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Abstract. Kira Adaricheva and Madina Bolat have recently proved that if
U0 and U1 are circles in a triangle with vertices A0,A1, A2, then there exist

j ∈ {0,1,2} and k ∈ {0,1} such that U1−k is included in the convex hull of
Uk ∪ ({A0, A1,A2} \ {Aj}). We give a short new proof for this result, and we

point out that a straightforward generalization for spheres fails.

1. Aim and introduction

Our goal. The real n-dimensional space and the usual convex hull operator on it
will be denoted by Rn and ConvRn . That is, for a set X ⊆ Rn of points, ConvRn(X)
is the smallest convex subset of Rn that includes X. In this paper, the Euclidean
distance (

∑n
i=1(Xi − Yi)

2)1/2 of X, Y ∈ Rn is denoted by dist(X, Y ). For P ∈ R2

and 0 ≤ r ∈ R, the circle of center P and radius r will be denoted by

Circ(P, r) := {X ∈ R2 : dist(P, X) = r}.

Our aim is to give a new proof of the following theorem. Our approach is entirely
different from and shorter than the original one given by Adaricheva and Bolat [3].
Roughly saying, the novelty is that instead of dealing with several cases, we prove
that the “supremum of good cases” implies the result for all cases.

Theorem 1.1 (Adaricheva and Bolat [2, Theorem 3.1]). Let A0, A1, A2 be points

in the plane. If U0 and U1 are circles such that Ui ⊆ ConvR2({A0, A1, A2}) for

i ∈ {0, 1}, then there exist subscripts j ∈ {0, 1, 2} and k ∈ {0, 1} such that

(1.1) U1−k ⊆ ConvR2

(

Uk ∪ ({A0, A1, A2} \ {Aj})
)

.

Notably enough, Adaricheva and Bolat [2, Theorem 5.1] states even more than
[2, Theorem 3.1]; we formulate their more general result as follows.

Corollary 1.2 (Adaricheva and Bolat [2, Theorem 5.1]). If C0, C1, C2, U0, and

U1 are circles in the plane such that Ui ⊆ ConvR2(C0 ∪ C1 ∪ C2) for i ∈ {0, 1},
then U1−k ⊆ ConvR2

(

Uk ∪
⋃

({C0, C1, C2} \ {Cj})
)

holds for some j ∈ {0, 1, 2} and

k ∈ {0, 1}.
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Note that Adaricheva and Bolat [2] call the property stated in this corollary for
circles the “Weak Carousel property”. Note also that [2] gives a new justification
to Czédli and Kincses [10], because Theorem 5.2 and Section 6 in [2] yield that the
almost-circles in [10] cannot be replaced by circles. Also, [2] motivates Czédli [9]
and Kincses [13]. This paper is self-contained. Note that some arguments, which
are obvious for geometers, are included only in the extended version of the paper;
see http://arxiv.org/abs/1610.02540. For more about the background of this
topic, the reader may want, but need not, to see, for example, Adaricheva and
Nation [5] and [6], Czédli [8], Edelman and Jamison [11], Kashiwabara, Nakamura,
and Okamoto [12], Monjardet [14], and Richter and Rogers [16].

The results of Adaricheva and Bolat [2], that is, Theorem 1.1 and Corollary 1.2
above, and our easy approach raise the question whether the most straightforward
generalizations hold for 3-dimensional spheres. In Section 4, which is a by-product
of our method in some implicit sense, we give a negative answer.

2. Homotheties and round-edged angles

2.1. A single circle. For 0 < r ∈ R and F, P ∈ R2 with dist(F, P ) > r, let

(2.1) Ang(F, Circ(P, r)) be the grey-filled area in Figure 1;

it is called the round-edged angle determined by its focus F and spanning circle

Circ(P, r). Note that Ang(F, Circ(P, r)) is not bounded from the right and F
is outside both Circ(P, r) and Ang(F, Disk(P, r)). Note that Ang(F, Disk(P, r))
includes its boundary, which consists of a circular arc called the front arc and two
half-lines.

Figure 1. Round-edged angle

2.2. Externally perspective circles. First, recall or define some easy concepts
and notations. For topologically closed convex sets W1, W2 ⊆ R2, we will say that

(2.2) W1 is loosely included in W2, in notation, W1
loose

⊂ W2,

if every point of W1 is an internal point of W2. Given P ∈ R2 and 0 6= λ ∈ R, the
homothety with (homothetic) center P and ratio λ is defined by

(2.3) χP,λ : R2 → R2 by X 7→ PXλ := (1 − λ)P + λX.

