ICPL(L) : ∃i′ such that 〈i′, j〉 ∈ ICPL(L),

i > i′, and for every 〈i′′, j′′〉 ∈ ICPL(L), i′′ > i′ ⇒ j′′ ≥ j},
(4.36)

RCPR(L) = {〈i, j〉 ∈ G \ ICPL(L) : ∃j′ such that 〈i, j′〉 ∈ ICPL(L),

j > j′, and for every 〈i′′, j′′〉 ∈ ICPL(L), j′′ > j′ ⇒ i′′ ≥ i}.
(4.37)

The componentwise ordering, 〈i1, j1〉 ≤ 〈i2, j2〉 iff i1 ≤ i2 and j1 ≤ j2, turns

ACPR(L) = ICPR(L) ∪ LCPR(L) ∪ RCPR(L) into a lattice, which depends

only on the fixed diagram of L. Actually,

ACPR(L) only depends on ICPL(L). (4.38)

Furthermore, the “coordinatization maps” γ : L → ICPL(L) defined by x 7→
〈ljcL(x), rjcL(x)〉 and δ : R → ACPR(L) defined by x 7→ 〈ljcR(x), rjcR(x)〉 are

lattice isomorphisms.
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Proof. Using Lemma 4.6 and 1 = 1R ∈ L, we obtain that max{ljcL(x) : x ∈
L} = ljcL(1) = ljcR(1) = ml. The other half of (4.32) follows similarly. (4.33)

also follows from Lemma 4.6. In the rest of the proof, (4.33) and Lemma 4.6

allow us to write ICPR(L), ljcR and rjcR instead of ICPL(L), ljcL and rjcL,

and vice versa, respectively, without further warning.

Assume that 〈i, j〉 ∈ LCPR(L), and that 〈i, j〉 = 〈ljcR(y), rjcR(y)〉 for some

y ∈ R strictly on the left of Cl(L). Applying Lemma 3.1 to dj = drjcR(y) ≤ y

and Cl(L), we obtain an element x ∈ Cl(L) ∩ [dj, y]. By (4.12), rjcR(x) =

rjcR(y) = j. We know that x 6= y, because x ∈ L but y /∈ L. Hence, x < y,

and (4.16) gives that i = ljcR(y) > ljcR(x). This proves the “⊆” part of (4.34).

In order to prove the converse inclusion, assume that x ∈ Cl(L), 〈i, j〉 ∈ G,

〈i, j〉 /∈ ICPR(L) = ICPL(L), i > ljcR(x), and j = rjcR(x). Let k = ljcR(x).

In the distributive lattice S from Lemma 4.3, let y = ci ∨ x ∈ S. Next, we

show that

ljcR(y) = i and, if i < ml, lspR(y) = ci. (4.39)

Since (4.39) is obvious if i = ml, we can assume that i < ml. Since ci ≤ y,

we obtain that lspR(y) ≥ ci. Suppose, for a contradiction, that lspR(y) > ci.

Then ci+1 ≤ y. Since ci+1 is join-irreducible in R by (4.6) and ci+1 6= 0S = 0R,

we have that ci+1 ∈ Ji(S). Using distributivity in the standard way as above

(4.22) and taking ci+1 � ci and ci+1 ≤ y = ci ∨x into account, we obtain that

ci+1 ≤ x. By (4.9), i+ 1 ≤ ljcR(x) = k. This contradicts i > k, proving the

second equation in (4.39). The first equation in (4.39) follows from (4.8).

Observe that, for every z ∈ R,

the intervals [cljcR(z), z] and [drjcR(z), z] are chains. (4.40)

If ljcR(z) = ml, then z ≥ cml = lc(R), and the first interval is a chain by

(4.11). If ljcR(z) 6= ml, then z 6> cml , and the first interval is a chain by (4.1)

and (4.8). Similarly, the second interval is also a chain, proving (4.40).

Next, we prove that

rjcR(y) = j. (4.41)

If rjcR(x) = j = mr, then y ≥ x ≥ dmr yields that j = mr = rjcR(y) as

required. Hence, we can assume that j < mr. From y ≥ x and (4.16), we

obtain that rjcR(y) ≥ j. Suppose, for a contradiction, that t := rjcR(y) > j.

By (4.40), we can let [dt, y] = {y0 := y � y1 � · · · � ys = dt}. Since

y = y0 ∈ S, there is a largest q ∈ {0, . . . , s} such that {y0, . . . , yq} ⊆ S. The

situation is roughly visualized in Figure 5, where only a part of R is depicted

and the black-filled elements belong to Cl(L). (Note, however, that a targeted

contradiction cannot be satisfactorily depicted.)

We claim that q < s. Suppose, for a new contradiction, that q = s. We

know that 0 < dt, since j < t. Since dt = 1 would imply by (4.25) that ml = 0

and lc(R) = cml = 0, which would contradict the rectangularity of R, we

conclude that dt /∈ {0, 1}. Hence, (4.18) yields that dt /∈ Cr(L). Since Cr(L)

is a maximal chain, we can pick an element u ∈ Cr(L) such that dt ‖ u. Using
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dt = ys = yq ∈ Cl(L) ⊆ L ⊆ LS(Cr(L)) and Lemma 3.2, we have that dt λ u.

This is a contradiction, because u λ dt by (3.3). Thus, q < s.

Figure 5. If (4.41) fails

Note that q < s implies that s ≥ 1 and that y1 and yq+1 will make sense

later. Since ljcR(y) = i by (4.39), (4.40) yields that [ci, y] is a chain. Since

y ≥ dt > 0 but, by (4.25), ci � dt, we obtain that [ci, y] is a nontrivial chain.

Denote its element as follows:

[ci, y] = {y = a0 � a1 � · · · � ap = ci},
where p ≥ 1. By (4.12), ljcR(a1) = ljcR(y) = i. By (4.7), y = ci ∨ dt. Since

y = ci ∨ dt ≤ a1 ∨ y1 ≤ y, we obtain that a1 6= y1. Thus, as two distinct lower

covers of y, a1 and y1 are incomparable. Observe that ci ≤ y1 is impossible

because otherwise y = ci ∨ dt ≤ y1 < y. Hence, ljcR(y1) < i = ljcR(a1).

Combining this inequality with a1 ‖ y1 and (4.15) and using Lemma 3.2(ii),

we obtain that a1 λ y1.

Next, we assert that a1 ∈ S. Suppose, for a new contradiction, that a1 /∈ S.

This means that a1 is strictly on the right of Cl(L). Since a1 ≺ y, Lemma 3.1

excludes that y is strictly on the left of Cl(L). However, y ∈ S is on the left

of Cl(L), so y ∈ Cl(L). We know that ap = ci ∈ Cl(R) belongs to S, whence

there exists a smallest r ∈ {2, . . . , r} such that {ap, ap−1, . . . , ar} ⊆ S. Since

ar−1 is not in S, it strictly is on the right of Cl(L). But ar is on the left of

Cl(L) and ar ≺ ar−1. Lemma 3.1 implies easily that ar ∈ Cl(L). The interval

[ar, a0] is a chain since so is [ap, a0] = [ci, y] by (4.40). Since ar, a0 ∈ Cl(L) and

Cl(L) ∩ [ar, a0] is a maximal chain in the interval [ar, a0] = {ar ≺ · · · ≺ a1 ≺
a0}, it follows that {ar , . . . , a1, a0} ⊆ Cl(L) ⊆ S. This contradicts a1 /∈ S.

Thus, a1 ∈ S.

Since S is a sublattice by Lemma 4.3, zq := a1∧yq ∈ S. The distributivity of

S, see Lemma 4.3, yields that zq � yq . If zq = yq , then we have y > a1 = a1 ∨
zq = a1∨yq ≥ ci∨dt, which is a contradiction since y = ci∨dt by (4.7). Hence,

zq ≺ yq . We also know that yq+1 ≺ yq . By the choice of q, yq+1 /∈ S, so yq+1

is strictly on the right of Cl(L). But the element yq ∈ S is on the left of Cl(L),

and we conclude from Lemma 3.1 easily again that yq ∈ Cl(L). Since q < s and



Vol. 00, XX Diagrams and rectangular extensions 21

yq > ys, we know that yq 6= 0. Therefore, Cl(L) contains a unique element e

such that e ≺ yq . Since yq+1 /∈ S, we obtain that e 6= yq+1 6= zq. Suppose, for a

new contradiction, that e = zq. Since x and zq = e both belong to Cl(L), they

are comparable. If x > zq , then x ≥ yq ∈ Cl(L), so (4.12) and (4.16) imply

that j = rjcR(x) ≥ rjcR(yq) = rjcR(y) = t, which is a contradiction excluding

that e > zq . If x ≤ zq , then y = ci ∨ x ≤ a1 ∨ zq = a1 ≺ y is a contradiction

again. Thus, e 6= zq . Consequently, the set {zq , e, yq+1}, which consists of

distinct lower covers of yq , is a three-element antichain. Hence, as opposed to

e, zq does not belong to the chain Cl(L). If zq λ e, then zq is strictly on the

left of Cl(L) by Lemma 3.2, so zq /∈ L, which contradicts Definition 2.1(iii).

Hence, by Lemma 3.2(ii), e λ zq . However, then zq is strictly on the right of

Cl(L) by the left-right dual of Lemma 3.2(i), which contradicts zq ∈ S. That

is, e 6= zq also leads to a contradiction. This proves (4.41).

It follows from (4.39) and (4.41) that 〈ljcR(y), rjcR(y)〉 = 〈i, j〉 /∈ ICPL(L).

Hence, y /∈ L, which gives that y /∈ Cl(L). Combining this with y ∈ S, we

obtain that y is strictly on the left of Cl(L). Thus, 〈i, j〉 = 〈ljcR(y), rjcR(y)〉 ∈
LCPR(L). This implies the “⊇” part of (4.34). Thus, (4.34) holds, and so

does (4.35) by left-right symmetry.

Next, we deal with (4.36). The pair 〈i′, j〉 in (4.36) corresponds to the

coordinate pair 〈ljcL(x), rjcL(x)〉 for some element x ∈ L. By (4.15), the

condition that for every 〈i′′, j′′〉 ∈ ICPL(L), i′′ > i′ ⇒ j′′ ≥ j says that no

element of L is to the left of x, that is, this x belongs to Cl(L). Therefore, the

right-hand side of the equation in (4.36) is the same as that in (4.34). Hence,

(4.36) follows from (4.34). Similarly, (4.35) implies (4.37). In this way, we

have proved the equations (4.32)–(4.37).

It follows from (4.32), (4.33), (4.36), and (4.37) that ACPR(L) depends

only on the fixed diagram of L, and it only depends on ICPL(L). Thus, (4.38)

holds. Clearly, ACPL(L) and ICPL(L) are ordered sets. It follows from (4.16)

that γ and δ are isomorphisms. Hence, ACPL(L) and ICPL(L) are lattices and

γ and δ are lattice isomorphisms. This completes the proof of Lemma 4.7. �

Remark 4.8. By Lemma 4.7, the sets of coordinate pairs defined before the

lemma depend only on the fixed diagram of L. Hence, we can also use the

following notation:

ICP(L) := ICPL(L) = ICPR(L),

LCP(L) := LCPR(L), RCP(L) := RCPR(L),

ACP(L) := ACPR(L).

Let L be a planar semimodular lattice. According to G. Grätzer and

E. Knapp [19], a full slimming (sublattice) L′ of L is obtained from a pla-

nar diagram of L by omitting all elements from the interiors of intervals of

length 2 as long as there are elements to omit in this way. Note that L′, as a

sublattice of L, is not unique; this is witnessed by L = M3. However, the full

slimming sublattice becomes unique if the planar diagram of L is fixed. In [19],



22 G. Czédli Algebra univers.

the elements we omit are called “eyes”. Note that L′ is a slim semimodular

lattice. Note also that when we omit an eye from the lattice, then we also

omit this eye (which is a doubly irreducible element) from the diagram with

the two edges from the eye. The converse procedure, when we put the omitted

elements back, is called an anti-slimming. An element x ∈ L is reducible if

it is join-reducible or meet-reducible, that is, if it is not doubly irreducible.

It follows obviously from the slimming procedure that if L′ is a full slimming

sublattice of L, then

L′ contains every reducible element of L. (4.42)

Although we know from G.Czédli and E.T. Schmidt [15, Lemma 4.1] that L

determines L′ up to isomorphisms, we need a stronger statement here. By

G. Grätzer and E. Knapp [19, Lemma 8], an element in a slim semimodular

lattice can have at most two covers. Therefore, every 4-cell can be described

by its bottom element. To capture the situation that L′ is a full slimming

(sublattice) of a planar semimodular lattice L, we define the numerical com-

panion map fnc = fnc

L′⊆L associated with the full slimming sublattice L′ as

follows. It is the map fnc

L′⊆L : L′ → N0 := {0, 1, 2, . . .} defined by

fnc

L′⊆L(x) =

{
n, if x is the bottom of a 4-cell that has n eyes in L,

0, otherwise.
(4.43)

Let L′
i be a full slimming sublattice of a planar semimodular lattice Li, for

i ∈ {1, 2}, and let ϕ : L′
1 → L′

2 be an isomorphism. We say that ϕ is an

fnc-preserving isomorphism if fnc

L′

1⊆L1
= fnc

L′

2⊆L2
◦ ϕ. (We compose maps from

right to left.) The map fnc

L′⊆L exactly describes how to get L back from L′ by

anti-slimming. Hence, obviously,

every fnc-preserving L′
1 → L′

2 isomorphism

extends to an L1 → L2 isomorphism.
(4.44)

The restriction of a map κ to a set A is denoted by κeA.

Lemma 4.9. For i ∈ {1, 2}, let L′
i be a full slimming sublattice of a planar

semimodular lattice Li.

(i) L1 is glued sum indecomposable iff so is L′
1.

(ii) L1 is rectangular iff so is L′
1. (This is Lemma 6.1(ii) in G.Czédli and

E.T. Schmidt [15].)

