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Abstract. Let A be a finite set such that the greatest prime divisor of |A| is
at least 5. Then two minimal clones are constructed on A such that their join
contains all operations.
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Given a finite set A with at least two elements, the clones on A form an atomic
algebraic lattice LA. The atoms of LA are called minimal clones. Szabó [5] raised the
question that what is the minimal number n = n(|A|) such that the greatest element 1A

of LA is the join of n atoms. In other words, how many minimal clones are necessary to
generate the clone of all operations on A? He proved 2 ≤ n(|A|) ≤ 3 and n(p) = 2 for p
prime, cf. [5]. Later in [6] he also showed n(2p) = 2 for primes p ≥ 5. Our goal is not
only to extend these results but also to simplify the proof in [6] for the 2p case. Many of
Szabó’s ideas from [5] and [6] will be used in the present paper.

Theorem 1. Let A be a finite set, and let p divide the number of elements of A for some
prime p ≥ 5. Then there exist two minimal clones on A whose join contains all operations
on A.

The proof relies on the following lemma.

Lemma 2. Let |A| = pk for a prime p ≥ 5 and an integer k ≥ 2. Then there are a
lattice structure (A,∨,∧) and a fixed point free permutation g : A → A of order p such
that, with the notation m for the ternary majority operation m : A3 → A, (x, y, z) �→
(x∧ y)∨ (x∧ z)∨ (y ∧ z), the algebra A = (A, m, g) is simple, it has no proper subalgebra
and it has no nontrivial automorphism.

Proof of Lemma 2. Let A = {0 = a0,1, 1 = ak+1,p, a1,1, . . . , a1,p−1, a2,1, . . . , a2,p−1,
a3,1, . . . , a3,p, . . ., ak,1, . . . , ak,p}. Consider the lattice structure (A,∨,∧) on A as depicted
in Figure 1. (Notice that this lattice is a Hall–Dilworth gluing of k modular nondistributive
lattices of length 2.)



Let g be the following permutation:

(0ak,1ak,2 . . . ak,p−21)(a1,1 . . . a1,p−1a2,p−1)×
(a2,1 . . . a2,p−2a3,pa3,p−1)(a3,1 . . . a3,p−2a4,pa4,p−1)×

(a4,1 . . . a4,p−2a5,pa5,p−1) . . . (ak−1,1 . . . ak−1,p−2ak,pak,p−1).

In Figure 1 the g-orbits are indicated by dotted lines.
Now if Θ is a congruence of A then x∧ y = m(x, y, 0) and x ∨ y = m(x, y, 1) preserve

Θ, so Θ is a lattice congruence as well. But our lattice is simple, whence so is A.
Now let S be a subalgebra of A, Clearly, S is the union of some g-orbits. From

m(ai,1, ai,2, ai,3) = ai−1,1 (1 ≤ i ≤ k) we infer that if S includes the g-orbit of ai,1 then it



includes the g-orbit of ai−1,1. Since ak,1 and a0,1 = 0 belong to the same orbit, S includes
all orbits. This shows that A has no proper subalgebra.

An element x ∈ A is called m-irreducible if A \ {x} is closed with respect to m. Using
the monotonicity of m we easily conclude that 1 is m-irreducible. The doubly (i.e., both
meet and join) irreducible elements are m-irreducible as well. The computational rules

m(ai1, ai,2, ai,3) = ai−1,0 (1 ≤ i ≤ k),
m(a1,1, a1,2, 1) = a2,p−1,

m(aj−1,1, aj−1,2, 1) = aj,p (3 ≤ j ≤ k)

imply that the rest of elements are m-reducible. Now 0 is the only m-reducible element
with the property that all other elements in its g-orbit are m-irreducible. Hence 0 is a
fixed point of every automorphism τ of A. Since the set of fixed points of τ is either empty
or a subalgebra, all elements are fixed points and τ is the identity map of A. Hence A has
no nontrivial automorphism. This proves Lemma 2. �

The transition from Lemma 2 to Theorem 1 is essentially the same as that in Szabó
[6].

Proof of Theorem 1. Since the case when |A| is a prime is settled in [5], we can assume
that |A| = kp for k ≥ 2 and p ≥ 5. The clone [m] generated by m (in case of any lattice)
is known to be a minimal one, cf. e.g. Kalouznin and Pöschel [3, page 115, 4.4.5.(ii)].
Clearly, the permutation g also generates a minimal clone. To prove that [m]∨ [g] = 1A it
suffices to show that no relation from the six types in the famous Rosenberg Theorem [4]
is preserved both by m and g. (Note that Rosenberg Theorem is cited in [2] as Thm. A.)
Since m is a majority operation, it does not preserve linear relations and h-regular relations
by [2, Lemma 6]. It is easy to check that if a central relation is preserved by m and g then
its centrum elements form a subalgebra of A. So the lack of proper subalgebras excludes
central relations. Since the simplicity of A and the lack of nontrivial automorphisms
obviously exclude two further kinds of Rosenberg’s relations, we are left with the case of
a bounded partial order ρ ⊆ A2 preserved by m and g. If u is the smallest element with
respect to ρ then (u, g(u)) ∈ ρ gives (gp−1(u), gp(u)) = (gp−1(u), u) ∈ ρ, which contradicts
gp−1(u) 
= u. (Alternatively, x ∧ y = m(x, y, 0) and x ∨ y = m(x, y, 1) also preserve ρ.
Since (A,∨,∧) is a simple lattice, ρ is the original lattice order or its dual by [1, Cor. 1],
so ρ is evidently not preserved by g.) This proves Theorem 1. �

Concluding remarks. While we do not know if n(|A|) = 2 holds for all finite sets A
with at least two elements, Lemma 2 surely fails when |A| = 2k, k > 1. (Indeed, then
{0, g(0)} is a proper subalgebra.) The case when 3 is the greatest prime divisor of |A| > 3
is less clear. All we know at present is that Lemma 2 fails for |A| = 6 but holds for
|A| ∈ {9, 12, 18}. For example, the lattice we used for |A| = 18 is given in Figure 2, the
corresponding permutation g is

(0, 16, 15)(1, 4, 5)(2, 3, 9)(6, 7, 14)(8, 10, 17)(11, 12, 13),



and the reasoning is considerably longer than in the proof of Lemma 2. Unfortunately, the
particular arguments for 9, 12 and 18 have not given a clue to more generality.
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