We will not need negative ratios λ and we use the Polish notation for the barycentric

operation λ. Homotheties are similarity transformations. In particular, they map
the center of a circle to the center of its image. If C1 and C2 are circles and
C2 = χP,λ(C1) such that P is (strictly) outside both C1 and C2 (equivalently, if
P is outside C1 or C2) and 0 < λ ∈ R, then C1 and C2 will be called externally

perspective circles. Clearly, if C1 and C2 are of different radii and none of them is
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inside the other, then C1 and C2 are externally perspective, P is the intersection
point of their external tangent lines, and λ is the ratio of their radii. The following
lemma is obvious by Figure 2.

Lemma 2.1. Let Circ(P1, r1) and Circ(P2, r2) be externally perspective circles in

the plane with center F of perspectivity such that 0 < r2 < r1; see Figure 2. If G
is a point on the line segment [F, P2] such that r2 < dist(G, P2) < dist(F, P2), then

Ang(F, Circ(P1, r1))
loose

⊂ Ang(G, Circ(P2, r2)); see (2.2) and Figure 2.

Figure 2. Illustration for Lemma 2.1

Lemma 2.2. If λ, µ ∈ R \ {0}, F, Q ∈ R2, and R = χF,λ(Q), then, composing

maps from right to left, χR,µ ◦ χF,λ = χF,λ ◦ χQ,µ.

Proof. χF,λ ◦ χQ,µ ◦ χ
−1
F,λ is clearly a homothety of ratio µ that fixes R. So this

homothety is χR,µ, which implies the lemma. �

Lemma 2.3. If λ > 1 and C0 and C1 are internally tangent circles with center

points C•

0 and C•

1 , respectively, then either one of χλ,C•

0

(C0) and χλ,C•

1

(C1) is in

the interior of the other, or C0 = C1.

Proof. We can assume that the radii r0 and r1 are distinct, say, r0 < r1. The
distance d := dist(C•

0 , C•

1) is r1 − r0. Since λr1 = λ(r0 + d) > λr0 + d, χλ,C•

0

(C0)

is in the interior of χλ,C•

1

(C1), as required. �

The following lemma resembles the 2-Carousel Rule in Adaricheva [1].

Lemma 2.4. Let A0, A1, and A2 be non-collinear points in the plane. If B0 and B1

are distinct internal points of ConvR2({A0, A1, A2}), then there exist j ∈ {0, 1, 2}
and k ∈ {0, 1} such that

{B1−k}
loose

⊂ ConvR2

(

{Bk} ∪ ({A0, A1, A2} \ {Aj})
)

.

Proof. Since the triangle ConvR2({A0, A1, A2}) is clearly of the form

(2.4) ConvR2({B0, A1, A2}) ∪ ConvR2({A0, B0, A2}) ∪ ConvR2({A0, A1, B0}),

B1 belongs to at least one of the triangles in (2.4). If one of these three triangles,
say, ConvR2({B0, A1, A2}), contains B1 as an internal point, then we let k = 0
and j = 0. Otherwise, there is a j′ ∈ {0, 1, 2} such that the line segment [B0, Aj′ ]
contains B1 in its interior, and we can clearly let k = 1 and j = j′. �
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3. Proving Theorem 1.1 with analytic tools

Proof of Theorem 1.1. If A0, A1, and A2 are collinear points, then the circles are
of radii 0 and (1.1) holds trivially (even without Uk on the right). Hence, in the
rest of the proof, we assume that A0, A1, and A2 are non-collinear points. We let

T := ConvR2 ({A0, A1, A2}).

Let Pi and ri denote the center and the radius of Ui from the theorem. Note that

(3.1) r1 = 0 implies (1.1), by (2.4) applied for B0 ∈ U0 and B1 = P1;

and similarly for r0 = 0. Therefore, we will assume that none of r0 and r1 is zero.
From now on, we prove the theorem by way of contradiction. That is, we assume
that U0 and U1 are circles satisfying the assumptions of Theorem 1.1, r0r1 > 0, but
(1.1) fails. For 0 ≤ ξ ≤ 1 and k ∈ {0, 1}, we denote Circ(Pk, ξ · rk) by Uk(ξ). Let

(3.2)
H := {η ∈ [0, 1] : (∀ζ ∈ [0, η]) (∃k ∈ {0, 1}) (∃j ∈ {0, 1, 2})
such that U1−k(ζ) ⊆ ConvR2

(

Uk(ζ) ∪ ({A0, A1, A2} \ {Aj})
)

}.

