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Abstract. Since their introduction by G. Grätzer and E. Knapp in 2007,

more than four dozen papers have been devoted to finite slim planar semimod-

ular lattices (in short, SPS lattices or slim semimodular lattices) and to some
related fields. In addition to distributivity, there have been seven known prop-

erties of the congruence lattices of these lattices. The first two properties were

proved by G. Grätzer, the next four by the present author, while the seventh
was proved jointly by G. Grätzer and the present author. Five out of the seven

properties were found and proved by using lamps, which are lattice theoretic

tools introduced by the present author in a 2021 paper. Here, using lamps, we
present infinitely many new properties. Lamps also allow us to strengthen the

seventh previously known property, and they lead to an algorithm of exponen-
tial time to decide whether a finite distributive lattice can be represented as

the congruence lattice of an SPS lattice. Some new properties of lamps are

also given.

1. Introduction

1.1. Outline and targeted readership. The reader is assumed to be familiar
with the rudiments of lattice theory. Two open access papers, Czédli [3] and Czédli
and Grätzer [7], will be frequently referenced; they should be at hand. When the
terminology in these two papers are different, we give preference to [3].

The paper is structured as follows. In Subsection 1.2 of the present section, we
give a short survey to explain our motivations.

In Section 2, we give an upper bound on the number of neon tubes (equivalently,
on the number of trajectories) that are sufficient to represent a finite distributive
lattice D as the congruence lattice ConL of an SPS lattice L. This yields an upper
bound on the smallest |L| such that L is an SPS lattice with D ∼= ConL and offers
an algorithm of exponential time to decide if there exists such an L.

Section 3 comments the algorithm, which is easy to understand but it seems to
be too slow for any practical purpose.

Section 4 outlines a complicated algorithm based on lamps (on sets illuminated
by lamps to be more precise); note that not every detail of this algorithm is elabo-
rated.
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2 G. CZÉDLI

Section 5 proves some easy lemmas about lamps.
Section 6 gives an infinite family of new properties, and proves that the congru-

ence lattices of slim semimodular lattices have these properties; see Theorem 6.2,
one of the main results.

Section 7 gives another infinite family of properties and proves Theorem 7.2, the
second main result, which asserts that the congruence lattices of slim semimodular
lattices have these properties.

Finally, the new and old properties are compared in Section 8.
Note that few changes were only necessary to obtain the present version from the

earlier version of June 29, 2022. Apart possibly from some insignificant ones, the
changes are in red (this colour) and they are included (or referenced) in Definition
7.1 and in Section 8.

1.2. A short survey and our goal. The introduction of slim planar semimodular
lattices, SPS lattices or slim semimodular lattices in short, by Grätzer and Knapp
[22] in 2007 was a milestone in the theory of (planar) semimodular lattices. Indeed,
[22] was followed by more than four dozen papers in one and a half decades; see

http://www.math.u-szeged.hu/~czedli/m/listak/publ-psml.pdf

for the list of these papers. For motivations to study these lattices and also for
their impact on other parts of mathematics, see the survey section, Section 2, of
the open access paper Czédli and Kurusa [9].

By Grätzer and Knapp’s definition given in [22], an SPS lattice is a finite planar
semimodular lattice that has no sublattice (equivalently, no cover-preserving sub-
lattice) isomorphic to M3. Later, by Czédli and Schmidt [12], slim lattices were
defined as finite lattices L such that the poset (= partially ordered set) J(L) of the
join-irreducible elements of L is the union of two chains. These lattices are necessar-
ily planar. It appeared in [12] that SPS lattices are the same as slim semimodular
lattices.

In 2016, Grätzer [19] and [20] raised the problem what the congruence lattices of
SPS lattices are. These congruence lattices are finite distributive lattices, of course,
but in spite of seven of their additional properties discovered so far in Grätzer [20]
and [21], Czédli [3], and Czédli and Grätzer [7], we still cannot characterize them
in the language of lattice theory. Neither can we do so within the class of finite
lattices; however, all the known properties can be given by a single axiom described
in Czédli [4].

2. Lamps and the Neon Tube Lemma

2.1. C1-diagrams and slim rectangular lattices. Let us recall some notations
and concepts. For an element u 6= 1 of a finite lattice L, let u+ denote the join of
all covers of u, that is,

u+ :=
∨
{y ∈ L : u ≺ y}. (2.1)

Of course, if u belongs to M(L), the set of (non-unit) meet-irreducible elements,
then exactly one joinand occurs in (2.1). A C1-diagram is a planar lattice diagram
in which

• for each u ∈ M(L) such that u is in the (geometric, that is, topological)
interior of the diagram, [u, u+] is a precipitous edge, that is, the angle
measured from the (positive half) of the x coordinate axis to the edge
[u, u+] is strictly between π/4 (45◦) and 3π/4 (135◦),
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• and any other edge is of normal slope, that is, the angle between the x-axis
and the edge is π/4 or 3π/4.

All lattice diagrams in the paper are C1-diagram. (Poset diagrams also occur,
for which “C1-diagrams” are not even defined.) We know from Czédli [2] that
each slim semimodular lattice has a C1-diagram. A slim semimodular lattice L is
rectangular if it has exactly two corners, that is, elements of J(L) ∩ M(L), and
they are complementary; see Grätzer and Knapp [23] for the introduction of this
concept or see Czédli [3, page 384] where this concept is recalled. If L is so, then
any of its C1-diagrams is of a rectangular shape. Furthermore, each side of the full
geometric rectangle that the contour of the diagram determines is of a normal slope.
All lattice diagrams in the paper are C1-diagrams of slim rectangular lattices. In
the rest of the paper,

L will always denote a slim rectangular lattice with a fixed C1-diagram. (2.2)

This assumption is justified by a result Grätzer and Knapp [23], which implies that

for each SPS lattice K there is slim rectangular
lattice L such that ConK = ConL;

;

}
(2.3)

see also Czédli [2]. Note that, to improve the outlook, L2 in Figure 1, K ′ in Figure
4 and the lattices in Figures 2 and 5 are given by C2-diagrams. (A C1-diagram is
a C2-diagram if any two edges on the lower boundary are of the same geometric
length.)