(iii) If ϕ : L1 → L2 is an isomorphism, then there exists an automorphism

π of L1 such that the restriction (ϕ ◦ π)eL′

1
is a fnc-preserving L′

1 → L′
2

isomorphism and, in addition, π(x) = x for every reducible x ∈ L1.

(iv) Any two full slimming sublattices of a planar semimodular lattice are

isomorphic.

Proof. In order to prove part (i), assume that L1 is glued sum indecomposable

and that x ∈ L′
1 \ {0, 1}. There is an element y ∈ L1 such that x ‖ y. We

can assume that y /∈ L′
1, since otherwise there is nothing to do. Then y is an
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“eye”, so there are a, b ∈ L′
1 such that {a ∧ b, a, b, a∨ b} is a covering square

in L1 and y ∈ [a∧ b, a∨ b] is to the right of a and to the left of b. If x ∦ a and

x ∦ b, then either x ≤ a ∧ b ≤ y, or x ≥ a ∨ b ≥ y, because the rest of cases

would contradict a ‖ b. But this contradicts x ‖ y, proving that L′
1 is slim.

The converse direction is trivial, because if L′
1 is glued sum indecomposable,

then its elements outside {0, 1} are incomparable with appropriate elements

of L′
1 while the eyes are incomparable with the corners of the covering squares

they were removed from in order to obtain L′
1. This proves (i).

Part (ii) has already been proved in G.Czédli and E.T. Schmidt [15].

We assume that, for i ∈ {1, 2}, a planar diagram of Li is fixed and that

we form the full slimming sublattice L′
i according to this diagram. We prove

(iii) by induction on |L1|. If L1 is slim, then the statement is trivial, because

L′
1 = L1, L

′
2 = L2, π is the identity map on L1, and both numerical companion

maps are the constant zero maps. Assume that L1 is not slim. Then there are

a1 < b1 ∈ L1 with images a2 = ϕ(a1) and b2 = ϕ(b1) such that, for i ∈ {1, 2},
[ai, bi] is an interval of length two and it contains a doubly irreducible element

xi in its interior such that xi /∈ L′
i. Let y1 = ϕ−1(x2); it is a doubly irreducible

element of L1 in [a1, b1]. Clearly, there is an automorphism π0 of L1 such that

π0(x1) = y1, π0(y1) = x1, and π0(z) = z for z /∈ {x1, y1}. As we require in

case of our automorphisms, every reducible element is a fixed point of π0.

Observe that (ϕ ◦ π0)(x1) = ϕ(π0(x1)) = ϕ(y1) = x2. Since xi is doubly

irreducible, L∗
i := Li \ {xi} is a sublattice of Li and ϕ∗ := (ϕ ◦ π0)eL∗

1
is an

L∗
1 → L∗

2 isomorphism. Note that L′
i is also a full slimming sublattice of L∗

i . By

the induction hypothesis, L∗
1 has an automorphism π∗ such that (ϕ∗ ◦ π∗)eL′

1
is

an fnc-preserving L′
1 → L′

2 isomorphism and, in addition, π∗(z) = z for every

reducible element z of L∗
1 . In particular,

fnc

L′

2⊆L∗

2
◦ ((ϕ∗ ◦ π∗)eL′

1
) = fnc

L′

1⊆L∗

1
. (4.45)

Let π• : L1 → L1 be the only automorphism that extends π∗. That is, π•(x1) =

x1 and, for z 6= x1, π
•(z) = π∗(z). We define π := π0 ◦ π•, and we claim that

it has the properties required in Lemma 4.9(iii). If z is a reducible element of

L1, then z /∈ {x1, y1}, since x1 and y1 are doubly irreducible. Hence, z ∈ L∗
1.

Furthermore, z is also reducible in L∗
1, because it is only a1 and b1 ∈ L1 that

loose one of their upper and lower covers, respectively, when passing from L1

to L∗
1 , but they still have at least two upper and lower covers, respectively,

in L∗
1. Hence, z is a fixed point of π∗ by the induction hypothesis, and we

obtain that π(z) = (π0 ◦ π•)(z) = π0(π
•(z)) = π0(π

∗(z)) = π0(z) = z, as

Lemma 4.9(iii) requires. Next, we show that

(ϕ ◦ π)eL′

1
= (ϕ∗ ◦ π∗)eL′

1
. (4.46)

Let z ∈ L′
1. Since x1 /∈ L′

1, z 6= x1. We compute as follows.

(ϕ ◦ π)(z) = (ϕ ◦ π0 ◦ π•)(z) = (ϕ ◦ π0)(π
•(z)) = (ϕ ◦ π0)(π

∗(z))

= (ϕ ◦ π0)eL∗

1
(π∗(z)) = ϕ∗(π∗(z)) = (ϕ∗ ◦ π∗)(z).
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This proves (4.46). In particular, this also gives that (ϕ ◦ π)eL′

1
is an isomor-

phism from L′
1 to L′

2. We have to prove that it is fnc-preserving, that is,

fnc

L′

2⊆L2
◦ ((ϕ ◦ π)eL′

1
)

?
= fnc

L′

1⊆L1
. (4.47)

Before proving (4.47), observe that, for z ∈ L′
i and i ∈ {1, 2},

fnc

L′

i⊆Li
(z) =

{
fnc

L′

i⊆L∗

i
(z), if z 6= ai.

1 + fnc

L′

i⊆L∗

i
(z), if z = ai.

(4.48)

Hence z = a1, which is in L′
1 by (4.42), and z ∈ L′

1 \ {a1} need separate

treatments. First, since a1 is reducible and π∗, π0, and π keep it fixed,

((ϕ ◦ π)eL′

1
)(a1) = (ϕ ◦ π)(a1) = ϕ(π(a1)) = ϕ(a1) = a2, (4.49)

((ϕ∗ ◦ π∗)eL′

1
)(a1)

(4.46)
= ((ϕ ◦ π)eL′

1
)(a1)

(4.49)
= a2. (4.50)

Hence, we can compute as follows.
(
fnc

L′

2⊆L2
◦ ((ϕ ◦ π)eL′

1
)
)
(a1) = fnc

L′

2⊆L2

(
((ϕ ◦ π)eL′

1
)(a1)

) (4.49)
= fnc

L′

2⊆L2
(a2)

(4.48)
= 1 + fnc

L′

2⊆L∗

2
(a2)

(4.50)
= 1 + fnc

L′

2⊆L∗

2

(
((ϕ∗ ◦ π∗)eL′

1
)(a1)

)

(4.45)
= 1 + fnc

L′

1⊆L∗

1
(a1)

(4.48)
= fnc

L′

1⊆L1
(a1).

This shows that (4.47) holds for the element a1. Second, assume that z ∈
L′

1 \ {a1}. Since the map in (4.50) is a bijection, ((ϕ∗ ◦ π∗)eL′

1
)(z) 6= a2, and

we can compute as follows.
(
fnc

L′

2⊆L2
◦ ((ϕ ◦ π)eL′

1
)
)
(z)

(4.46)
= fnc

L′

2⊆L2

(
((ϕ∗ ◦ π∗)eL′

1
)(z)

)

(4.48)
= fnc

L′

2⊆L∗

2

(
((ϕ∗ ◦ π∗)eL′

1
)(z)

) (4.45)
= fnc

L′

1⊆L∗

1
(z)

(4.48)
= fnc

L′

1⊆L1
(z).

Therefore, (4.47) holds and (ϕ ◦ π)eL′

1
is fnc-preserving. This completes the

proof of Lemma 4.9. �

Definition 4.10 (D. Kelly and I. Rival [24, p. 640]). For planar lattice dia-

grams D1 and D2, a bijection ϕ : D1 → D2 is a similarity map if it is a lattice

isomorphism and, for all x, y, z ∈ D1 with y ≺ x and z ≺ x, y is to the left of z

iff ϕ(y) is to the left of ϕ(z). If there is such a map, then D1 is similar to D2.

Note that similarity turns out to be a self-dual condition; see G. Czédli

and G. Grätzer [10, Exercise 3.9]. Furthermore, if D1 and D2 are planar

diagrams of slim (but not necessarily semimodular) lattices and a bijective

map ϕ : D1 → D2 is a lattice isomorphism, then

ϕ is a similarity map iff it preserves the left boundary chain, (4.51)

that is, ϕ(Cl(D1)) = Cl(D2); see [10, Theorem 3-4.6]. A map between two

lattices can be considered as a map between (the vertex sets) of their diagrams.

For a diagram D, its mirror image across a vertical axis is denoted by D(mi).

We say that the planar diagrams of a planar lattice L are unique up to left-

right similarity if for any two diagrams D1 and D2 of L, D2 is similar to D1
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or it is similar to D
(mi)
1 . For a statement stronger than the following one, see

G. Czédli and G. Grätzer [10, Theorem 3-4.5].

Proposition 4.11 (G. Czédli and E. T. Schmidt [15, Lemma 4.7]). Assume

that L1 and L2 are glued sum indecomposable slim semimodular lattices with

planar diagrams D1 and D2, respectively. If ϕ : L1 → L2 is a lattice isomor-

phism, then ϕ : D1 → D2 or ϕ : D1 → D
(mi)
2 is a similarity map. Consequently,

the planar diagram of a glued sum indecomposable slim semimodular lattice is

unique up to left-right similarity.

Now, we are in the position to complete this section briefly.

Proof of Theorem 2.2. Let L be a planar semimodular lattice. The existence

of a normal rectangular extension R of L follows from G. Grätzer and E. Knapp

[20, Proof of Theorem 7], and it also follows from G. Czédli [3, Lemma 6.4].

Thus, part (i) of the theorem holds.

In order to prove part (ii), let R be an arbitrary normal rectangular exten-

sion of L. Based on (4.13), it suffices to show that R has a cover-preserving

diamond sublattice M3 iff so has L. The “if” part is evident since L is a cover-

preserving sublattice of R. Conversely, assume that M3 is a cover-preserving

sublattice of R. It follows from Definition 2.1(iii) that none of its three atoms

is in R \ L. Hence, all atoms of M3 belong to L. Since M3 is generated by its

atoms, M3 is a cover-preserving sublattice of L. This proves part (ii).

In order to prove (v), assume that L and L′ are glued sum indecompos-

able slim planar semimodular lattices with fixed planar diagrams and that

ψ : L→ L′ is an isomorphism. Also, we assume that R and R′ are normal rect-

angular extensions of L and L′, respectively. By reflecting one of the diagrams

over a vertical axis if necessary, Proposition 4.11 allows us to assume that ψ is

a similarity map between the respective diagrams. Hence, ψ(Cl(L)) = Cl(L
′)

and ψ(Cr(L)) = Cr(L
′). Also, ml = m′

l andmr = m′
r; see Definition 4.2(i). We

know from (the last sentence of) Lemma 4.7 that ICP(L) and ICP(L′) are lat-

tices with respect to the componentwise ordering; see also Remark 4.8 for the

notation. The same lemma says that γ : L→ ICP(L) is a lattice isomorphism,

and so is γ′ : L′ → ICP(L′), defined analogously by x 7→ 〈ljcL′(x), rjcL′(x)〉.
Since ψ is a similarity map, it preserves the left boundary chain and the right

boundary chain. So we obtain from Definition 4.2(ii) that ψ preserves the

left and right join-coordinates. Thus, for x ∈ L, γ(x) = γ′(ψ(x)), that is,

γ = γ′ ◦ ψ, and we also conclude that ICP(L) = ICP(L′). Hence, (4.38)

yields that ACP(L) = ACP(L′). Since γ, γ′, and ψ are isomorphisms, the

equality γ = γ′ ◦ ψ implies that ψ = γ′−1 ◦ γ. Consider the isomorphism

δ : R → ACP(L) from Lemma 4.7 and the isomorphism δ′ : R′ → ACP(L′)

defined by x 7→ 〈ljcR′(x), rjcR′(x)〉 analogously. It follows from Lemma 4.6

that δ and δ′ extend γ and γ′, respectively. Since δ′ extends γ′ and they are

bijections, δ′−1 extends γ′−1. The equality ACP(L) = ACP(L′) allows us to

define a lattice isomorphism ψ∗ : R → R′ by ψ∗ := δ′−1 ◦ δ. Since δ and δ′−1
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extend γ and γ′−1, we conclude that ψ∗ extends γ′−1 ◦ γ, which is ψ. This

proves part (v) of the theorem.

Part (iv) follows from part (v) trivially.

Finally, in order to prove (iii), let L be a glued sum indecomposable planar

semimodular lattice, and let R1 and R2 be normal rectangular extensions of

L. Let R′
1, and R′

2 denote their full slimmings, respectively (with respect to

their fixed planar diagrams, of course). These full slimmings are rectangular

lattices by Lemma 4.9(ii). When we delete all eyes, one by one, from Ri to

obtain R′
i, we also delete all eyes from its cover-preserving sublattice, L. So,

this sublattice changes to a full slimming sublattice L′
i of L, for i ∈ {1, 2}.

Since the deletion of eyes does not spoil the validity of Definition 2.1(iii), we

conclude that R′
i is a normal rectangular extension of L′

i, for i ∈ {1, 2}.
Applying Lemma 4.9(iii) to the identity map L→ L, we obtain an automor-

phism π of L such that πeL′

1
is a fnc-preserving isomorphism πeL′

1
: L′

1 → L′
2.

Thus, fnc

L′

1⊆L = fnc

L′

2⊆L ◦ πeL′

1
. If B ∼= M3 is a cover-preserving diamond sublat-

tice of Ri, then all the three coatoms of B belong to L by Definition 2.1(iii),

and so do all elements of B, including 0B . Hence, by the definition of antislim-

ming, if B ∼= M3 is a cover-preserving diamond sublattice of Ri, then 0B ∈ L′
i.