In other words, H consists of those η for which U0(ζ), U1(ζ), A0, A1, and A2 satisfy
the theorem for all ζ in the closed interval [0, η] ⊆ [0, 1] ⊆ R. For brevity, we let

(3.3)
W (j, k, ζ) := ConvR2

(

Uk(ζ) ∪ ({A0, A1, A2} \ {Aj})
)

; then H :=
{η ∈ [0, 1] : (∀ζ ∈ [0, η]) (∃k) (∃j) (U1−k(ζ) ⊆ W (j, k, ζ)}.

By (3.1), 0 ∈ H . Since Uk(1) = Uk, for k ∈ {0, 1}, our indirect assumption gives
that 1 /∈ H . Clearly, if 0 ≤ η1 ≤ η2 ≤ 1 and η2 belongs to H , then so does η1; in
other words, H is an order ideal of the poset 〈[0, 1],≤〉. Let ξ denote the supremum
of H . A standard compactness argument shows that

(3.4) ξ is the maximum of H , whereby 0 < ξ ∈ H and ξ < 1.

Figure 3. Illustration for (3.5)
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Since ξ ∈ H , we can assume that the indices are chosen so that U1(ξ) is included
in the grey-filled “round-backed trapezoid”

(3.5) D(ξ) := ConvR2({A0, A1} ∪ U0(ξ)); see Figure 3.

If U1(ξ) was included in the interior of D(ξ), then there would be a (small) positive
ε such that U1(ξ + δ) ⊆ D(ξ) ⊆ D(ξ + δ) for all δ ∈ (0, ε] and ξ +ε would belong to
H , contradicting (3.4). Therefore, U1(ξ) is tangent to the boundary of D(ξ). Since
ξ < 1 and U1(1) = U1 is still included in the triangle T , U1(ξ) cannot be tangent to
the side [A0, A1] of T . If U1(ξ) was tangent to the back arc of the “round-backed
trapezoid” D(ξ) and so to U0(ξ), then one of U0 = U0(1) and U1 = U1(1) would be
in the interior of the other by Lemma 2.3, and this would contradict the indirect
assumption that (1.1) fails. Hence U1(ξ) is tangent to one of the “legs” of D(ξ);
this leg is an external tangent line e of the circles U1(ξ) and U0(ξ) through, say, A0;
see Figure 3. The corresponding touching points will be denoted by E1 and E0; see
the figure. Let λ := dist(A0, E1)/dist(A0, E0); note that 0 < λ < 1. By well-known
properties of homotheties, the auxiliary circle

(3.6) C := χA0,λ(U0(ξ)), with center P := χA0,λ(P0),

touches e and, thus, U1(ξ) at E1. Let f denote the other tangent of U0(ξ) through
A0. Let A∗

1 and A∗

2 be the intersection points of f and e with the line through A1

and A2, respectively. Since U0(1) = U0 is also included in T and U0(ξ) is a smaller
circle concentric to U0, both A∗

1 and A∗

2 are in the interior of the line segment
[A1, A2]. By continuity, we can find a point G in the interior of the line segment
[A0, P ] such that G is outside C and G is so close to A0 that the tangent lines e′ and
f ′ of C through G intersect the line segments [A∗

2, A2] and [A1, A
∗

1] at some of their
internal points, which we denote by A′

2 and A′

1, respectively. Since the “round-
backed trapezoid” ConvR2({A′

1, A
′

2} ∪ C) is clearly the intersection of the round-
edged angle Ang(G, C) and one of the half-planes determined by the line through

A′

1 and A′

2, we obtain from Lemma 2.1 that U0(ξ)
loose

⊂ ConvR2({A′

1, A
′

2} ∪ C).
Combining this with the obvious ConvR2 ({A′

1, A
′

2} ∪ C) ⊆ ConvR2({A1, A2} ∪ C),

we obtain that U0(ξ)
loose

⊂ ConvR2({A1, A2} ∪ C). Thus, we conclude that there
exists a (small) positive ε in the interval (0, 1 − ξ) such that

(3.7) U0(ξ + δ) ⊆ ConvR2({A1, A2} ∪ C) for all δ ∈ (0, ε].

Let r be the radius of C. Depending on r, there are two cases. First, if r1 > r,
then C is inside U1(ξ) and, consequently, also in U1(ξ + δ), whereby (3.7) leads to

U0(ξ + δ) ⊆ ConvR2({A1, A2} ∪ C) ⊆ ConvR2({A1, A2} ∪ U1(ξ + δ))

for all δ ∈ (0, ε]. This gives that ξ + ε ∈ H , contradicting (3.4).
Second, let r1 ≤ r. Now U1(ξ) coincides with or is inside C. By Lemma 2.3,

(3.8) for all µ > 1, χP,µ(U1(ξ)) coincides with or is inside χP,µ(C).