Figure 1. A multifork extension
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2.2. Multiforks, lamps and related geometric objects. A 4-cell X, that is a
cover-preserving 4-element boolean sublattice, is distributive is so is the principal
ideal ↓1X := {u ∈ L : u ≤ 1X}. Given a 4-cell X of L and a positive integer k,
we can insert a k-fold multifork or, if k is unspecified, a multifork into X to obtain
a larger slim rectangular lattice, which is called a multifork extension of L; see
Czédli [1] where this concept is introduced, or see (2.9) and Lemma 2.12 of Czédli
[3] where it is recalled, or see only Figure 1 here. In this figure, we add a 1-fold
multifork (also called a multifork) to the grey-filled 4-cell of L0, and we obtain L1.
We obtain L2 by adding a 3-fold multifork to the grey-filled 4-cell of L1.

Next, based on Czédli [3, Definitions 2.3 and 2.6–2.7], we define neon tubes,
lamps, and some related geometric concepts. By a neon tube of L we mean an edge
[u, u+] such that u ∈ M(L). The boundary neon tubes are of normal slopes while
the internal neon tubes are precipitous. For a neon tube n = [u, u+], we denote u
and u+ by Foot(n) and Peak(n), respectively. Clearly, n is determined by its foot,
Foot(n). A boundary lamp I is a single boundary neon tube n. (However, we often
say that the boundary lamp I has the neon tube n.) If n is an internal neon tube,
then we let

βn :=
∧
{Foot(m) : m is an internal neon tube and Peak(m) = Peak(n)} (2.4)

and we say that I := [βn,Peak(n)] is an internal lamp of L. The neon tubes m
in (2.4) are the neon tubes of I. If I and n are as above, we use the notations
Foot(I) = βn and Peak(I) = Peak(n). By a lamp (of L) we mean a boundary or
internal lamp (of L). So lamps are particular intervals and each lamp is determined
by its neon tubes. Actually, more is true since we know from Czédli [3, Lemma 3.1]
that

each lamp I is determined by its foot, Foot(I). (2.5)

This allows us to give the lamps of our diagrams by their feet; these feet are exactly
the black-filled elements. See, for example, Figures 1, 2, 3, 4, and 5. We put the
name of a lamp close to its black-filled foot.

We know from Kelly and Rival [24] that in a planar lattice diagram, each interval
determines a geometric region. As in Czédli [3, Definition 2.6], the body of a lamp I,
denoted by Body(I), is the geometric region determined by I = [Foot(I),Peak(I)].
For example, for L2 in Figure 1 and its lamp C2, Body(C2) is filled by dark-grey.
So are Body(I) and Body(J) in Figure 3. The region determined by the interval

CircR(I) := [
∧

x≺Foot(I)

x, Peak(I)]

is the circumscribed rectangle of I; it is a rectangle with all the four sides of normal
slopes, and it is always larger than Body(I). If X is a neon tube or a lamp, then the
left floor of X is the closed line segments of (normal) slope π/4 between Foot(X)
and the lower left boundary of the diagram; it is denoted by LF(X); see Figure 2
for illustrations. The right floor of X, denoted by RF(X), is analogously defined.
For a lamp I and a neon tube n, their floors are defined by

Floor(I) := LF(I) ∪ RF(I) and Floor(n) := LF(n) ∪ RF(n). (2.6)
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Figure 2. Geometric objects related to lamps

The direct product of two finite non-singleton chains is called a grid. We know
from, say, (2.9) and (2.10) of Czédli [3] that for our slim rectangular lattice L,

there exists a sequence L0, L1, . . . , Lk = L of slim rectangular lattices
and there are distributive 4-cells Hi of Li−1 such that L0 is a grid and,
for 1 ≤ i ≤ k, Li is obtained from Li−1 by inserting a multifork into
Hi. Furthermore, the internal lamps of L originate from these multifork
extensions and their circumscribed rectangles are H1, . . . ,Hk.

 (2.7)

2.3. What are lamps good for? For the real answer to this subsection title, see
part (ii) of Lemma 2.2 later, which gives a tangible evidence of the importance of
lamps.

In our model, each geometric point of a neon tube (as an edge) emits photons
but these photon can only go downwards at degree 5π/4 or 7π/4. (That is, to
southwest or southeast direction.) For a neon tube n, a geometric point (x, y)
of the full geometric rectangle of L is illuminated by n from the left if the neon
tube (as a geometric line segment) has a nonempty intersection with the half-line
{(x − t, y + t) : 0 ≤ t ∈ R}. The set of geometric points of the full geometric
rectangle that are illuminated by n from the left is denoted by RightLit(n). (Note
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“R” in the acronym indicates the points illuminated from the left are on the right.)
We define LeftLit(n) analogously. For a lamp I and a neon tube n, we let

RightLit(I) :=
⋃
{RightLit(n) : n is a neon tube of I}, (2.8)

LeftLit(I) :=
⋃
{LeftLit(n) : n is a neon tube of I}, (2.9)

Lit(n) := LeftLit(n) ∪ RightLit(n), and Lit(I) := LeftLit(I) ∪ RightLit(I). (2.10)

In the acronyms above, “Lit” comes from “light”. However, in the text we prefer
the verb “illuminate” because of its double meaning: our neon tubes emit physical
light and contribute a lot to our comprehension of the congruence lattices of slim
semimodular lattices.

Figure 3. Lm, obtained from Figure 2 according to (2.16)

While the geometric sets defined in (2.8)–(2.10) here were sufficient for the proofs
in Czédli [3], the present paper has to introduce some smaller sets as follows. Let
n be a neon tube. The unique lamp to which n belongs will be denoted by I = In.
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Below, we assume that I is not a boundary lamp.