These facts imply that, for x ∈ R′
i \L′

i and y ∈ L′
i, we have that fnc

R′

i⊆Ri
(x) = 0

and fnc

R′

i⊆Ri
(y) = fnc

L′

i⊆L(y). By the already proved part (v) of Theorem 2.2,

πeL′

1
extends to an isomorphism ϕ : R′

1 → R′
2. For x ∈ R′

1 \ L′
1, we have that

ϕ(x) ∈ R′
2 \ L′

2, and the already established facts imply that

(fnc

R′

2⊆R2
◦ ϕ)(x) = fnc

R′

2⊆R2
(ϕ(x)) = 0 = fnc

R′

1⊆R1
(x).

On the other hand, for y ∈ L′
1, we have that

(fnc

R′

2⊆R2
◦ ϕ)(y) = fnc

R′

2⊆R2
(ϕ(y)) = fnc

R′

2⊆R2
(πeL′

1
(y)) = fnc

L′

2⊆L(πeL′

1
(y))

= (fnc

L′

2⊆L ◦ πeL′

1
)(y) = fnc

L′

1⊆L(y) = fnc

R′

1⊆R1
(y).

The two displayed equations show that fnc

R′

2⊆R2
◦ ϕ = fnc

R′

1⊆R1
, which means

that ϕ : R′
1 → R′

2 is a fnc-preserving isomorphism. By (4.44), it extends to an

R1 → R2 isomorphism. Consequently, the normal rectangular extension of L

is unique up to isomorphism, which completes the proof of Theorem 2.2. �

5. A hierarchy of planar semimodular lattice diagrams

Our experience with planar semimodular lattices makes it reasonable to de-

velop a hierarchy of diagram classes for planar semimodular lattices. In this

section, we do so. Several properties of our diagrams and their trajectories will

be studied at various levels of this hierarchy. In particular, we are interested

in what sense our diagrams are unique. The power of this approach is demon-

strated in Section 8, where we give a proof of G. Grätzer’s Swing Lemma. Let

us repeat that, unless otherwise explicitly stated, our lattices are still assumed

to be finite planar semimodular lattices and the diagrams are planar diagrams

of these lattices. We are going to define diagram classes C0, C1, C2, and C3;
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they form a “hierarchy” because of the inclusions C0 ⊃ C1 ⊃ C2 ⊃ C3. A small

part of this section is just an overview of earlier results in the present setting.

5.1. Diagrams and uniqueness in Kelly and Rival’s sense. Let C0 be

the class of planar diagrams of planar semimodular lattices. We recall some

well-known concepts from, say, G. Czédli and G. Grätzer [10, Definition 3-3.5

and Lemma 3-4.2]. An element x of a lattice L is a narrows if x ∦ y for all

y ∈ L. The glued sum L1 +gl L2 of finite lattices L1 and L2 is a particular case

of their (Hall–Dilworth) gluing: we put L2 atop L1 and identify the singleton

filter {1L1} with the singleton ideal {0L2}. Chains and lattices with at least two

elements are called nontrivial. Remember that a glued sum indecomposable

lattice consists of at least four elements by definition. A folklore result says

that a finite lattice L and, consequently, any of its diagrams D can uniquely

be decomposed as

L = L1 +gl . . . +gl Lt and D = D1 +gl . . . +gl Dt (5.1)

where t ∈ N0 := {0, 1, 2, . . .} and, for every i ∈ {1, . . . , t}, either Li is a glued

sum indecomposable lattice, or it is a maximal nontrivial (chain) interval that

consists of narrows. By definition, the empty sum yields the one element lat-

tice. This decomposition, called the canonical glued sum decomposition, makes

it meaningful to speak of the glued sum components of L or D. Note that a

glued sum component is either glued sum indecomposable, or it is a nontrivial

chain. We say that the planar diagrams of a planar lattice L are unique up

to sectional left-right similarity if for every Li from the canonical decomposi-

tion (5.1), the planar diagram of Li is unique up to left-right similarity. The

uniqueness properties of C0, that is, the “natural isomorphism” concept in C0,

are explored by the following statement.

Proposition 5.1. If L is a planar semimodular lattice, then its planar dia-

grams are unique up to sectional left-right similarity. They are unique even up

to left-right similarity if, in addition, L is glued sum indecomposable.

Proof. First, assume that L is glued sum indecomposable. Let D1, D2 ∈ C0 be

diagrams of L. For i ∈ {1, 2}, by deleting eyes as long as possible, we obtain

a subdiagram D′
i of Di such that D′

i determines a full slimming sublattice

L′
i of L. By Lemma 4.9(i), the L′

i are glued sum indecomposable. Applying

Lemma 4.9(iii) to the identity map idL : L → L, we obtain an automorphism

π of L such that πeL′

1
: L′

1 → L′
2 is an fnc-preserving lattice isomorphism. We

let κ := πeL′

1
, and we consider it as a D′

1 → D′
2 map. Also, let κ(mi) := πeL′

1
,

which is treated as a D′
1 → D

′(mi)
2 map. By Proposition 4.11, κ or κ(mi) is a

similarity map. We can assume that κ : D′
1 → D′

2 is a similarity map, because

in the other case we could work with D
(mi)
2 , whose full slimming subdiagram is

D
′(mi)
2 . Next, we define a map ψ : D1 → D2 as follows. First, if x ∈ D′

1, then

ψ(x) := κ(x). Second, let y ∈ D1 \ D′
1. By (4.42), y is a doubly irreducible

element; its unique lower cover is denoted by y−. It follows obviously from the
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slimming procedure that y− ∈ D′
1 and that fnc

D′

1⊆D1
(y−) ≥ 1. Listing them

from left to right, let y be the i-th cover of y− in D1; note that 1 < i <

2 + fnc

D′

1⊆D1
(y−), because y− has exactly 2 + fnc

D′

1⊆D1
(y−) covers in D1. Since

κ is fnc-preserving, fnc

D′

2⊆D2
(κ(y−)) = fnc

D′

1⊆D1
(y−). So, κ(y−) has the same

number of covers as y−. Hence, we can define ψ(y) as the i-th cover of κ(y−),

counting from left to right. To sum up, ψ : D1 → D2 is defined by

ψ(z) =

{
κ(z), if z ∈ D′

1,

the i-th cover of κ(z−), if z /∈ D′
1 is the i-th cover of z−.

(5.2)

We claim that ψ : D1 → D2 is a similarity map. Clearly, ψ is an order isomor-

phism, because so is κ. Hence, it is a lattice isomorphism. In order to prove

that ψ is a similarity map, assume that a, b, c ∈ D1, a ≺ b, a ≺ c, b 6= c, and b

is to the left of c. By Definition 4.10 and the sentence following it, it suffices

to show that ψ(b) is to the left of ψ(c). Having at least two covers, a belongs

to D′
1 by (4.42). If b, c ∈ D′

1, then ψ(b) = κ(b) is to the left of ψ(c) = κ(c),

because κ is a similarity map. Hence, the second line of (5.2) implies that

ψ(b) is to the left of ψ(c) even if {b, c} * D′
1. Therefore, ψ is a similarity map.

This proves the second half of the proposition.

Based on (5.1), the first half follows from the second. �

As a preparation for later use, we formulate the following lemma.

Lemma 5.2. Let L and L′ be slim rectangular lattices with fixed diagrams

D,D′ ∈ C0, respectively, and let ϕ : L → L′ be a lattice isomorphism. Then

either ϕ(Cl(D)) = Cl(D
′) and ϕ(Cr(D)) = Cr(D

′), or ϕ(Cl(D)) = Cr(D
′) and

ϕ(Cr(D)) = Cl(D
′).

Although ϕ is also a D → D′ map, it is not so obvious that it preserves the

“to the left of” relation or its inverse. Hence, this lemma seems not to follow

from Proposition 5.1 immediately.

Proof of Lemma 5.2. With self-explanatory notation, (4.6) yields that

Ji(D) =
(
Cll(D) ∪ Clr(D)

)
\ {0} = {c1, . . . , cml , d1, . . . , dmr},

Ji(D′) =
(
Cll(D

′) ∪ Clr(D
′)

)
\ {0} = {c′1, . . . , c′m′

l
, d′1, . . . , d

′
m′

r
},

(5.3)

where, as in Definition 4.2(i), c0 ≺ · · · ≺ cml , d0 ≺ · · · ≺ dmr , c
′
0 ≺ · · · ≺ c′m′

l
,

and d′0 ≺ · · · ≺ d′m′

r
. Since ↑cml and ↑dmr are chains by (4.11),

Cl(D) = ↓cml ∪ ↑cml , Cr(D) = ↓dmr ∪ ↑dmr ,

Cl(D
′) = ↓c′m′

l
∪ ↑c′m′

l
, Cr(D

′) = ↓d′m′

r
∪ ↑d′m′

r
.

(5.4)

We know from G.Czédli and E.T. Schmidt [15, (2.14)] that, with the ex-

ceptions of cml , dmr , c
′
m′

l
and d′m′

r
, the elements given in (5.3) are meet-

reducible. Thus, each of D and D′ has exactly two doubly irreducible ele-

ments, and they are cml , dmr ∈ D and c′m′

l
, d′m′

r
∈ D′, respectively. Hence,

{ϕ(cml), ϕ(dmr)} = {c′m′

l
, d′m′

r
}. Thus, Lemma 5.2 follows from (5.4). �
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5.2. Diagrams with normal slopes on their boundaries. Although the

title of this subsection does not define the class C1 of diagrams, it reveals a

property, to be defined soon, of diagrams in C1. In the rest of the section,

we often consider the plane as C, the field of complex numbers. However, a

comment is useful at this point. When dealing with diagrams, they are on the

blackboard or in a page of an article or a book. In all these cases, the direction

“up” is fixed, but 0 ∈ C and (to the right of 0) 1 ∈ C are not necessarily. In

other words, the position of the origin and the unit distance is our choice. Let

ε = cos(π/4) + i sin(π/4) =
√

2/2 + i
√

2/2,

ε
3 = cos(3π/4) + i sin(3π/4) = −

√
2/2 + i

√
2/2.

We use these 8th roots of 1 to coordinatize the location of vertices of diagrams

in C1, which we want to define.

For finite sequences ~x = 〈x1, . . . , xj〉 and ~y = 〈y1, . . . , yk〉, we can glue these

two sequences to obtain a new sequence ~x +gl ~y := 〈x1, . . . , xj, y1, . . . , yk〉; we

can also glue more than two sequences. For D ∈ C0, let

ml(D) = max{ljcD′ (x) : x ∈ D′} and mr(D) = max{rjcD′ (x) : x ∈ D′},
where D′ is the full slimming subdiagram of D. (That is, D determines a

unique full slimming sublattice L′ of the lattice L defined byD, andD′ consists

of the vertices that represent the elements of L′.) Let Cn denote the chain of

length n; it consists of n+ 1 elements. The superscripts ft and gh below come

from “left” and “right”, respectively.

Definition 5.3.

(A) A planar diagram D of a glued sum indecomposable finite planar semi-

modular lattice L belongs to C1 if there exist a complex number δ ∈ C
and sequences

~r ft = 〈rft

1 , . . . , r
ft

ml(D)〉 and ~r gh = 〈rgh

1 , . . . , r
gh

mr(D)〉 (5.5)

of positive real numbers such that the following conditions hold.

(i) L is a planar semimodular lattice. The full slimming subdiagram

of D and the corresponding sublattice of L are denoted by D′ and

L′, respectively.

(ii) For every x ∈ L′, the corresponding vertex of D′ is

δ + ε
3 ·

ljcD′(x)∑

j=1

rft

j + ε ·
rjcD′(x)∑

j=1

rgh

j ∈ C. (5.6)

(iii) We know that for each “eye” x ∈ L \ L′, there exists a unique

4-cell U of D′ whose interior contains x; the condition is that

the eyes in the interior of U should belong to the (not drawn)

line segment connecting the left corner and the right corner of U

and, furthermore, these eyes should divide this line segment into

equal-sized parts.
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In this case, we say that D is determined by 〈δ, ~r ft, ~r gh〉. We also say that

〈δ, ~r ft, ~r gh〉 is the complex coordinate triplet of D ∈ C1.

(B) For a chain C = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1} of length n ∈ N0, a planar

diagram D of C belongs to C1 if there exists a δ ∈ C such that one of the

following three possibilities holds.

(i) There is a sequence ~r ft = 〈rft
1 , . . . , r

ft
n〉 of positive real numbers

such that, for j ∈ {0, . . . , n}, the vertex representing cj is δ + ε3 ·
(rft

1 + · · ·+ rft
j ). In this case we let ml(D) := n, mr(D) := 0, and

let ~r gh be the empty sequence.

(ii) There is a sequence ~r gh = 〈rgh

1 , . . . , r
gh

n 〉 of positive real numbers

such that, for j ∈ {0, . . . , n}, the vertex representing cj is δ + ε ·
(rgh

1 + · · ·+ rgh

j ). In this case we let ml(D) := 0, mr(D) := n, and

let ~r ft be the empty sequence.

(iii) There are positive integers j and k with n = j+k, sequences ~r ft =

〈rft

1 , . . . , r
ft

j 〉 and ~r gh = 〈rgh

1 , . . . , r
gh

k 〉 of positive real numbers such

that D is a cover-preserving {0, 1}-subdiagram of the diagram

E ∈ C1 of Cj × Ck determined by 〈δ, ~r ft, ~r gh〉. Then 〈δ, ~r ft, ~r gh〉
is said to be the complex coordinate triplet of D. However, this

vector does not determine D, which can be any of the “zigzags”

from 0E up to 1E.

(C) If the canonical glued sum decomposition D1 +gl . . . +gl Dt of D ∈ C0,

see (5.1), consists of t ≥ 2 components, then we say that D belongs to C1

if so do its components, D1, . . . , Dt. With the self-explanatory notation,

the complex coordinate triplet of D is 〈δ, ~r ft, ~r gh〉 defined as

〈δ(1), ~r ft(1)
+gl . . .+gl ~r ft(t), ~r gh(1)

+gl . . . +gl ~r gh(t)〉. (5.7)

We define ml(D) and mr(D) as the number of components of ~r ft and that

of ~r gh, respectively.