Clearly, C
loose

⊂ T , since so is U0(ξ). Hence, we can choose a (small) positive δ
such that χP0,µ(U0(ξ)) = U0(ξµ) and χP,µ(C) are loosely included in T for every
µ ∈ [1, 1 + δ]. Furthermore, for every µ ∈ [1, 1 + δ],

(3.9)
χP,µ(C)

(3.6)
= χP,µ

(

χA0,λ(U0(ξ))
)

Lemma 2.2
= χA0,λ(χP0,µ(U0(ξ))) = χA0,λ(U0(ξµ)).
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Since 0 < λ < 1, it follows that

(3.10) χP,µ(C)
(3.9)
= χA0,λ(U0(ξµ)) ∈ ConvR2({A0} ∪ U0(ξµ)), whence

U1(ξµ) = χP,µ(U1(ξ))
(3.8)

⊆ ConvR2(χP,µ(C))
(3.10)

⊆ ConvR2

(

{A0} ∪ U0(ξµ)
)

.

Since this holds for all µ ∈ [1, 1+δ], we conclude that ξ(1+δ) ∈ H . This contradicts
(3.4), completing the proof of Theorem 1.1. �

Figure 4. A regular tetrahedron in a cube

4. Examples

This section explains why we have been unable to generalize Theorem 1.1 for
spheres so far. In our first example, one can change {−1, 0} and −1 − k to {0, 1}
and 1 − k, respectively; we have chosen {−1, 0} and −1 − k for a technical reason.

Example 4.1. Let A0, . . . , A3 be the vertices of a regular tetrahedron as well as
some vertices of a cube; see Figure 4. Let B and C be the middle points of the
line segments [A0, A1] and [A2, A3], respectively, and let P−1 and P0 divide [B, C]
into three equal parts as the figure shows. Finally, let S−1 and S0 be spheres in the



CONVEXITY AND CIRCLES 7

Figure 5. The π-images of our spheres

interior of the tetrahedron ConvR3({A0, . . . , A3}) with centers P−1 and P0 and of
the same positive radius. Then, for all j ∈ {0, 1, 2, 3} and k ∈ {−1, 0},

(4.1) S−1−k * ConvR3

(

Sk ∪
⋃

({A0, A1, A2, A3} \ {Aj})
)

.

Proof. By symmetry, it suffices to show (4.1) only for j = 3. First, let k = 0. We
denote by π the orthogonal projection of R3 to the plane containing A2, A3 and B.
Suppose for a contradiction that S−1 ⊆ ConvR3 (S0 ∪ A0 ∪ A1 ∪ A2); this inclusion
is preserved by π. Since π commutes with the formation of convex hulls and the
disk π(S−1) is not included in ConvR2(π(S0)∪π({A0, A1, A2})), the grey-filled area
in Figure 5, which is a contradiction. Second, if k = −1, then the argument is
essentially the same but the grey-filled area in Figure 5 has to be changed. �

Example 4.2. For t ∈ {3, 4, 5, . . .}, add t − 2 additional spheres to the previous
example in the following way. Let P1, . . . , Pt−2 divide the line segment [P0, P−1]
equidistantly; see Figure 5 for t = 4. This figure contains also a circular dotted
arc with a sufficiently large radius; its center is far above the triangle. Besides
the boundary circles of the disks π(S0) and π(S−1) from the previous example, let
C1,. . . , Ct−2 be additional circles with centers P1, . . . , Pt−2 such that all the (little)
circles are tangent to the dotted arc; this idea is taken from Czédli [8, Figure 5]. For
i ∈ {1, . . . , t−2}, let Si be the sphere obtained from Ci by rotating it around the line
through B and C. Note that π(Si) ≈ Ci in Figure 5 means that the circle Ci is the
boundary of the disk π(Si). Now, for all j ∈ {0, 1, 2, 3} and k ∈ {−1, 0, . . . , t − 2},
Sk is not a subset of

ConvR2

(

⋃

({S−1, S0, . . . , St−2} \ {Sk}) ∪
⋃

({A0, A1, A2, A3} \ {Aj})
)

,

while all the Sk are still included in the tetrahedron ConvR3({A0, . . . , A3}).
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Proof. Combine the previous proof and Czédli [8, Example 4.3]. �
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