If n is the leftmost neon tube of I, then LEA(n) := LeftLit(n) \
CircR(I). Otherwise, let n− denote the left neighbour of n among
the neon tubes of I, and let LEA(n) be the (closed convex) geo-
metric rectangle with sides LF(n), LF(n−), a part of RF(n−),
and a part of the lower boundary of L. We define REA(n), the
left-right symmetric counterpart of LEA(n), analogously.


(2.11)

The choice of the acronyms above will be explained a bit later.
For example, LEA(n) and REA(n) in Figure 2 are the zigzag-filled rectangle and

the spiral-filled rectangle, respectively. In Figure 3, q is the leftmost neon tube of I
and LEA(q) is the zigzag-filled rectangle while REA(r) for the rightmost neon tube
r is the spiral-filled rectangle. If n is a boundary lamp, then exactly one of LEA(n)
and REA(n) is of positive geometric area while the other is a line segment or ∅.

For a subset Y of the plane, let GInt(Y ) denote the topological (in other words,
geometric) interior of Y . Observe that

for distinct neon tubes n and n′ of a lamp,
GInt(LEA(n)) ∩ GInt(LEA(n′)) = ∅ and, anal-
ogously, GInt(REA(n)) ∩GInt(REA(n′)) = ∅

 (2.12)

This motivates us to call LEA(n) and REA(n) the left exclusive area and the right
exclusive area of n; this is where the acronyms in (2.11) come from. Later, by an
exclusive area of n we mean one of LEA(n) and REA(n). By a trivial induction
based on (2.7) or using trajectories introduced in Czédli and Schmidt [12], we obtain
easily that

for any 4-cell C, there are unique neon tubes n and
m such that LEA(n)∩REA(m) is the geometric rec-
tangle determined by C.

(2.13)

2.4. On the number of neon tubes. In the whole paper,

Lamp(L) and NTube(L) denote the set of lamps
and that of neon tubes of L, respectively.

}
(2.14)

On the set Lamp(L) of lamps of L, we define five relations; the first four are
taken from Czédli [3, Definition 2.9] while the last two are new. Note that using
the remaining two out of the six relations of [3, Definition 2.9] together with trivial
inclusions like GInt(X) ⊆ X or, for a neon tube n of a lamp I, LEA(n) ⊆ LeftLit(I),
one could easily define even more relations (but this does not seem to be useful).

Definition 2.1 (Relations defined for lamps). Let L be a slim rectangular lattice
with a fixed C1-diagram. For I, J ∈ Lamp(L),

(i) let (I, J) ∈ ρalg mean that Peak(I) ≤ Peak(J), I is an internal lamp, and
Foot(I) 6≤ Foot(J);

(ii) let (I, J) ∈ ρfoot mean that I 6= J , Foot(I) ∈ Lit(J), and I is an internal
lamp;

(iii) let (I, J) ∈ ρinfoot mean that I 6= J , Foot(I) ∈ GInt(Lit(J)), and I is an
internal lamp;

(iv) let (I, J) ∈ ρBody mean that I 6= J , Body(I) ⊆ Lit(J), and I is an internal
lamp;
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(v) let (I, J) ∈ νinfoot mean that I is an internal lamp, I 6= J and J has a neon
tube n such that Foot(I) ∈ GInt(LEA(n)) or Foot(I) ∈ GInt(REA(n)); and,
finally,

(vi) let (I, J) ∈ νLRCircR mean that I is an internal lamp, I 6= J and J has a neon
tube n such that CircR(I) ⊆ LEA(n) or CircR(I) ⊆ REA(n).

Now we are in the position to formulate the key lemma for this section. For
x, y ∈ L, the least congruence containing (x, y) is denoted by con(x, y).

Lemma 2.2 (Neon Tube Lemma). Let L be a slim rectangular lattice with a fixed
C1-diagram; then the following three assertions hold.

(i) The six relations described in Definition 2.1 are all equal. Furthermore, they
are equal to the relations given in Czédli [3, Definition 2.9].

(ii) Let ≤ denote the reflexive transitive closure of ρalg. Then ≤ is a partial
order and the poset (Lamp(L);≤) is isomorphic to the poset (J(ConL);≤) of
nonzero join-irreducible congruences of L with respect to the ordering inherited
from ConL. In fact, the map ϕ : Lamp(L) → J(ConL), defined by [p, q] 7→
con((p, q)), is an order isomorphism.

(iii) If I ≺ J (that is, I is covered by J) in Lamp(L), then (I, J) ∈ ρalg.

Before the proof, several comments are reasonable. While ρfoot is the mildest
geometric condition on (I, J), νLRCircR is (seemingly) more restrictive that any
other relation described in [3, Definition 2.9]. This is why the Neon Tube Lemma
is a stronger than its counterpart, Lemma 2.11 of Czédli [3].

In addition to lamps (and neon tubes), there are other approaches to the con-
gruence lattices of slim rectangular lattices: the Swing Lemma from Grätzer [18]
(see also Czédli, Grätzer and Lakser [8] and Czédli and Makay [10] for secondary
approaches), the Trajectory Coloring Theorem from Czédli [1], and even Lemma
2.36 (about the join dependency relation of Day [15], for any finite lattice) in Freese,
Ježek and Nation [16]. Even though the differences among the four different ap-
proaches are not so big and most of these approaches would probably be appropriate
to prove the results of this paper on congruence lattices of slim semimodular lat-
tices, we believe that our approach based on lamps (and neon tubes) gives the best
insight into the congruence lattices of slim rectangular (and, therefore, those of
slim semimodular) lattices. In addition to the present paper, this is witnessed by
Czédli [3] and Czédli and Grätzer [7]. Indeed, with two early exceptions, all the
known of these congruence lattices have been found and first proved (or, at least,
first proved) by lamps (and neon tubes).