(D) We say that 〈δ, ~r ft, ~r gh〉 is a triplet compatible with L, if ~r ft and ~r gh are

finite sequences of positive real numbers, δ ∈ C, and there exists a planar

diagram D of L (that is, D is in C0 but not necessarily in C1) such that

one of the following three possibilities holds.

(i) L is a nontrivial chain and the length of L is the sum of the length

(= number of components) of ~r ft and that of ~r gh. Here we allow

that ~r ft or ~r gh is the empty sequence with length 0.

(ii) D is glued sum indecomposable, ~r ft is of length ml(D), and ~r gh

is of length mr(D).

(iii) In the canonical decomposition D = D1 +gl . . . +gl Dt, see (5.1),

t ≥ 2, ~r ft is of length ml(D1) + · · ·+ml(Dt), and ~r gh is of length

mr(D1) + · · ·+mr(Dt).

(E) For D ∈ C1, we say that D is collinear if 0 ∈ {ml(D), mr(D)}. Otherwise,

D is non-collinear.
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For example, Dt−1 and Dt in Figure 6, which happen to be slim rectangular

diagrams, belong to C1 but not to C2, to be defined soon. In these diagrams, ~r ft

and ~r gh are indicated. No matter if the pentagon-shaped grey-filled elements

are considered or not, the diagram of L in Figure 2 is also in C1; this lattice

is neither slim, nor rectangular, ~r ft = 〈1, 1, 1〉 and ~r gh = 〈1, 2, 1, 1〉. There are

also many earlier examples, including G.Czédli [2, Figure 7], [3, M in Figure

3] , [5, D in Figures 2, 3], which belong to C1 \ C2. The examples in C2, to

be mentioned later, are also in C1. Our examples are non-collinear, since only

nontrivial chains have collinear diagrams in C1. However, the chain Cn with

n ≥ 2 also has non-collinear diagrams in C1.

Remark 5.4. One may ask why we need (B) and (C) of Definition 5.3 and why

we do not apply (A) and (5.6) without assuming glued sum indecomposability.

For the answer, see Remark 6.6.

Assume that D ∈ C1 is a diagram of a glued sum indecomposable planar

semimodular lattice L with complex coordinate triplet 〈δ, ~r ft, ~r gh〉 and that

the full slimming subdiagram of D is D′. If we change 〈δ, ~r ft, ~r gh〉 to some

〈δ∗, ~r ∗ft, ~r ∗gh〉 where

~r ∗ft = 〈r∗ft

1 , . . . , r∗ft

ml(D)〉 and ~r ∗gh = 〈r∗gh

1 , . . . , r∗gh

mr(D)〉, (5.8)

then (5.6), in which ljcD′(x) and rjcD′(x) are still understood in the full slim-

ming of the original diagram, defines another diagram D∗ of L. We say that

D∗ is obtained from D by rescaling. We can rescale a diagram D ∈ C1 of a

chain similarly, keeping ml(D) and mr(D) unchanged. Finally, if D ∈ C1 and

we rescale its components in the canonical decomposition (5.1), then we obtain

another diagram of the same lattice, and we say that it is obtained from D by

piecewise rescaling. Also, we can reflect some of the Dj in (5.1) over a vertical

axis. (Of course, we may have to move several Dj ’s to the left or to the right in

order not to “tear” the glued sum.) We say that the new diagram is obtained

by component-flipping. Finally, parallel shifting means that we change δ in

(5.6). Obviously, C1 is closed with respect to component-flipping. Since the

compatibility of a triplet does not depend on the magnitudes of its real number

components, if 〈δ, ~r ft, ~r gh〉 is the complex coordinate triplet of D ∈ C1, then

(5.8) gives a triplet compatible with L. Hence, Theorem 5.5(i) below implies

that C1 is also closed with respect to piecewise rescaling; this is not obvious,

because we have to shows that rescaling does not ruin planarity.

Theorem 5.5. For a planar semimodular lattice L, the following hold.

(i) If 〈δ, ~r ft, ~r gh〉 is a triplet compatible with L, then this triplet (uniquely)

determines a diagram D ∈ C1 of L.

(ii) In particular, L has a diagram in C1.

(iii) The diagram of L in C1 is unique up to component-flipping, parallel

shifting, and piecewise rescaling.
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Figure 6. Dt is a 3-fold multifork extension of Dt−1 at Ht−1

Before proving this theorem, it is necessary to recall a construction from

G. Czédli [5]. Let D be a planar diagram of a slim semimodular lattice L.

A 4-cell H of D is distributive if the ideal ↓1H is a distributive lattice. To

obtain a multifork extension D′ of D at the 4-cell H , we have to perform two

steps. As the first step, we insert k new lower covers of 1H into the interior

of H . For 〈D,D′, H, k〉 = 〈Dt, Dt−1, Ht−1, 3〉, the situation is exemplified in

Figure 6, where H = Ht−1 is the grey 4-cell on the left and the new lower covers

of 1H are the black-filled pentagon-shaped elements on the right. (Except for

D = Dt−1, D
′ = Dt, and H = Ht−1, the reader is advised to disregard the

labels in the figure at present.) In the second step, we proceed downwards by

inserting new elements (the empty-filled pentagon-shaped ones in the figure)

into the 4-cells of the two trajectories through H , and we obtainD′ in this way.

We say that D′ and L′ are obtained by a (k-fold) multifork extension at the

4-cell H from D and from L, respectively. The maximal elements in L′ \L or,

equivalently, the new meet-irreducible elements, are called the source elements

of the fork extension. (They are the black-filled pentagon-shaped elements

in the figure.) For more details, the reader might want but need not resort

to [5, Definition 3.1]. Note that this construction also makes sense for slim

semimodular lattices without rectangularity.

The importance of this construction is given by the following lemma. Re-

member that a grid is the direct product of two finite chains.

Lemma 5.6 (G. Czédli [5, Theorem 3.7]). If D ∈ C0 is a slim rectangular

diagram, then there exist a t ∈ N0 = {0, 1, 2, . . .},
a sequence of diagrams D0 ⊆ D1 ⊆ · · · ⊆ Dt = D,

and distributive 4-cellsHj of Dj for j = 0, 1, . . . , t−1
(5.9)

such that D0, . . . , Dt−1 ∈ C0, D0 is a grid, and that Dj+1 is obtained from Dj

by a multifork extension at Hj, for j = 0, 1, . . . , t− 1.

The sequence in (5.9) is not unique, since the order of multifork extensions

is not unique in general. However, t is uniquely determined, because it is
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clearly the number of elements with more than two lower covers. Now, we

tailor Lemma 5.6 to our needs as follows.

Lemma 5.7. Let L be a slim rectangular lattice, and let t be the number of its

elements with more than two lower covers. If 〈δ, ~r ft, ~r gh〉 is a triplet compatible

with L, then it is the complex coordinate triplet of a unique diagram D of L

in C1 and, furthermore, there exist

a sequence of diagrams D0 ⊆ D1 ⊆ · · · ⊆ Dt = D,

and distributive 4-cellsHj of Dj for j = 0, 1, . . . , t−1
(5.10)

such that D0, . . . , Dt−1 ∈ C1, D0 is a grid, and that Dj+1 is obtained from Dj

by a multifork extension at Hj, for j = 0, 1, . . . , t− 1.

Again, the sequence in (5.10) is not unique in general. However, unless

otherwise stated, we fix such a sequence and call it the multifork construction

sequence of D. Before proving Lemma 5.7, we need an auxiliary statement.

Lemma 5.8.

(i) Let x be an element of a slim rectangular lattice L. If ↓x is distributive,

then it is a grid (= direct product of two chains) or a chain.

(ii) A distributive rectangular lattice is a grid.

Proof. In order to prove part (i), assume that ↓x is not a chain. Since Ji(↓x) ⊆
Ji(L), Ji(↓x) satisfies the condition given in (2.1). Hence, there is a grid G

such that the ordered sets Ji(G) and Ji(↓x) are isomorphic. By the classical

structure theory of finite distributive lattices, see G. Grätzer [17, Corollary

108], ↓x ∼= G, as required. This proves part (i). Part (ii) follows from part (i),

applied to x = 1, and (4.13). �

Proof of Lemma 5.7. We prove the lemma by induction on t. If t = 0, then

L is a grid by Lemma 5.8(ii) and the statement is trivial. Assume that t > 0

and the lemma holds for t − 1. By Lemma 5.6, there exist a slim rectangular

lattice L′ with exactly t−1 of its elements having more than two lower covers,

a fixed diagram D′
0 ∈ C0 of L′, a distributive covering square (equivalently, a

distributive 4-cell in D′
0) Ht−1 of L′, and k ∈ N = {1, 2, . . .} such that L is

obtained from L′ by a k-fold multifork extension at Ht−1. With respect to

D′
0, let i = ljcL′(1Ht−1) and j = rjcL′(1Ht−1 ). Define

~r ∗ft = 〈rft

1 , . . . , r
ft

i−1, r
ft

i + · · ·+ rft

i+k, r
ft

i+k+1, . . . , r
ft

k+ml(D′

0)〉 and

~r ∗gh = 〈rgh

1 , . . . , r
gh

j−1, r
gh

j + · · ·+ rgh

j+k, r
gh

j+k+1, . . . , r
gh

k+mr(D′

0)
〉.

Since D′
0 witnesses that 〈δ, ~r ∗ft, ~r ∗gh〉 is a triplet compatible with L′, the in-

duction hypothesis applies to this triplet and L′. Therefore, there exists a

diagram D′ ∈ C1 of L′ whose complex coordinate triplet is 〈δ, ~r ∗ft, ~r ∗gh〉 such

that (5.10) holds with t − 1, D′, and L′ instead of t, D, and L; see Figure 6

for an illustration with 〈i, j, k〉 = 〈4, 3, 3〉. (In the figure, Ht−1 is the grey

covering square on the left; disregard the grey area on the right.) The ideal

↓1Ht−1 in D′ is a distributive lattice, so it is a grid. Hence, clearly, if we insert
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a k-multifork at Ht−1 according to 〈rft

i , . . . , r
ft

i+k〉 and 〈rgh

j , . . . , r
gh

j+k〉 as in the

figure, then we obtain a planar diagram D, which belongs to C1. The defini-

tion of ~r ∗ft and ~r ∗gh imply that 〈δ, ~r ft, ~r gh〉 is the complex coordinate triplet

of D. This completes the induction step and proves the lemma. �

Proof of Theorem 5.5. Part (iii) follows from Proposition 5.1. Part (ii) is an

obvious consequence of part (i), so we only focus on part part (i).

It is straightforward to see that if part (i) holds for all the Li in the canonical

glued sum decomposition (5.1) of L, then it also holds for L. Part (i) is evident

if Li is a chain. Part (i) follows from Lemma 5.7 if Li is a slim rectangular

lattice. So, it suffices to show the validity of part (i) if Li is a glued sum

indecomposable planar semimodular lattice. To ease the notation, we write L

rather than Li. Actually, since the application of Definition 5.3(Aiii) cannot

destroy planarity, we can assume that L is a slim semimodular lattice. Let

〈δ, ~r ft, ~r gh〉 be a triplet compatible with L. Theorem 2.2 allows us to consider

the normal rectangular extension L′ of L. Since this is only the question

of the diagram-dependent values ml and mr, it follows from Lemma 4.6 and

Proposition 5.1 that 〈δ, ~r ft, ~r gh〉 is compatible with L′. Thus, Lemma 5.7 gives

us a diagram D′ ∈ C1 of L′ such that 〈δ, ~r ft, ~r gh〉 is the complex coordinate

triplet of D′. We conclude from Lemma 4.6 that the elements of L in D′ are

exactly in the appropriate places that (5.6) demands for L. These elements

form a subdiagram D. By Lemma 4.1, D is a region of D′. As a region of

a planar diagram, D is also planar. It is clear, again by Lemma 4.6, that

〈δ, ~r ft, ~r gh〉 is the complex coordinate triplet of D. In particular, D ∈ C1. �

Although C2 is not yet defined, the diagrams in Cj , j ∈ {1, 2}, of a rectan-

gular lattice are particularly easy to draw. Hence, we formulate the following

remark, which follows from Lemma 4.6. Note, however, that (5.6) allows us to

draw a diagram directly, without drawing its normal rectangular extension.

Remark 5.9. For j ∈ {1, 2}, a diagram D ∈ Cj of a planar semimodular

lattice L with more than two elements can be constructed as follows.

(i) Take a normal rectangular extension R of L.

(ii) Find a diagram E ∈ Cj of R.

(iii) Remove the vertices corresponding to R \ L and the edges not in L.

As a counterpart of this remark, we formulate the following statement here,

even if C2 is not yet defined. (We need this statement before introducing C2,

and its validity for C1 will trivially imply that it holds for C2.) We say that E

is a normal rectangular extension diagram of a planar semimodular diagram

D if E is a planar diagram of a normal rectangular extension of the lattice

determined by D and we can obtain D from E by omitting some vertices and

edges. The equation E1 = E2 below is understood in the sense that the two

diagrams consist of the same complex numbers as vertices and the same edges.

Note that a glued sum indecomposable lattice cannot have a collinear diagram;

see Definition 5.3(E).
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Proposition 5.10. If j ∈ {0, 1, 2}, D ∈ Cj , and D has at least three vertices,

then the following assertions hold.

(i) If j = 0, then D has a normal rectangular extension diagram in C0.

(ii) If j ∈ {1, 2} and D is non-collinear, then D has a normal rectangular

extension diagram in Cj.

(iii) Assume, in addition, that D is glued sum indecomposable. Let E1 ∈ Cj

and E2 ∈ Cj be normal rectangular extension diagrams of D. If j is in

{1, 2}, then E1 = E2. If j = 0, then E1 is similar to E2.

Besides that C3 has not been defined yet, Remark 5.15 will explain why

j = 3 is not allowed above.