Proof of Lemma 2.2. Recall that Czédli [3, Definition 2.9] defines a relation ρCircR

on Lamp(L) as follows: a (I, J) ∈ ρCircR if I is an internal lamp, CircR(I) ⊆ Lit(J),
and I 6= J .

It suffices to prove the first sentence of part (i) since the rest of the lemma follows
from its counterpart, [3, Lemma 2.11], which also contains ρalg, ρfoot, ρinfoot, and
ρBody. Fortunately, the proof of [3, Lemma 2.11] also proves the above-mentioned
first sentence provided we observe the following.

We know from [3, Lemma 2.11] that ρalg = ρfoot = ρCircR. Assume that (I, J) ∈
ρCircR. Using (2.7), which is the combination of (2.9) and (2.10) of [3], J comes
sooner than I. When J has just arrived, the exclusive areas of its neon tubes are
separated by edges. By (2.11) of [3], these sets are still separated by edges when
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I arrives. By planarity, these edges cannot cross CircR(I).1 Hence the covering
square into which I enters (and which is geometrically CircR(I)) is a subset of an
exclusive area of a neon tube of J .

Keeping the above paragraph in mind, the (long) proof of [3, Lemma 2.11] works
in the present situation. This completes the proof of the Neon Tube Lemma. �

Before formulating an easy consequence (under the name “lemma”) of the Three
Neon Tubes Lemma, we define two easy-to-understand concepts. A neon tube n
of L is secondary if there is no I ∈ Lamp(L) such that Foot(I) ∈ GInt(LEA(n)) ∪
GInt(REA(n)). Equivalently, if for every I ∈ Lamp(L), neither CircR(I) ⊆ LEA(n)
nor CircR(I) ⊆ REA(n). In the opposite case when there is an I ∈ Lamp(L) such
that Foot(I) ∈ GInt(LEA(n)) ∪ GInt(REA(n)), we say that n is a primary neon
tube. For example, {A1, A2, A3, B1, B2, C1, p, q, r} is the set of primary neon tubes
in Figure 2. (Some but not all of the primary neon tubes are lamps.) The rest of
the neon tubes, including m, n−, n, and n+, are secondary.

The following concept is self-explanatory: we say that n1, n2, n3 are three geo-
metrically consecutive neon tubes if they belong to the same lamp I and, among
the feet of all neon tubes of I, Foot(ni) is immediately to the right of Foot(ni−1)
for i ∈ {2, 3}. For example, n−, n, and n+ are three geometrically consecutive neon
tubes in Figure 2 but q, m, and r are not.

Lemma 2.3 (Three Neon Tubes Lemma). Let n1, m = n2, and n3 be three consec-
utive neon tubes of our slim rectangular lattice L such that each of these three neon
tubes is secondary. Then L−m, to be defined in (2.16), is also a slim rectangular
lattice, ConL−m ∼= ConL, and |NTube(L−m)| = |NTube(L)| − 1.

Proof. Clearly, m is an internal neon tube. Keeping (2.2) in mind, the left and
right boundary chains of L are denoted by Cleft(L) and Cright(L), respectively. For
a ∈ L, the ideal {x ∈ L : x ≤ a} will be denoted by ↓a. Let ljc(a) and rjc(a) stand
for the largest element of Cleft(L) ∩ ↓a and Cright(L) ∩ ↓a, respectively. (These
acronyms come from left join coordinate and right join coordinate, respectively;
note that both ljc(a) and rjc(a) belong to J(L) ∪ {0}.) Let

F (m) := [ljc(Foot(m)),Foot(m)] ∪ [rjc(Foot(m)),Foot(m)] ∪ {Peak(m)}, (2.15)

L′ := L−m := L \ F (m). (2.16)

Note that F (m) is a so-called fork with top edge m; this concept was introduced
in Czédli and Schmidt [13]. We know from [13, Lemma 20] and from the fact that
the corners are clearly outside F (m) that L−m is a slim rectangular lattice. For the
intervals occurring in (2.15), we know from [13, Lemma 18] that,

[ljc(Foot(m)),Foot(m)] and [rjc(Foot(m)),Foot(m)] are chains. (2.17)

Furthermore, as it is implicit in, say, Czédli and Schmidt [13], we can assume that
the C1-diagram of L−m is obtained from that of L in the natural way: we omit the
elements of F (m) from the diagram; see how Figure 3 is obtained from Figure 2.

We know from, say, Theorem 2.1 and Corollary 2.2 of Czédli, Ozsvárt and Udvari
[11] that for any SPS lattice K, length(K) = |M(K)|. When passing from L
to L−m, ljc(Foot(m)) is the only element that we remove from the left boundary

1In the proof of [3, Lemma 2.11], planarity was used in the same way; the only difference is
that, apart from those 4-cells that are nondistributive since their tops is Peak(J), Lit(J) in [3]

was only divided into two parts, LeftLit(J) and RightLit(J).
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chain of L. Since the left boundary chain is a maximal chain and any two finite
maximal chains of a semimodular lattice are of the same length, we obtain that
length(L−m) = length(L)−1. Hence, |NTube(L−m)| = |M(L−m)| = length(L−m) =
length(L)− 1 = |M(L)| − 1 = |NTube(L)| − 1, as required.

Let L0, L1, . . . , Lk = L be a sequence according to (2.7). For i = 1, . . . , k, let
Qi be the lamp that comes to existence when we pass from Li−i to Li; so Qi is in
Lamp(Li) and Lamp(L) but it is not in Lamp(Li−1). We know that CircR(Qi) = Hi

and Lamp(L) = {Q1, . . . , Qk}. Assume that m belongs to Qj . The (2.7) sequence
for L′ := L−m will be denoted by L′0, L′1, . . . , L′k = L′. We choose this sequence so
L′i = Li for i < j, and their diagrams are also the same. Note that j > 1 since Qj
is not a boundary lamp.