Proof of Proposition 5.10(iii). We can assume that D is slim; then its normal

rectangular extension is also slim by Theorem 2.2(ii). The reason is that if D

is not slim, then we can work with its full slimming subdiagram D′, and we

can put the eyes back in the normal rectangular extension later. For lattices,

the ambiguity of the full slimming can cause some difficulties, see Lemma 4.9.

However, for diagrams, the full slimming is uniquely determined and cannot

cause any problem; see also Definition 5.3(Aiii).

For j ∈ {1, 2}, part (iii) follows from Lemma 4.6, (4.38), and (5.6).

Next, we assume that j = 0. So let D ∈ C0 and let E1, E2 ∈ C0 be normal

rectangular extension diagrams ofD. Let L be the lattice determined byD. By

(4.38) and Remark 4.8, ACPE1 (L) = ACP(L) = ACPE2(L). For k ∈ {1, 2},
take the coordinatization map δk : Ek → ACPEk

(L), given in the last sentence

of Lemma 4.7. Since δ1 and δ2 are lattice isomorphisms by Lemma 4.7, so is

η := δ−1
2 ◦ δ1 : E1 → E2. Clearly, η preserves the join-coordinate pairs. Hence,

it follows from (4.15) that η is a similarity map. �

Figure 7. Getting rid of a collinear chain Dj

Outline for Proposition 5.10(i)-(ii). As opposed to part (iii), we will not use

parts (i) and (ii) in the paper. Hence, and also because of space considerations,

we only give the main ideas. Consider the canonical glued sum decomposition

D = D1 +gl . . . +gl Dt; see (5.1). In the simplest case, we can take a normal

rectangular extension Ej of Dj for every j; either by following the argument

in the proof of Proposition 5.10(iii) for j = 0, see also (4.31), or trivially for

chain components. Then Figure 4 indicates how to continue by successively

replacing the glued sum of two consecutive rectangular diagrams by their nor-

mal rectangular extension. However, there are less simple cases, where some
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Dj are collinear or |Dj | = 2. Then we can exploit the fact that Dj 6= D, and

so at least one of Dj−1 and Dj+1 exists and it is glued sum indecomposable.

If, say, Dj−1 is glued sum indecomposable, then Dj−1 +gl Dj , see on the left

of Figure 7, can be replaced by the diagram on the right of the same figure.

The straightforward but tedious details proving that our method yields a

normal rectangular extension diagram of D are omitted. �

5.3. Equidistant diagrams with normal slopes on their boundaries.

We define a subclass C2 of C1 as follows

Definition 5.11. A diagram D ∈ C1 belongs to C2 if its complex coordinate

triplet is of the form

〈δ, ~r ft, ~r gh〉 = 〈δ, 〈r, . . . , r〉, 〈r, . . ., r〉〉 (5.11)

for a positive constant r ∈ R. “Rescaling” in C2 means to change r.

From Theorem 5.5, we clearly obtain the following statement.

Corollary 5.12. Every planar semimodular lattice has a diagram in C2, which

is unique up to rescaling in C2, parallel shifting, and component-flipping.

The diagrams in Figures 3, 4, and R̂ in Figure 2, and, for example, the

diagrams in G. Czédli [2, Figures 1, 2, 3, 4, 5], [3, Figures 2, 4, 5], and [5,

Figures 1, 8, 9] belong to C2. Furthermore, the fact that the diagrams in G.

Czédli [7, Figure 5] belong to C2 is more than an esthetic issue; it is an integral

part of the proof of [7, Lemma 3.9]. Generally, for a planar semimodular

lattice, we use a diagram outside C2 only in the following two cases: a diagram

is extended or a subdiagram is taken, or if there are many eyes in the interior

of a covering square. (In the first but not the second case, C1 is recommended.)

5.4. Uniqueness without compromise. The ”up” direction in our plane

(blackboard, page of an article, etc.) is usually fixed. Hence, for a diagram

D ∈ C2, the parameters δ and r in (5.11) does not effect the geometric shape

and the orientation of D. So, we can choose 〈δ, r〉 = 〈0, 1〉. As we will see

soon, this means that we choose the complex plain C so that 0D is placed at

0 ∈ C and the leftmost atom of D is placed at ε3. However, reflecting some of

the Dj in the canonical decomposition (5.1) across a vertical axis may effect

the geometric shape of D, and we want to get rid of this possibility. To achieve

this goal, we need some preparation.

Let D be a planar diagram of a slim semimodular lattice. Recall from

G.Czédli and E. T. Schmidt [16] that the Jordan–Hölder permutation πD,

which was associated with D first by H. Abels [1] and R.P. Stanley [25], can

be defined as follows. Let

Cl(D) = {0 = e0 ≺ e1 ≺ · · · ≺ en = 1} and

Cr(D) = {0 = f0 ≺ f1 ≺ · · · ≺ fn = 1},
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and let Sn denote the symmetric group consisting of all {1, . . . , n} → {1, . . . , n}
permutations. We define πD ∈ Sn by the rule

πD(i) = j ⇐⇒ [ei−1, ei] and [fj−1, fj] belong to the same trajectory.

Obviously, for slim semimodular lattices diagrams D1 and D2,

if D1 is similar to D2, then πD1 = πD2 . (5.12)

For σ, τ ∈ Sn , σ lexicographically precedes τ , in notation σ ≤lex τ , if

〈σ(1), . . . , σ(n)〉 ≤ 〈τ (1), . . . , τ(n)〉 (5.13)

in the lexicographic order. Although (5.13) is meaningful for all slim semi-

modular diagrams, Section 4 does not work for chains. For example, the dia-

grams in C2 of a chain cannot be distinguished by means of join-coordinates.

Hence, chain components in the canonical decomposition (5.1) would lead to

difficulties. Therefore, we assume glued sum indecomposability here. So let

D′
j ∈ C0 be the full slimming diagram of Dj ∈ C0 for j ∈ {1, 2} such that

D′
1 is similar to D′

2 and, in addition, let the Dj be glued sum indecompos-

able. Note that if height(x) = height(y) and x 6= y, then x ‖ y and, by

Lemma 3.2(ii), either x λ y, or y λ x. Hence, we can consider the unique

list 〈x(j)
1 , x

(j)
2 , . . . , x

(j)
k 〉 of elements of D′

j such that, for all 1 ≤ s < t ≤ k, ei-

ther height(x
(j)
s ) < height(x

(j)
t ), or height(x

(j)
s ) = height(x

(j)
t ) and x

(j)
s λ x

(j)
t .

Clearly, this list is repetition-free. Denoting the similarity map D′
1 → D′

2 by

ϕ, note that

ϕ preserves the list, that is, ϕ(x(1)
s ) = x(2)

s for ∀s ∈ {1, . . . , k}. (5.14)

We say that D1 vlex D2 if the k-tuple 〈fnc

D′

1⊆D1
(x

(1)
1 ), . . . , fnc

D′

1⊆D1
(x

(1)
k )〉 equals

or lexicographically precedes 〈fnc

D′

2⊆D2
(x

(2)
1 ), . . . , fnc

D′

2⊆D2
(x

(2)
k )〉. Let us empha-

size that D1 vlex D2 only makes sense if the full slimming sublattice of D1 is

similar to that of D2. The upper integer part of a real number x is denoted

by dxe; for example, d
√

3e = 2 = d2e. Now we are in the position to define a

class C3 ⊂ C2 of diagrams as follows.

Definition 5.13. Let D ∈ C2 be a diagram, and let L denote the planar semi-

modular lattice it determines. Let D′ and L′ denote the full slimming subdi-

agram of D and the corresponding full slimming sublattice of L, respectively.

Then D belongs to C3 if one of the conditions (A), (B), and (C) below holds.

(A) D is glued sum indecomposable and the following three conditions hold.

(i) The complex coordinate triplet of D is 〈0, 〈1, . . . , 1〉, 〈1 . . . , 1〉〉.
(ii) For every diagram E′ ∈ C0 of L′, πD′ ≤lex πE′ .

(iii) For every diagram E ∈ C0 of L, if the full slimming of E is

similar to D, then E vlex D.

(B) D is a chain D = {0 = d0 ≺ · · · ≺ dn = 1} and, for j ∈ {0, . . . , n},

dj =

{
jε3, if j ≤ dn/2e,
dn/2eε3 + (j − dn/2e)ε, if j > dn/2e.
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(C) The canonical glued sum decomposition (5.1) consists of more than one

components, that is, t > 1, and, for every j ∈ {1, . . . , t}, an appropriate

parallel shift (that is, changing the first component of the complex

coordinate triplet) turns Dj into a diagram in C3.

For example, the diagrams in Figures 3, 10 and L2, R2 in Figure 4 are in

C3; see also Figure 8. Observe that in (Aii) and (Aiii) of Definition 5.13, E′

and E range in C0 rather than only in C2. Of course, there could be other

definitions to make the following proposition valid. Our vague idea is that “at

low level”, we want more elements on the left than on the right.

Figure 8. D,E, F1, F2 ∈ C3 but D(mi), E(mi), F3, F4, F5 6∈ C3

Proposition 5.14. Every planar semimodular lattice L has a unique diagram

D in C3. The uniqueness means that if D∗, D\ ∈ C3 are diagrams of L, then

their vertex sets are exactly the same subsets of C, and their edge sets are also

the same sets of straight line segments in the complex plane.

Proof. By G.Czédli and E.T. Schmidt [16, Lemma 4.9], the converse impli-

cation in (5.12) also holds; alternatively, see G.Czédli and G.Grätzer [10,

Theorem 3-9.6]. Hence, the uniqueness part or the proposition follows.

In order to verify the existence part, let L′ be a full slimming sublattice of

L. We obtain from Corollary 5.12 that L′ has a diagram D′ ∈ C2. We can

assume that L and, consequently, L′ are glued sum indecomposable. After

rescaling in C2 and parallel shifting if necessary, we can assume that

the complex coordinate triplet of D′ is 〈0, 〈1, . . . , 1〉, 〈1, . . . , 1〉〉. (5.15)

Of course, the same holds for D′(mi), obtained from D′ by reflecting it over

the “imaginary” axis {ri : r ∈ R}. It follows from Proposition 5.1 that every

diagram E′ ∈ C0 of L′ is similar to D′ or D′(mi). Hence, by (5.12), all the

permutations we have to consider belong to {πD′, πD′(mi)}. This and (5.13) give

that D′ or D′(mi) belongs to C3, depending on πD′ ≤lex πD′(mi) or πD′(mi) ≤lex

πD′ , because both represent L′ and satisfy (5.15). Let, say, D′ ∈ C3.

Since D′ has finitely many 4-cells and the positions of the eyes in a given

4-cell are determined by Definition 5.3(Aiii), we conclude that there are only

finitely many antislimmingsD1, . . . , Dk of D′ in C2 that define L. By changing

the subscripts is necessary, we can assume that Dj vlex Dk holds for all

j ∈ {1, . . . , k}. We assert that Dk ∈ C3. In order to prove this, consider

an arbitrary diagram E ∈ C0 of L such that its full slimming subdiagram E′

is similar to D′. We have to show that E vlex Dk. Let ϕ : D′ → E′ be

similarity map, and define a map g : D′ → N0 as g = fnc

E′⊆E ◦ ϕ; see (4.43).
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For each 4-cell H of D′, let us add g(0H) eyes into the interior of H , keeping

Definition 5.3(Aiii) in mind. In this way, we obtain a diagramD ∈ C3, which is

an antislimming of D′. Since g = fnc

D′⊆D obviously holds, the similarity map ϕ

is an fnc-preserving isomorphism. Applying (4.44) to the lattices our diagrams

determine, it follows that E and D define isomorphic lattices. Hence, D ∈ C3

defines L, and we obtain that D = Dj for some j ∈ {1, . . . , k}. Since ϕ is

fnc-preserving and it preserves the list of (5.14), E vlex Dk ⇐⇒ Dj vlex Dk.

Therefore, by the choice of Dk, E vlex Dk, as required. �

Figure 9. In C3, D has no normal rectangular extension diagram

ConsiderD and R in Figure 9. By Proposition 5.10(iii), R is the only normal

rectangular extension of D in C2. Hence, we obtain the following remark.

Remark 5.15. Part (ii) of Proposition 5.10 fails for j = 3.

6. A toolkit for diagrams in C1

For x = x1 + x2i and y = y1 + y2i in C, where x1, x2, y1, y2 ∈ R, we say

that x is geometrically below y if x2 ≤ y2. In addition to Theorem 5.5(iii), the

following statement also indicates well the advantage of C1 over C0; note that

this statement would fail without assuming slimness.

Corollary 6.1. Let D ∈ C1 be a slim semimodular diagram. For distinct

x, y ∈ D, we have x < y iff x is geometrically below y and the slope of the line

through x and y is in the interval [π/4, 3π/4] (that is, between 45◦ and 135◦).

Proof. First, we deal with the case where D is glued sum indecomposable. Let

x 6= y ∈ D, and denote the line through x and y by `. Assume that x < y. Since

ljcD and rjcD are monotone, we obtain from (5.6) that y−x = r1ε
3 + r2ε ∈ C

with nonnegative r1, r2 ∈ R. This implies that the slope of ` is in [π/4, 3π/4]

and x is geometrically below y. Conversely, assume that the slope of ` is in

[π/4, 3π/4] and x is geometrically below y. Again, we can write the complex

number y − x in the form y − x = t1ε
3 + t2ε ∈ C with t1, t2 ∈ R. Since x is

geometrically below y, the assumption on the slope of ` implies that t1 and

t2 are nonnegative. Thus, we can extract from (5.6) that ljcD(x) ≤ ljcD(y)

and rjcD(x) ≤ rjcD(y). Hence, x ≤ y by (4.16). So, Corollary 6.1 holds for

the glued sum indecomposable case, which easily implies its validity for the

general case. �
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In view of Remark 5.9 and the simplicity of the constructive step described

in Definition 5.3(Aiii), we will mainly focus on slim rectangular diagrams. Let

D ∈ C1, and let [u, v] or, in other words, u ≺ v be an edge of the diagram D.

If the angle this edge makes with a horizontal line is π/4 (45◦) or 3π/4 (135◦),

then we say that the edge is of normal slope. If this angle is strictly between

π/4 and 3π/4, then the edge is precipitous or, in other words, it is of high slope.

The following observation shows that edges of “low slopes” do not occur. The

boundary and the interior of a diagram D are Bnd(D) := Cl(D) ∪Cr(D) and

D \ Bnd(D), respectively. Remember that Mi(D), the set of meet-irreducible

elements, is {x ∈ D : x has exactly one cover}.
Observation 6.2. Let D ∈ C1 be a slim rectangular lattice diagram. If u ≺ v

in D, then exactly one of the following two possibilities holds:

(i) the edge [u, v] is of normal slope and u ∈ Bnd(D) ∪ (D \ Mi(D));

(ii) the edge [u, v] is precipitous, u ∈ Mi(D), u is in D \ Bnd(D), the

interior of D, and v has at least three lower covers.

Proof of Observation 6.2. Take a multifork construction sequence (5.10) . Ob-

viously, the statement holds for D0. If it holds for Dj, then it is easy to see

that it also holds for Dj+1. �

The following observation follows by a trivial induction based on Lemma 5.7.

The case y ∈ Ji(D), equivalently, y ∈ Cll(D) ∪ Clr(D), is not considered in it.

Observation 6.3. If D ∈ C1 is a slim rectangular lattice diagram, x ≺ y ∈ D,

and y /∈ Ji(D), then the following three conditions are equivalent.

(i) The edge [x, y] is of slope π/4 (respectively, 3π/4).

(ii) x is the leftmost (respectively, rightmost) lower cover of y.

Let u be a trajectory of a slim semimodular lattice diagram such that its

edges, from left to right, are listed as [x0, y0], [x1, y1], . . . , [xk, yk]. For a ∦ b,
let [a, b]∗ denote [a, b] if a ≤ b, and let it denote [b, a] if b ≤ a. That is,

[a, b]∗ = [a∧ b, a∨ b]. The lower border of u is the set {[xj−1, xj]
∗ : 1 ≤ j ≤ k}

of edges. Similarly, the upper border of u is {[yj−1, yj ]
∗ : 1 ≤ j ≤ k}.

Corollary 6.4. Let D ∈ C1 be a diagram of a slim semimodular lattice L. If

T is trajectory of D, then every edge of its lower border is of normal slope.

Proof. Clearly, we can assume that D is glued sum indecomposable. Let j be

in {1, . . . , k}. First, assume that, in addition, L is rectangular. By (2.2), so is

D. We assume that yj−1 < yj , because otherwise we can work in D(mi). Thus,

T goes upwards at [xj−1, yj−1]. Hence, xj−1 < xj, [xj−1, xj]
∗ = [xj−1, xj], and

xj−1 = xj ∧ yj−1 /∈ Mi(L). Therefore, Observation 6.2 yields that [xj−1, xj]
∗

is of normal slope. Second, we do not assume that D is rectangular. Then, by

Lemma 4.1 and Proposition 5.10, D is a region of a unique slim rectangular

diagram E ∈ C1, and T is a section from Cl(D) to Cr(D) of a trajectory T ′ of

E. Since [xj−1, xj]
∗ is on the lower border of T ′, it is of normal slope in E.

By Remark 5.9, it is of the same slope in D. �



Vol. 00, XX Diagrams and rectangular extensions 41

For a 4-cell H , we say that H is a 4-cell with normal slopes if each of the

four sides of H is of normal slope.

Corollary 6.5. If H is a distributive 4-cell of a diagram D ∈ C1, then H is

of normal slopes and, moreover, every edge in ↓1H is of normal slope.

Proof. It is a folklore result, see the Introduction in G. Grätzer and E. Knapp

[19] or see G.Czédli and E. T. Schmidt [14, Lemmas 2 and 16], that

no element of a planar distributive lat-

tice covers more than two elements.
(6.1)

Hence, the corollary follows from Observation 6.2. �

Figure 10. Territories: Terr(u) and Terrorig(u)

Remark 6.6. In order to answer the question in Remark 5.4, let L be a non-

chain slim semimodular lattice consisting of at least 3 elements such that at

least one of its glued sum components is a chain; see (5.1). As opposed to

Proposition 5.10(ii), if we applied (5.6) to obtain a diagram D of L, then D

would not have a normal rectangular extension diagram in C1.

Proof of Remark 6.6. Suppose, for a contradiction, that D has a rectangular

extension diagram E ∈ C1. Pick a and b in a chain component of D such that

a ≺ b. By (5.6), [a, b] is a vertical edge. Since a is the only lower cover of b

in D but Observation 6.2 yields that b has at least three lower covers in E,

Definition 2.1(iii) is violated. This contradiction proves Remark 6.6. �

For a slim D ∈ C0, the set of trajectories of D is denoted by Traj(D).

Definition 6.7. Let D ∈ C1 be a slim rectangular diagram, and let u be a

trajectory of D.

(i) The top edge of a trajectory u, denoted by h(u), belongs to u and is

defined by the property that y ≤ 1h(u) for all [x, y] ∈ u; see (3.4).

(ii) For a region or a 4-cell A, the territory of A is denoted by Terr(A). It

is a closed polygon in the plane.
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(iii) Similarly, the territory of u, denoted by Terr(u), is the closed polygon

of the plane covered by the squares of u. An example is given in

Figure 10, where u is the hat-trajectory through h(u) = [a, 1] and it

consists of the double (thick) edges; Terr(u) is the dark grey area.

(iv) With reference to a fixed multifork construction sequence (5.10), for

each x ∈ D, there is a smallest j such that x ∈ Dj. We denote this

smallest j by yb(x); the acronym comes from “year of birth”. For an

interval g, yb(g) = max{yb(0g), yb(1g)} is the smallest j such that g

is an edge of Dj. For x, y ∈ D, x is younger than y if yb(x) > yb(y),

and similar terminology applies for intervals. Note that an interval g

can contain elements younger than g itself.

(v) For u ∈ Traj(D), we define yb(u) as yb(h(u))). The trajectory of

Dyb(u) that contains h(u) is denoted by btr(u); now the acronym comes

from “birth trajectory”. Clearly, u is a straight trajectory iff yb(u) = 0.

Also, u is a hat-trajectory iff yb(u) > 0.

(vi) For yb(u) ≤ j ≤ t, the trajectory of Dj through the edge h(u) is

denoted by anc(u, j), and it is called an ancestor of u. (Observa-

tion 6.8(iv) will show that anc(u, j) exists.) In particular, we have

that anc(u, yb(u)) = btr(u).

(vii) The original territory of u, denoted by Terrorig(u), is the territory of

btr(u) in Dyb(u). For example, in Figure 10, Terrorig(u) is the grey area

(dark grey and light grey together). The original upper border of u is

the upper border of btr(u) in Dyb(u); it is a broken line consisting of

several (possibly, one) straight line segments in the plane. Similarly,

the original lower border of u is the lower border of btr(u) in Dyb(u).

(viii) The halo square of u is the 4-cell Hyb(u)−1 of Dyb(u)−1 into which the

multifork giving birth to u is inserted. A straight trajectory has no

halo square.

By a straight line segment compatible with a diagram or, if the diagram is

understood, a compatible straight line segment we mean a straight line segment

composed from consecutive edges [x0, x1], [x1, x2], . . . , [xk−1, xk] of the same

slope. In particular, every edge is a compatible straight line segment. When

we pass from Dj to Dj+1 in (5.10), then every edge of Dj either remains an

edge of Dj+1, or it is divided into several new edges by new vertices. A 4-

cell is formed from two top edges and two bottom edges. Observe that, by

(6.1), the halo square Hj will not remain distributive in Dj+1. Hence, the

top edges of Hj do not belong to the trajectory through a top edge of Hk

for k > j. However, Corollary 6.5 applies to Hj when we consider it in Dj .

To summarize the present paragraph, we conclude the following statement; its

part (iv) follows from part (iii).

Observation 6.8. If D ∈ C1 is a slim rectangular diagram and u ∈ Traj(D),

then the following hold.
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(i) If 0 ≤ j < k ≤ t, then every compatible straight line segment of Dj is

also a compatible straight line segment of Dk and, in particular, of D.

Note that a straight light segment of Dj can consist of more edges in

Dk than in Dj .

(ii) The sides of the planar polygon Terrorig(u) are compatible straight line

segments of D. In particular, the upper border and the lower border of

Terrorig(u) consist of compatible straight line segments of D.

(iii) With reference to (5.10), let j < k ≤ t. The upper edges of the halo

square Hj are of normal slopes, and they are also edges of Dk and, in

particular, of D. Furthermore, denoting 1Hj
by 1j, the edges of the

form [x, 1j] are the same in Dk and, in particular, in D as in Dj+1.

That is, {x ∈ Dj+1 : x ≺ 1j} = {x ∈ Dk : x ≺ 1j} = {x ∈ D : x ≺ 1j}.
(iv) For yb(u) ≤ j ≤ t, anc(u, j) exists and h(anc(u, j)) = h(u). In partic-

ular, h(btr(u)) = h(u).

As a straightforward consequence of Corollary 6.4, we have

Remark 6.9. If u ∈ Traj(D) for a slim rectangular D ∈ C1, then the lower

border B of u and the original lower border of u are the same (straight or bro-

ken) lines in the plane and they consists of compatible straight line segments.

Furthermore, for all j ∈ {yb(u), . . . , t}, the lower border of anc(u, j) is also B.

Proof. A trivial induction based on Lemma 5.7. �

As an illustration for the following lemma, see Figure 10.

Lemma 6.10. Let D ∈ C1 be a slim rectangular diagram, and let u be a tra-

jectory of D. If u is a straight trajectory, then its original territory, denoted by

Terrorig(u), is a rectangle whose sides are compatible straight line segments with

normal slopes. If u is a hat-trajectory, then the polygon Terrorig(u) is bordered

by one or two precipitous edges belonging to its upper border and containing

1h(u) as an endpoint, and compatible straight line segments of normal slopes.

Proof. Clearly, all edges of D0 in (5.10), are of normal slope. Hence, the

first part of the lemma follows, because yb(u) = 0, provided u is a straight

trajectory. Next, assume that u is a hat-trajectory, that is, yb(u) > 0. Since

the halo square Hyb(u)−1 of u is a distributive 4-cell of Dyb(u)−1, (6.1) implies

that no element of the ideal ↓1h(u) can have more than 2 lower covers in

Dyb(u)−1. Hence, the rest of the lemma follows from Observation 6.2. �

As a useful supplement to Observation 6.2, we formulate the following.

Observation 6.11. If D ∈ C1 is a slim rectangular lattice diagram, x, y ∈ D,

and x ≺ y, then the following three conditions are equivalent.

(i) The edge [x, y] is precipitous.

(ii) y has at least three lower covers and x is neither the leftmost, nor the

rightmost of them.

(iii) The trajectory u containing [x, y] is a hat-trajectory and [x, y] is h(u).
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Proof. A trivial induction based on Lemma 5.7. �

7. Another version of the Trajectory Coloring Theorem

The set of prime intervals of a finite lattice M is denoted by PrInt(M). (An

interval [x, y] is prime if x ≺ y.) For a quasiordering (reflexive and transitive

relation) ν , x ≤ν y stands for 〈x, y〉 ∈ ν .

Definition 7.1 (G. Czédli [3, page 317]). A quasi-colored lattice is a finite

lattice M with a surjective map γ, called quasi-coloring, from PrInt(M) onto

a quasiordered set 〈A; ν〉 such that γ satisfies the following two properties:

(C1) if γ(p) ≥ν γ(q), then con(p) ≥ con(q),

(C2) if con(p) ≥ con(q), then γ(p) ≥ν γ(q).

If, in addition, 〈A; ν〉 is an ordered set, then γ is called a coloring ; this concept

is due to G. Grätzer and E. Knapp [19].

For u ∈ Traj(D), the top edge h(u) was defined in Definition 6.7(i).

Definition 7.2 (G. Czédli [5, Definitions 4.3 and 7.1]). Let D be a slim

rectangular diagram.

(i) On the set Traj(D) of all trajectories of D, we define a relation σ as

follows. For u, v ∈ Traj(D), we let 〈u, v〉 ∈ σ iff u is a hat-trajectory,

1h(u) ≤ 1h(v), but 0h(u) 6≤ 0h(v).

(ii) For u, v ∈ Traj(D), we let 〈u, v〉 ∈ Θ iff u = v, or both u and v are

hat trajectories such that 1h(u) = 1h(v). The quotient set Traj(D)/Θ

of Traj(D) by the equivalence Θ is denoted T̂raj(D). Its elements are

denoted by u/Θ, where u ∈ Traj(D).

(iii) On the set T̂raj(D), we define a relation σ̂ as follows. For u/Θ and

v/Θ in T̂raj(D), we let 〈u/Θ, v/Θ〉 ∈ σ̂ iff u/Θ 6= v/Θ and there exist

u′, v′ ∈ Traj(D) such that 〈u, u′〉, 〈v, v′〉 ∈ Θ and 〈u′, v′〉 ∈ σ.

(iv) We let τ̂ = quor(σ̂), the reflexive transitive closure of σ̂ on T̂raj(D).

(v) The trajectory coloring of D is the coloring ξ̂ from PrInt(D) onto the

ordered set 〈T̂raj(D); τ̂ 〉, defined by the rule that ξ̂(p) is the Θ-block

of the unique trajectory containing p.

We recall the following result, which carries a lot of information on the

congruence lattice of a slim rectangular lattice. (By [5, Remark 8.5], the case

of slim semimodular lattices reduces to the slim rectangular case.) Note that

the original version of the proposition below assumes slightly less, D ∈ C0.