Let n be a primary neon tube of Qj , and let n− and n+ be its left neighbour
and right neighbour, respectively. (The case when n− or n+ does not exists is
simpler and will not be detailed.) Since m is secondary and it is sitting between
two secondary neon tubes, none of n, n−, and n+ is m, whereby none of them is
removed. Hence, none of LF(n−), RF(n−), LF(n), RF(n), LF(n+), and RF(n+)
changes when we remove m. These six lines together with the lower boundary of L
form LEA(n) and REA(n). Hence

LEA(n) and REA(n) remain the same for any pri-
mary neon tube n of Lj when m is removed.

}
(2.18)

Furthermore, since Body(Qj) only depends on its leftmost neon tube and rightmost
neon tube, it does not depend on m, and so

the removal of m does not change Body(Qj). (2.19)

We are going to use
geo
= to indicate that two geometrical objects (or two sets of such

objects) are exactly the same in a fixed coordinate system of the Euclidean plane
R2. We know that Lj−1 and L′j−1 are the same as well as their diagrams. This fact
and (2.19) gives that

{Body(I) : I ∈ Lamp(L′j)}
geo
= {Body(I) : I ∈ Lamp(Lj)} (2.20)

Furthermore, it follows from (2.18) that

{LEA(n) : n ∈ Lamp(L′j) and n is primary }
geo
= {LEA(n) : n ∈ Lamp(Lj) and n is primary } and

(2.21)

{REA(n) : n ∈ Lamp(L′j), and n is primary}
geo
= {REA(n) : n ∈ Lamp(Lj), and n is primary} and

(2.22)

L′j is a sublattice (and subdiagram) of Lj . (2.23)

Trajectories were introduced in Czédli and Schmidt [12]; it is convenient to look
into Czédli [3, Definition 2.13] for their definition. We know from the sentence
following (2.23) in [3] that the neon tubes of L are exactly the top edges of the
trajectories of L. We claim that

if (2.20), (2.21), (2.22), and (2.23) hold for some i (in
place of j) and i < k, then they also hold for i+ 1.

}
(2.24)

This is almost trivial (at least, visually). Assume that (2.20)–(2.23) hold for some i
(in place of j) and i < k. To obtain Li+1 from Li, we pick a distributive 4-cell Hi+1

of Li. As a geometric area, Hi+1 is of the form LeftLit(n[) ∩ RightLit(n]), where
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n[ is the top edge of the trajectory containing the upper right edge of Hi+1 while
n] is the top edge of the trajectory containing the upper left edge of Hi+1. Thus,
using the validity of (2.21) and (2.22) of i, it follows that Hi+1 is geometrically
the same for L′i as for Li. Hence, geometrically exactly the same multifork can be
(and is) inserted into Hi+1 in case of L′i as in case of Li. In fact, CircR(Qj+1) =

LeftLit(n[) ∩ RightLit(n]), both in L′j+1 and in Lj+1. Thus, we conclude (2.24).
Since L′ = L′k and L = Lk, it follows from (2.24) that (2.20) holds for L′ and L

(in place of L′j and Lj , respectively). Now it is clear that ρfoot is the same for L′ as it

is for L. Hence, we conclude from Lemma 2.2 that
(
J(ConL′),≤

) ∼= (J(ConL),≤
)
.

By the well-known structure theorem of finite distributive lattices, see, for example,
Grätzer [17, Theorem 107], L′ ∼= L, as required. This completes the proof of Lemma
2.3. �

Next, we prove the following easy lemma. The height of an element x of a finite
semimodular lattice will be denoted by height(x); it is the length of the ideal ↓x.

Lemma 2.4. Let H be distributive 4-cell of a slim rectangular lattice L, and let
L′ be the (necessarily slim rectangular) lattice that we obtain from L by inserting
a k-fold multifork into H. Then |L′| = |L| + k · height(1H) + k(k + 1)/2 and
length(L′) = length(L) + k.

Figure 4. Illustrating the proof of Lemma 2.4

Proof. Since L and L′ are semimodular, their lengths are witnessed by their left
boundary chains. Hence, the equality length(L′) = length(L) + k is clear from the
definition of adding multiforks.

The structure theorem based on multiforks, see (2.7), is more advantageous than
that based on forks, in Czédli and Schmidt [13, Lemma 22], since while multiforks
are only added to distributive 4-cells but this is not so in case if we are only allowed
to add forks. However, in this proof, it is better to add k forks, on by one, instead
of adding a k-fold multifork. So we insert, one by one, k forks (that is, 1-fold
multiforks k times) into appropriate 4-cells H1 := H, H2, . . . , Hk with the same
top 1H . Since

(1 + height(1H)) + (2 + height(1H)) + · · ·+ (k + height(1H))
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with k (outer) summands is k · height(1H) + k(k+ 1)/2, it suffices to show that for
i = 1, . . . , k, if K and K ′ denote the lattice right before and right after inserting
the i-th multifork into Hi, then

heightK′(1Hi
) = heightK(1Hi

) + 1 and
|K ′| = |K|+ heightK′(1Hi

).

}
(2.25)

Instead of a formal and lengthy consideration, we use Figure 4 to verify (2.25). This
figure, where i = 3, shows how we insert the i-th fork into the grey-filled 4-cell H3

of K to obtain K ′. Implicitly, we will use that 1Hi
= 1H and ↓1H was distributive

before any fork was inserted into H. With t = 4 and s = 2, the new elements are
a1, . . . , at, b1, . . . , bs, and c; these elements are pentagon-shaped. Assigning an old
element x′ to each new element x, we get a maximal chain

0 = b′1 ≺ · · · ≺ b′s ≺ a′1 ≺ · · · ≺ a′t ≺ c′ = heightK(1Hi
)

in ↓K(1Hi
). Hence, the number of new elements is heightK(1Hi

) + 1. On the other
hand, with d := ljc(1Hi), both ↓Kd and [d, 1Hi ] are chains by Grätzer and Knapp
[23, Lemma 4]. Hence, C := ↓Kd ∪ [d, 1Hi ] is a maximal chain in ↓K1Hi . Since
exactly one element, a1, is added to this chain when we pass from K to K ′, we
obtain that heightK′(Hi

) = heightK(Hi
) + 1. Now that we have the first half of

(2.25), the number of new elements is heightK(1Hi
) + 1 = heightK′(1Hi

). We have
verified (2.25), and the proof of Lemma 2.4 is complete. �

The following observation only gives a very rough upper bound on the size |L|
of L but even such a bound will be sufficient to derive a corollary.

Observation 2.5. Let D be a finite distributive lattice such that D is representable,
that is, D is isomorphic to the congruence lattice of a slim rectangular lattice. Then,
with the notation n := |J(D)|, there exists a slim rectangular lattice L such that
ConL ∼= D, length(L) ≤ 3n2, and |L| ≤ 9n4.

Proof. Assume that L is a slim rectangular lattice of minimal size |L| such that
ConL ∼= D. We know from (ii) of Lemma 2.2 here, that is, from Czédli [3] that
(Lamp(L);≤) ∼= (J(D);≤). Hence |Lamp(L)| = n. There are at least two boundary
lamps (since L is rectangular), so there are at most n− 2 internal lamps. Observe
that if a neon tube n of a lamp J is primary, then (I, J) ∈ νinfoot for some (neces-
sarily internal) lamp I. By Lemma 2.3, and the minimality of |L|, J cannot have
three consecutive secondary neon tubes. Thus,

J has at most 3(n− 2) + 2 = 3n− 4 neon tubes. (2.26)

So, taking into account that a boundary lamp has only a single neon tubes, the
total number of neon tubes is at most n+ (n− 2) · (3n− 4) = 3n2 − 9n+ 8. Each
new lamp with i neon tubes comes to existence by adding an i-fold multifork, which
increases the length by i; see lemma 2.4. This fact, |NTube(L)| ≤ 3n2 − 9n + 8,
and the obvious length(L0) ≤ n yield that length(L) ≤ n+ 3n2 − 9n+ 8 ≤ 3n2, as
required.

Finally, to obtain the last inequality stated in the observation, it suffices two
show that a slim rectangular lattice (in fact, any SPS lattice) L of length ` has
at most `2 elements. We can argue for this easily as follows. By slimness (in the
sense of Czédli and Schmidt [12]), J(L) is the union of two chains, C1 and C2. By
rectangularity and the definition of J(L), none of 0 and 1 is in C1 and C2. So,
|C1| ≤ `− 1 and |C2| ≤ `− 1. Since each element of L \ {0} is of the form c1 ∨ c2
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with c1 ∈ C1 and c2 ∈ C2, L has at most 1 + (`− 1)2 ≤ `2 elements, indeed. This
completes the proof of the observation. �

Recall that slim semimodular lattices are also called SPS lattices.

Corollary 2.6. There is an algorithm to decide whether a given finite distributive
lattice D is isomorphic to the congruence lattice of some SPS lattice L; if the
answer is affirmative, then the algorithm yields a slim rectangular lattice L such
that D ∼= ConL.

Proof. Let n := |J(D)|. By (2.3), it suffices to deal with the question whether there
is a slim rectangular lattice L of minimal size such that ConL ∼= D. By Observation
2.5, if such an L exists, then |L| ≤ 9n4. Since we can clearly list all the at most
9n4-element lattices, we can check which one of them are slim rectangular lattices,
and for each such lattice L we can decide whether ConL ∼= D, we conclude the
corollary. �

3. Notes on the algorithm

The algorithm described in the proof of Corollary 2.6 is far from being effective.
Even if we do not know if there is a good (better than exponential) algorithm to
decide whether there is an SPS lattice with ConL ∼= ConD, we collect some facts
about the weakness of the algorithm described in the proof above; these comments
offer some improvements.

Remark 3.1. Instead of constructing all lattices with at most 9n4-elements, it is
faster (but not fast enough) to list all slim rectangular lattices of length at most 3n2;
this 3n2 comes from Observation 2.5. But even if we do so, we are still far from a
good algorithm. Indeed, we know from Czédli, Dékány, Gyenizse, and Kulin [6] that
the number of slim rectangular lattices of length k is asymptotically (k− 2)! · e2/2,
where e is the famous mathematical constant limn→∞(1 + 1/n)n ≈ 2.718 281 828.
Thus, there are about

x(n) := (e2/2) ·
3n2∑
k=2

(k − 2)! (3.1)

many slim rectangular lattices to verify, and we could hardly verify that many.
Indeed, say,

x(5) ≈ 0.167 · 10107 and x(9) ≈ 0.3637 · 10472, (3.2)

indicate that even with the help of a computer, the method given so far is not
enough to decide whether D with |J(D)| can be represented in the required way.

Remark 3.2. Since our purpose was to give short proofs, the estimates 3n2 and
9n4 in Observation 2.5 are far from being optimal, because of several reasons. First,
our computation was based on the Three Neon Tubes Lemma, that is, Lemma 2.3,
although the “Two Neon Tubes Lemma” (asserting that if there are two consecutive
secondary neon tubes, then one of them can be removed) seems also be true. (The
“Two Neon Tubes Lemma” would require a more complicated and much longer
proof than Lemma 2.3 while not leading to a feasible algorithm, so we neither
prove nor use this lemma.) Second, (2.26) is a rather weak estimate for most
J ∈ Lamp(L); indeed, if I ∈ Lamp(L) witnesses that a neon tube n of J is primary,
that is, if Foot(I) belongs to GInt(LEA(n))∪GInt(REA(n)), then I < J . So if ↓J ,
understood in (Lamp(L),≤), is a small set, then only few neon tubes of J can be
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primary, and Lemma 2.3 yields that J only has few neon tubes. Furthermore, we
know from Lemma 2.2 that each lower cover of J is illuminated by a primary neon
tube of J , but the rest of lamps belonging to ↓J need not be.