Proposition 7.3 (G. Czédli [5, Theorem 7.3(i)]). If L is a slim rectangu-

lar lattice with a diagram D ∈ C1, then 〈T̂raj(D); τ̂ 〉 is an ordered set and

it is isomorphic to 〈Ji(ConL);≤〉. Furthermore, ξ̂ in Definition 7.2(v) is a

coloring.
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The fact that the key relation τ̂ is defined as a transitive (and reflexive)

closure is probably inevitable. However, the complicated definition of σ̂, whose

reflexive transitive closure is taken, makes Proposition 7.3 a bit difficult to

use. Hence, we introduce the following concept. For u, v ∈ Traj(D), we say

that u is a descendant of v, in notation u <desc v, if yb(u) > yb(v) and the

halo square of u, as a geometric quadrangle, is within the original territory

Terrorig(v) of v. Note that “descendant” is an irreflexive relation. Note also

that, as opposed to “in” for containment, in geometric sense we always use

the preposition “within”. That is, “A is within B” means that A and B are

geometric polygons (closed subsets of the complex plane that contain their

inner points) such that A is a subset of B. For a point x, if x ∈ B, then we

also say that x is within B to express that B is a polygon.

We are now in the position to formulate the main achievement of the present

section. Since it looks quite technical in itself, let us emphasize that the

following theorem is to be used together with Proposition 7.3, where τ̂ is the

transitive reflexive closure of σ̂, described pictorially in the theorem below.

Theorem 7.4. For a slim rectangular diagram D ∈ C1 and u, v ∈ Traj(D),

〈u/Θ, v/Θ〉 ∈ σ̂ iff there are u′ ∈ u/Θ and v′ ∈ v/Θ such that u′ <desc v
′.

Proof. First of all, note that for any w ∈ Traj(D) and w′ ∈ w/Θ, we have that

yb(w′) = yb(w). This allows us to define yb(w/Θ) as yb(w).

In order to prove the “if” part, assume that u′ <desc v
′. Since 〈u/Θ, v/Θ〉 =

〈u′/Θ, v′/Θ〉, what we have to show is that 〈u′/Θ, v′/Θ〉 ∈ σ̂. Actually, to ease

the notation, we can assume that u <desc v, and we want to show that

〈u/Θ, v/Θ〉 ∈ σ̂. (7.1)

We know from u <desc v that the halo square of u is within Terrorig(v). Clearly,

u is a hat-trajectory. Since 0h(u) is within the interior of this square, it is

geometrically (strictly) above the original lower border of v. By Remark 6.9,

0h(u) is geometrically above the lower border of v. Hence, Corollaries 6.1 and

6.4 imply that 0h(u) � 0h(v). On the other hand, the position of the halo square

of u yields that 1h(u) is within the original territory of v. Hence, Corollary 6.1

and Lemma 6.10 imply that 1h(u) ≤ 1h(v). Thus, we conclude that 〈u, v〉 ∈ σ,

which implies (7.1) and the “if” part of Theorem 7.4.

In order to prove the “only if” part, assume that 〈u/Θ, v/Θ〉 ∈ σ̂. Hence,

there are u′ ∈ u/Θ and v∗ ∈ v/Θ such that 〈u′, v∗〉 ∈ σ. This means that u′

is a hat-trajectory, 0h(u′) � 0h(v∗), and 1h(u′) ≤ 1h(v∗) = 1h(v). Our purpose is

to find a v′ ∈ v/Θ such that u′ <desc v
′. We claim that u′ is “younger” than

v∗, that is,

i := yb(u) = yb(u′) > yb(v∗) = yb(v) =: j. (7.2)

The equalities are clear by the first sentence of the proof. To show the inequal-

ity in (7.2), there are two cases to consider. First, assume that 1h(u′) = 1h(v∗).

Since 〈u′, v∗〉 /∈ Θ by the definition of σ̂ and u′ is a hat-trajectory, we ob-

tain that v∗ is a straight trajectory. Thus, we conclude that i = yb(u′) >
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0 = yb(v∗) = j. Second, assume that 1h(u′) < 1h(v∗). Clearly, i = yb(u′) 6=
yb(v∗) = j. Suppose, for a contradiction, that i < j. Then v is a hat-trajectory

and 1h(u′) < 1h(v∗) = 1h(v). Since u′ is a hat-trajectory, 1h(u′) has at least three

lower covers in Di , and the same is true in Dj−1 by Observation 6.8(iii). But

this contradicts (6.1), because 1h(v) is the top of the halo square Hj−1, which

is distributive in Dj−1. We have proved (7.2).

Figure 11. ↓1Hj−1 in Dj−1 and the territory S

Figure 12. ↓1Hj−1 in Dj and the territory S′

Next, there are two cases to consider depending on j > 0 or j = 0.
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First, we assume that j > 0. Then v and v∗ are hat-trajectories. Note that

1h(v) belongs to Dj−1 and equals 1Hj−1 . The left and right corners of Hj−1 are

denoted by cft and cgh, respectively. Since the halo square Hj−1 is distributive

in Dj−1, the ideal ↓1Hj−1 of Dj−1 is a grid by Lemma 5.8(i). This ideal is

illustrated in Figure 11. Corollary 6.5 yields that the edges of this ideal are of

normal slopes. We denote by S the planar territory that consists of the 4-cells

(in Dj−1) of the trajectory through [cgh, 1Hj−1 ] that are before (to the left of)

[cgh, 1Hj−1 ] and also of the 4-cells of the trajectory through [cft, 1Hj−1 ] that are

after (to the right of) [cft, 1Hj−1 ]. Note that S is usually concave and that

Hj−1 is within S. In Figure 11, S is the grey-colored polygon. Since the edges

of the grid ↓1Hj−1 are of normal slopes, S in Dj−1 is bordered by compatible

straight lines of normal slopes. Hence, by Observation 6.8(i), S inDj , and also

in Di−1, is bordered by compatible straight line segments of normal slopes.

Listed from left to right, let a1, . . . , ak be the new lower covers of 1h(v) = 1Hj−1

in Dj; for k = 4, see Figure 12. By Observation 6.8(iii), cft, a1, . . . , ak, cgh is

the full list, again from left to right, of all lower covers of 1h(v) in D. With

the notation b = a1 ∧ ak = a1 ∧ · · · ∧ ak, the ideal ↓b of Dj determines a

territory I. Since every element of ↓1Hj−1 in Dj−1 has at most two lower

covers by (6.1), it follows from the multifork construction that every element

of ↓b in Dj has at most two lower covers. Therefore, Observation 6.2 or 6.11

and Observation 6.8(i) yield that the territory I is bordered by edges of normal

slopes inDj and by compatible straight line segments of normal slopes inDi−1.

Consequently, the territory S′ = S \ Interior(I) is again bordered by edges of

Dj and by compatible straight line segments of Di−1 with normal slopes. In

Figure 12, S′ is the grey (dark and light grey together) territory. As earlier,

a 4-cell is 4-cell with normal slopes if all of its edges are of normal slopes. In

Dj , S
′ is a union of 4-cells. Namely, it is the union of 4-cells that belong to

the new trajectories that the latest (the j-th) fork extension yielded. Among

these 4-cells, those containing 1h(v) are not with normal slopes. They will be

called the dark-grey cells, and they are depicted in Figure 12 accordingly. We

know from G.Czédli and E. T. Schmidt [14, Lemma 13], see also G. Czédli and

G. Grätzer [10, Ex. 3.41], that two neighboring lower covers of an element in

a slim semimodular diagram always generate a cover-preserving square, that

is, a 4-cell. Hence, we obtain from Observation 6.8 (iii) that

the dark-grey 4-cells are also 4-cells in D and in Di. (7.3)

It follows from the multifork construction that 1Hj−1 is the only element of

↓1Hj−1 that has more than two lower covers. Hence, by Observation 6.2, the

rest of the 4-cells of Dj within S′ are of normal slopes; they are called light-

grey 4-cells, and so they are depicted in Figure 12. Although the light-grey

4-cells are not necessarily 4-cells of Di−1, we know from Observation 6.8(i) that

they are bordered by compatible straight line segments of Di−1. Finally, S

includes some additional 4-cells that are not in S′; they are of normal slopes by

Observation 6.2, so they are also bordered by compatible straight line segments
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of Di−1, and they are uncolored in the figure. Clearly, the compatible straight

line segments of Di−1

cannot cut the 4-cell Hi−1 into two halves of positive area. (7.4)

Furthermore, since Hi−1 has at least one interior element in Di, (7.3) gives

that Hi−1 cannot be within a dark-grey 4-cell. Hence, we conclude from (7.4)

that there is a unique light-grey or uncolored 4-cell C of Dj within S such that

Hi−1 is within the territory determined by C. (Possibly but not necessarily,

Hi−1 = C.) By definitions, h(v∗) and h(v) are in the set {[a1, 1h(v)], . . . ,

[ak, 1h(v)]} of edges. If 0h(u′) ≤ b = a1 ∧ · · · ∧ ak, then 0h(u′) ≤ am for all

m ∈ {1, . . . , k}, which contradicts 0h(u′) � 0h(v∗). Thus, 0h(u′) � b. Combining

this with 0h(u′) ≤ 1C, it follows that C cannot be an uncolored 4-cell. Hence,

C is a light-grey colored 4-cell in Dj. Therefore, there is a (unique) m ∈
{1, . . . , k} such that C is a 4-cell of the hat-trajectory wm of Dj with top edge

[am, 1h(v)]. Since am ≺D 1h(v) by Observation 6.8(iii), we can also consider

the trajectory v′ ∈ Traj(D) that contains [am, 1h(v)]; actually, [am, 1h(v)] is

the top edge of v′ by Observation 6.11. Clearly, wm = btr(v′), C is within

Terrorig(v
′) = Terr(wm), and v′ ∈ v/Θ. But Hi−1 is within C, so Hi−1 is also

within the original territory Terrorig(v
′) of v′. Consequently, u′ <desc v

′.

Second, we assume that j = 0. Then v is a straight trajectory, v/Θ is a

singleton, and u′ <desc v
′ follows in a similar but in a much easier way; the

details are omitted. This completes the proof of Theorem 7.4 �

8. G. Grätzer’s Swing Lemma

For a slim rectangular lattice diagram D ∈ C0 and prime intervals p and

q of D, we say that p swings to q, in notation, p xq, if 1p = 1q, 1p has at

least three lower covers, and 0q is neither the leftmost, nor the rightmost lower

cover of 1p. If D is in C1, not only in C0, then Observation 6.11 implies that

p xq iff 1p = 1q and q is a precipitous edge. (8.1)

As usual, p is up-perspective to q, in notation, p
up∼ q, if 1p ∨ 0q = 1q and

1p ∧ 0q = 0p. Down-perspectivity is just the converse relation defined by

p
dn∼ q ⇐⇒ q

up∼ p. Although here we only formulate the Swing Lemma for

slim rectangular lattices, the original version in G. Grätzer [18] is the same

statement for slim semimodular lattices. Speaking of diagrams rather than

lattices is not an essential change.

Lemma 8.1 (Swing Lemma in G. Grätzer [18]). Let D ∈ C0 be a slim rectan-

gular diagram, and let p and q be edges (that is, prime intervals) of D. Then

the following two conditions are equivalent.

(i) con(p) ≥ con(q) in the lattice of all congruences of D.

(ii) There exist an n ∈ N0 and edges r = r0, r1, . . . , rn = q in D such

that p
up∼ r, ri−1

dn∼ ri for i ∈ {1, . . . , n}, i odd, and ri−1 xri for

i ∈ {1, . . . , n}, i even.
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Proof. Our argument relies, among other ingredients, on the multifork con-

struction sequence of D, and the notation in (5.10) will be in effect.

Let L be the lattice determined by D. By Theorem 5.5(ii), L also has a

diagram D′ in C1. Obviously, L is glued sum indecomposable. Thus, Proposi-

tion 5.1 implies that every planar diagram of L is similar to D orD(mi) . Hence,

D′ is similar to D or to D(mi). Since the statement of the lemma is obviously

invariant under left-right similarity, we can assume that D = D′ ∈ C1.

Assume (ii). We claim that for prime intervals r′ and r′′ of D,

if r′ xr′′, then con(r′) ⊇ con(r′′). (8.2)

Assume that r′ xr′′. It follows from the definition of xand Observa-

tion 6.11(iii) that 0r′′ is a source element in Dyb(r′′) \ Dyb(r′′)−1, and either

the same holds for 0r′ , or 0r′ is a corner of the halo square Hyb(r′′)−1. In both

cases, since 1r′ = 1r′′ , con(r′) ⊇ con(r′′) follows in a straightforward way. This

proves (8.2). On the other hand, if r′
dn∼ r′′, then con(r′) = con(r′′). Combining

this with (8.2), we obtain (i). Thus, (ii) implies (i).

Before proving the converse implication, some preparations are necessary.

For edges e and e′ of D, we say that e′ is xdn∼-accessible from e if there exists

a finite sequence r0 = e, r1, . . . , rn = e′ of edges such that, for every i ∈
{1, . . . , n}, either ri−1

xri, or ri−1
dn∼ ri. For j ∈ {0, . . . , t}, Dj determines a

sublattice in D. We claim that for common edges e and e′ of Dj and D,

if e′ is xdn∼-accessible from e inDj , then

it is also xdn∼-accessible from e in D.
(8.3)

In order to prove this, we have to show that rn = e′, rn−1, . . . are also edges

in D. If ri is an edge, that is, a prime interval of D, i > 0, and ri−1
dn∼ ri,

then ri−1 is also a prime interval in D by semimodularity. If ri is a prime

interval of D, i > 0, and ri−1

xri, then ri−1 is also a prime interval in D by

Observation 6.8(iii). This completes the induction proving (8.3).