Remark 3.3. Even if we used the ideas above to improved the algorithm given
Corollary 2.6, it would not be feasible enough. One of the reasons is that if we
construct all slim rectangular lattices of a given length k without keeping the poset
J(L) in mind, then approximately x(k) many lattices, so too many lattices should
be constructed; see (3.1).

Figure 5. The secondary neon tube of C cannot be omitted

Remark 3.4. A secondary neon tube can quite frequently be omitted but not
always. We present some examples. In the first example, let Y denote the four-
element “Y-shaped” poset {0, c, a, b} such that 0 ≺ c, c ≺ a, and c ≺ b is a full
list of coverings. Then c only has one lower cover, there exists a slim rectangular
lattice L such that J(ConL) ∼= Y , but for every such L, the lamp C ∈ Lamp(L)
corresponding to c ∈ Y necessarily has at least one secondary neon tube.

The second example, given by Figure 5, shows how to represent the poset P on
the bottom left as J(ConL) where L is the slim rectangular lattices drawn in the
middle. As usually in the paper, x ∈ P is represented by X ∈ Lamp(L), for any
letter x. Note that Body(C) is grey-filled in the figure. Observe that c has two
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lower covers (so more than c in the first example) but C still has only two neon
tube. Furthermore, the neon tube of C on the left is secondary.

Figure 5 also shows how the represent P ′ and P ′′, drawn on the right, by certain
intervals of L; these intervals are slim rectangular lattices. It would be easy to
construct similar examples with arbitrary many minimal elements while keeping
the subposet of P ′ or P ′′ formed by the non-minimal elements unchanged.

As another example, we mention that f1 in Figure 5 has three lower covers but
F1 ∈ Lamp(L) only has one neon tube.

Remark 3.4 is our excuse that we do not try to determine the minimal number
of neon tubes of a lamp X representing an element x of a poset.

4. An algorithm based on illuminated sets

In this section, we are going to point out that it is frequently advantageous
to base our investigation on LitSet(L) rather than Lamp(L); in this way we can
reduce many problems about ConL to combinatorial geometric problems about
illuminated sets. Furthermore, Lemma 4.3 of this section, which is formulated both
for lamps and for illuminated sets, will be used in subsequent sections.

The paragraph we commence here is to warn the reader. The algorithm described
in this section is much more complicated than the one described by (the proof of)
Corollary 2.6. Indeed, while one can understand in a second that checking all
lattices L with at most 9 · |J(D)|4 elements is an algorithm, it is far from being
conspicuous how to use the algorithm we only roughly describe here. A conjecture
right after Lemma 4.6 would result in some improvement but this conjecture is not
proved. Admittedly, a more detailed and elaborated algorithm in a much longer
paper could be possible.

However, in spite of the non-appetizing message carried by the previous para-
graph, this is the algorithm what we can use for small lattice. Experience shows
that for n := |J(D)| ≤ 5 (almost) surely and with good chance even for n = 9 we can
decide (without computer!) whether D is representable as the congruence lattice of
an SPS lattice. On the other hand, (3.2) indicates that even if we use computers,
the easy-to-understand algorithm of the previous section is not sufficient for the
same purpose.

The ideas of the algorithm described here have already been used in proofs and
they will hopefully be used in future proofs.

Note that the theory of lamps and the algorithm mutually influence each other.
If we put more theory into the algorithm, e.g., if we could continue the list (#1),
(#2) in Definition 4.4, then the algorithm would become better, that is, faster.
Conversely, some ideas of the algorithm have already been used in discovering facts
and proving them, and a better algorithm could lead to new discoveries and their
proofs. Implicitly, this is happening here in Sections 5–7.

For a lamp I ∈ Lamp(L), where L is from (2.2), the illuminated set Lit(I)
defined in (2.10) is a geometric area in the plane. As in Czédli and Grätzer [7,
Definition 4.1(ii) and Figure 2], Lit(I) can be described by its coordinate quadruple
(pI , qI , rI , sI), which belongs to R4; see also the multi-purposed Figure 5 here. Let

LitSet(L) := {Lit(I) : I ∈ Lamp(L)}. (4.1)

With reference to (2.6), it is clear that for I ∈ Lamp(L), LF(I), RF(I), and Floor(I)
are determined by H := Lit(I). Hence Foot(I), which is the intersection point of
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LF(I) and RF(I), is also determined by Lit(I). So is Peak(I). These fact allow us to
write LF(H), RF(H), Floor(H), Foot(H), Peak(H), and (pH , qH , rH , sH). Clearly,
I is a boundary lamp if and only if H = Lit(I) is a stripe of normal slope, and I is an
internal lamp if and only if H is an “A-shape” (that is, a “V-shape” turned upside
down). This allows us to say that H is a boundary illuminated set or an internal
illuminated set, respectively. Motivated by Czédli [3, Definition 2.9(vi)–(vii)] and
Definition 2.1(ii), for H1, H2 ∈ LitSet(L), we define

(H1, H2) ∈ ρfoot
def⇐⇒ Foot(H1) ∈ H2 and H1 is internal, (4.2)

(H1, H2) ∈ ρinfoot
def⇐⇒ Foot(H1) ∈ GInt(H2) and (4.3)

let ≤ be the reflexive transitive closure of ρinfoot. (4.4)

Note that the condition Foot(H1) ∈ GInt(H2) in (4.3) automatically implies that
H1 is an internal illuminated set. The following lemma follows trivially from Czédli
[3, Lemma 2.11].

Lemma 4.1. Let L be as in (2.6). Then, on the set LitSet(L), the relation ρfoot

defined in (4.2) is the same as ρinfoot defined in (4.3). Furthermore, with “≤”
defined in (4.4), (LitSet(L);≤) is a poset isomorphic to (Lamp(L);≤) and also to
(J(ConL);≤).