For a trajectory w ∈ Traj(D), the original territory Terrorig(w) of w can be

divided into two parts; note that one of these parts is empty iff w is a straight

trajectory. The union of the 4-cells (as quadrangles in the plane) of btr(w)

before h(btr(w)) (if we walk from left to right along btr(w)) is the “before the

top edge” part, and this polygon is denoted by B(w). Similarly, the union of

the 4-cells of btr(w) after h(btr(w)) is the “after the top edge” part, and it is

denoted by A(w). Note that

Terrorig(w) = B(w) ∪A(w). (8.4)

If w is a hat-trajectory, then both B(w) and A(w) are polygons of positive

area and
each of B(w) and A(w) has one or two precipitous

sides, which contain (that is, end at) 1h(w), and the

rest of the sides are of normal slopes;

(8.5)

this follows from Observation 6.11, the construction of the multifork construc-

tion sequence (5.10), and Corollary 6.5. If w is a straight trajectory, then
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Corollary 6.5 yields that one of B(w) and A(w) is a rectangle whose sides are

of normal slope while the other one is the edge h(btr(w)), that is, a degener-

ate rectangle. No matter if w is a hat-trajectory or a straight one, an edge

g of D is said to be quasi-parallel to h(w), in notation, g ‖quasi h(w), if g is

within (that is, both 0g and 1g are within) the original territory Terrorig(w)

of w, and either g is in B(w) and it is of slope 3π/4 (that is, 135◦), or g is

in A(w) and it is of slope π/4. If g ‖quasi h(w), then g is of normal slope by

definition. Observe that ‖quasi is not a symmetric relation. Let us emphasize

that, by definition, g ‖quasi h(w) implies that g is within Terrorig(w). Note that

if g is within Terrorig(w), then it is within B(w) or within A(w), but it is not

necessarily quasi-parallel to h(w). We say that an edge f is, say, on the lower

border of Terrorig(w) if both 0f and 1f are on this lower border. We conclude

from Lemma 6.10 that

if g ‖quasi h(w), then g is neither on the lower

border, nor on the upper border of Terrorig(w).
(8.6)

We claim that, for every edge g of D and every w ∈ Traj(D),

if g ‖quasi h(w), then g is xdn∼-accessible from h(w). (8.7)

We prove this by induction on yb(g). Assume that g ‖quasi h(w). We can also

assume that g 6= h(w), since otherwise (8.7) trivially holds. By definitions,

g ∈ Terrorig(w) = B(w) ∪ A(w). By left-right symmetry, we assume that

g ∈ B(w). Since g is within B(w) and g 6= h(w), B(w) is of positive area.

It follows from (8.6), the description of the multifork extension, and that

of the multifork construction sequence (5.10) that yb(w) ≤ yb(g). Remem-

ber that t denotes the length of the sequence (5.10). Combining Observa-

tion 6.8(iv) and (8.3), it follows that we can assume that yb(g) = t. (Less

formally speaking with more details, if g came to existence earlier but not

before w, then first we could show (8.7) in Dyb(g) for g and the ancestor

anc(w, yb(g)) of w the same way we are going to show (8.7) in D, and then

we could apply (8.3).)

That is, g came to existence only in the last step of the multifork construc-

tion sequence, and the induction hypothesis is that for every edge g′ of D, if

g′ ‖quasi h(w) and g′ is an edge of Dt−1, then g′ is xdn∼-accessible from h(w)

in D. We can also assume that yb(w) < t, because otherwise g ‖quasi h(w)

gives g ∈ w and (8.7) follows from h(w)
dn∼ g. It follows from the description

of multifork extensions and (5.10) that there is a hat-trajectory z of D that

is “responsible” for the fact that g came to existence. Since there are two

essentially different ways of the above-mentioned responsibility, we have to

distinguish two cases.

Case 1. We assume that g ∈ z. Let

U = {g′ ∈ z : g′ ‖quasi h(w) and g′ is on the right of g}.



Vol. 00, XX Diagrams and rectangular extensions 51

Being “on the right” above means that when we walk along z, then g′ comes

later than g or g′ = g. Note that g ∈ U . For an illustration, see Figure 13,

where B(w) is the (light and dark) grey area and U = {g0, . . . , g4}. If w is

a hat-trajectory, then, in accordance with (8.5), we denote the vertices of the

polygon B(w) by a, b = 0h(w), c = 1h(w), d, and e; anticlock-wise, starting

from the bottom a. Except possibly for the edge [d, c], which could be of slope

π/4 (and then d is not a vertex of the polygon), the slopes of the sides of B(w)

are faithfully depicted in Figure 13. In particular, h(w) = [b, c] is precipitous,

if w is a hat-trajectory. On the other hand, if w is a straight trajectory, then

h(w) is on the upper right boundary of D and D0 (because otherwise B(w)

would not be of positive area), the edges [b, c] and [d, c] are of slopes 3π/4 and

π/4, respectively, while the slopes of the other sides of the polygon B(w) are

faithfully depicted. (Note that d is not a vertex of the polygon in this case.)

We claim that, for every edge g′ of D,

if g′ ∈ U, then g′ is not on Cr(D). (8.8)

In order to prove this, assume that g′ ∈ U . Since yb(g′) = t > yb(w),

g′ 6= h(w). We know from g′ ‖quasi h(w) that g′ is of slope 3π/4. Observe

that that 1g′ 6= 1h(w), because otherwise either h(w) is precipitous and 0g′

is not within B(w), or the edge h(w) is of slope 3π/4 and g′ = h(w). Being

within B(w), 1g′ cannot be strictly greater than 1h(w). Hence, using that

1h(w) is the only cover of 0h(w) in D, we obtain that 1g′ � 0h(w). We also

obtain that 1g′ � 0h(w), because otherwise Corollary 6.1 yields that 1g′ , which

is within B(w), is on the lower right border (from a to b) of B(w), but then

0g′ cannot be within B(w) since g′ is of slope 3π/4. So, 1g′ ‖ 0h(w). Since

the lower right border of B(w), from a to b, is a compatible straight line by

Observation 6.8(i)–(ii), it is also a chain in D. Extend this chain to a maximal

chain C̃ of D such that c = 1h(w) ∈ C̃. Being within B(w), 1g′ is on the left of

C̃. Since 1g′ ‖ 0h(w) = b ∈ C̃, 1g′ is strictly on the left of C̃. Using Lemma 3.2,

it follows that 1g′ λ 0h(w) = b and 1g′ /∈ Cr(D). This proves (8.8).

Trajectories go from left to right. We claim that, for every every g′ ∈ U ,

z does not terminate at g′ and goes upwards at g′. (8.9)

The first part follows from (8.8). Suppose, for a contradiction, that z goes

downwards at g′ ∈ U or z makes a turn to the lower right at g′ ∈ U . This

means that g′ is the upper left edge of a 4-cell. The slope of the upper right

edge of this 4-cell is greater than that of g′, which is 3π/4 since g′ ‖quasi h(w)

and g′ is within B(w). Hence, D has an edge with slope greater than 3π/4.

This is a contradiction, because every edge is either precipitous or is of normal

slope by Observation 6.2 . Thus, we conclude (8.9).

Listing from left to right, let g = g0, . . . , gk be the edges of U , let gk+1 be

the next edge of z, and let Ck be the 4-cell of z formed by gk and gk+1. In

Figure 13, k = 4 and g0, . . . , gk+1 are the thick edges. (8.9) yields that gk+1

exists. Since gk belongs to U , it is of slope 3π/4. Hence, except possibly for the
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Figure 13. B(w) and g ∈ z

side from a to e, gk does not lie on the sides of the polygon B(w). Therefore,

since gk is within B(w), B(w)∩Terr(Ck) is of positive area. However, the sides

of B(w), which are compatible straight line segments, cannot divide Terr(Ck),

formed by edges ofD, into two parts of positive area. Hence, Terr(Ck) is within

B(w), that is, Terr(Ck) ⊆ B(w). In particular, gk+1 is within B(w). So, the

definition of U implies that gk+1 ∦quasi h(w). This and Observation 6.2 imply

that either gk+1 is precipitous, or it is of slope π/4. Applying Corollary 6.4 to

z, we obtain that the slope of the edge [0gk
, 0gk+1], which is distinct from that

of gk, is π/4. It follows that gk+1 cannot be of slope π/4, because otherwise the

slope of the edge [1gk
, 1gk+1] is less than π/4, contradicting Observation 6.2.

Therefore, gk+1 is precipitous, and Observation 6.11 implies that gk+1 = h(z).

Consider the halo square Ht−1 in Dt−1. Its four elements in D = Dt are

the black-filled elements in the figure. Since the upper edges of Ht−1 are of

normal slopes and 1Ck
= 1gk+1 = 1h(z) = 1Ht−1 , Observation 6.2 implies that

Terr(Ht−1) ∩ Terr(Ck) is of positive area. But Terr(Ck) ⊆ B(w), so a part of

Terr(Ht−1) with positive area is also withinB(w). This is also true inDt−1. In
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Dt−1, where Ht−1 is a 4-cell, the sides of B(w), which are compatible straight

line segments, cannot divide Terr(Ht−1) into two parts of positive area. Hence,

Terr(Ht−1) ⊆ B(w). In particular, both upper edges of Ht−1 are within B(w).

The halo square Ht−1 is distributive in Dt−1. Hence, Corollary 6.5 gives that

its upper edges are of normal slopes. Hence, exactly one of these upper edges,

which we denote by f, is quasi-parallel to h(w). In the figure, f is drawn with

double lines. Since yb(f) ≤ t−1, f is xdn∼-accessible from h(w) by the induction

hypothesis. On the other hand, f xgk+1
dn∼ g. Thus, transitivity yields that

g is xdn∼-accessible from h(w), as required.

Figure 14. B(w) and g 6∈ z

Case 2. We assume that g /∈ z. It follows from the description of a multifork

extension that there is a 4-cell F of Dt−1 that is divided into new cells in

D = Dt, and g is one of the new edges that divide F into parts; see Figure 14,

where B(w) is the grey area as before, and Terr(F ) in D is dark grey. The

slopes of the sides of B(w) in Figure 14 are depicted with the same accuracy

as in case of Figure 13. Corollary 6.5, applied to Dt−1 and the halo square

Ht−1 whose top is 1h(z), implies that F is of normal slope. Since g ‖quasi h(w),

g is of slope 3π/4. Using that g is within B(w), both g and h(w) are edges

of Dt−1, and g 6= h(w), we conclude that there is a narrow rectangular zone

S ⊆ B(w) of positive area and of normal slopes such that S is on the right

of and adjacent to g. In the figure, S is indicated by the striped area. Also,
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choosing it narrow enough, S is within Terr(F ). Since S ⊆ Terr(F ) ∩ B(w)

holds not only in D but also in Dt−1, where F is a 4-cell, we conclude that

Terr(F ) ⊆ B(w) as in Case 1. Hence, one of the upper edges of F , which we

denote by f, is quasi-parallel to h(w). Using yb(f) ≤ t− 1 and the induction

hypothesis, we obtain that f is xdn∼-accessible from h(w). So is g, since f
dn∼ g.

This completes the induction, and the proof of (8.7)

Now, we are in the position to prove the converse implication of Lemma 8.1.

Assume that (i) holds, that is, con(p) ≥ con(q). Denote by u and v the

trajectories of D that contain p and q, respectively. We claim that

h(v) is xdn∼-accessible from h(u). (8.10)

Since ξ̂ from Definition 7.2(v) is a coloring by Proposition 7.3, (C2) yields that

〈v/Θ, u/Θ〉 = 〈ξ̂(q), ξ̂(p)〉 ∈ τ̂ = quor(σ̂).

Thus, there exist an n ∈ N0 = {0, 1, 2, . . .} and a sequence w0 = v, w1, . . . ,

wn = u of trajectories of D such that 〈wj−1/Θ, wj/Θ〉 ∈ σ̂ for j ∈ {1, . . . , n}.
By Theorem 7.4, there are w′

0, w
′
1, w

′′
1 , w

′
2, w

′′
2 , . . . , w

′
n−1, w

′′
n−1, w

′′
n ∈ Traj(D)

such that w′
j, w

′′
j ∈ wj/Θ for j ∈ {1, . . . , n − 1}, w′

0 ∈ w0/Θ, w′′
n ∈ wn/Θ,

and w′
j−1 <desc w

′′
j for j ∈ {1, . . . , n}. Let Fj−1 denote the halo square of

w′
j−1 when this trajectory is born. By the definition of <desc, Fj−1 is within

Terrorig(w
′′
j ). So are its upper edges, which are edges of D with normal slopes

by Observation 6.8(iii). Hence one of these two upper edges, which we denote

by fj−1, is quasi-parallel to h(w′′
j ). Applying (8.7), we obtain that fj−1 is

xdn∼-accessible from h(w′′
j ). Since fj−1 xh(w′

j−1), transitivity yields that

for j ∈ {1, . . . , n}, h(w′
j−1) is xdn∼-accessible from h(w′′

j ). (8.11)

The top edges of any two trajectories in the same Θ-block are xdn∼-accessible

from each other; either because they are equal, or by using a xstep. Thus,

h(w′′
n) and h(w0) are xdn∼-accessible from h(wn) and h(w′

0), respec-

tively, and, for j ∈ {1, . . . , n−1}, h(w′′
j ) is xdn∼-accessible from h(w′

j).
(8.12)

Using transitivity, (8.11), and (8.12), we conclude (8.10). Finally, let r = h(u).

Since p ∈ u, we have that p
up∼ r. Similarly, h(v)

dn∼ q. Combining these facts

with (8.10), we obtain that q is xdn∼-accessible from r. Hence, there exists a

finite sequence r = r0, r1, . . . , rk = q of edges such that, for each j ∈ {1, . . . , k},
rj−1

dn∼ rj or rj−1 xrj. However, we still have to show that the relations
dn∼

and xalternate and that
dn∼ is applied first, that is, r0

dn∼ r1.

To do so, first we prefix r0
dn∼ r0 to the sequence, if necessary. Next, we

get rid of the unnecessary repetitions. Namely, whenever we see the pattern

b xb′ xb′′ in the sequence, we correct it either to b xb′′ or to b, depending

on b 6= b′′ or b = b′′. Knowing that
dn∼ is transitive, we correct every pattern

b
dn∼ b′

dn∼ b′′ to b
dn∼ b′′ . Finally, there is no pattern to correct, and part (ii) of

Lemma 8.1 holds. This completes the proof of Lemma 8.1. �
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