Figure 6. Possible positions of two illuminated sets in the plane

Definition 4.2. Extending Czédli and Grätzer [7, Definition 4.1.(iii)] and Czédli
[3, (4.1)], we define the following relations for G,H ∈ LitSet(L); see Figure 6 for
illustrations.
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• G λ H, that is, G is to the left of H if qG ≤ pH and sG ≤ rH ;
• G δ H, that is, G is geometrically under H if qH ≤ pG and sG ≤ rH ;
• G βmid H if pH < pG < qG < qH < rH < rG < sG < sH ;
• G βleft H if pH ≤ pG < qG < qH , sG ≤ rH , and G is internal;
• G βright H if qH ≤ pG, rH < rG < sG ≤ sH , and G is internal.

Furthermore, for I, J ∈ Lamp(L), let I λ J , I δ J , I βmid J , I βleft J , and I βright J
mean that Lit(I) λ Lit(J), Lit(I) δ Lit(J), Lit(I) βmid Lit(J), Lit(I) βleft Lit(J),
and Lit(I) βright Lit(J), respectively.

The notations λ and δ come from “Left” and “unDer”, respectively. Clearly,

λ and δ are irreflexive and transitive relations. (4.5)

Lemma 4.3. Let L be a slim rectangular lattice. Let I and J be either two distinct
members of Lamp(L) or two distinct members of LitSet(L). Then exactly one of
the following ten alternatives hold.

(i) I λ J ,
(ii) J λ I (that is, I is to the right of J , which is sometimes denoted by I ρ J .)

(iii) I δ J ,
(iv) J δ I,
(v) I βmid J ,
(vi) J βmid L
(vii) I βleft J ,

(viii) J βleft I,
(ix) I βright J ,
(x) J βright I.

Furthermore, if I and J are incomparable in the poset (Lamp(L);≤) or in the poset
(LitSet(L);≤), then the first four options are only possible.

Proof. The internal illuminated sets are “A-shapes” (i.e., “V-shapes” turned upside
down) with thickness or stripes. Those possible mutual geometric positions of two
A-shapes that are not listed in the lemma are ruled out by Lemma 3.8 of [3]. If
one of (v),. . . ,(x) holds, then (I, J) or (J, I) belongs to ρfoot and I and J are
comparable by Lemma 2.2. Therefore, only (i), . . . , (iv) are allowed if I and J are
incomparable. �

Definition 4.4. Next, assume that we partition a rectangle into finitely many
stripes by lines of slope 3π/4; these stripes will be called abstract left boundary illu-
minated sets. Similarly, we partition the same rectangle into finitely many stripes
by lines of slope π/4 to obtain the abstract right boundary illuminated sets. Then
we add finitely many A-shapes called abstract internal illuminated sets such that

(#1) Lemma 4.3 holds for these abstract sets,
(#2) For any abstract boundary illuminated set Z, the condition formulated in

(4.3) (and Lemma 3.9) of Czédli [3] is satisfied.

Then we say the our finite collection of abstract illuminated sets is an abstract
illuminated system.

Two such systems are called similar if there is a bijective correspondence ϕ
between them such that both ϕ and ϕ−1 preserve each of the five relations described
in Definition 4.2.
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For I ∈ Lamp(L), Floor(I), Roof(I), Foot(I) and Peak(I) are determined by
Lit(I). This allows us to define these objects, in a natural way, for H ∈ LitSet(L).
Then, also, ρfoot and ρinfoot are defined on LitSet(L) and they are equal. (If their
equality is not a consequence of definitions, then it should be added to Definition
4.4 as (#3).)

Definition 4.5. An abstract illuminated system S is also a poset S := (S;≤)
where “≤” is the reflexive transitive closure of (4.4).

Comparing (4.4) to Definition 4.5 and using (2.3) and Lemma 4.1, we obtain the
validity of the following lemma.

Lemma 4.6. Let D be a finite distributive lattice. If D is representable as ConK
for an SPS lattice K, then

(i) there is an abstract illuminated system (S;≤) isomorphic to (J(D);≤) and
(ii) there is a slim rectangular lattice L such that (LitSet(L);≤) is similar to the

above-mentioned (S;≤).

We conjecture that Condition (i) of this lemma is not only a necessary but also
a sufficient condition of the representability of D. If this is so, then the algorithm
below becomes faster. But even though we do not prove this conjecture, Lemma
4.6 together with other known facts lead to the following algorithm.

Algorithm 4.7. Assume that D is a finite distributive lattice to be represented as
the congruence lattice of an SPS (=slim semimodular) lattice. By (2.3), we can
assume that this SPS lattice is a slim rectangular lattice L; see also (2.2) (If this
L exists, then the algorithm will construct it.) Let n := |J(D)|. We are going
to find an abstract illuminated system S such that (S;≤) isomorphic to (J(D);≤).
Even if there are continuously many n-element abstract illuminated systems, we are
only interested in S up to similarity. Any n-element abstract illuminated system
is described by n coordinate quadruples. Although the entries of these quadruples
are real numbers (of which there are too many), the system up to similarity is
determined by how these entries are ordered. Therefore, we can fix a 4n-element
set U of real numbers such that each of the n coordinate tuples belongs to U4.
Note, however, that when we use the algorithm (without computers), then we draw
figures rather than paying attention to any U ; U is only mentioned here because
its finiteness indicates that we are describing an algorithm.

We only list those abstract illuminated systems that, according to our theoretical
knowledge, might be isomorphic to (J(D);≤). First, by Czédli [3, Lemma 3.2], there
should be exactly |Max(J(D))| many boundary illuminated sets (that is, stripes)
since they correspond to the maximal elements of J(D). Second, when deciding
which of these |Max(J(D))| many boundary illuminated sets should be on left and
which on the right, we take the Bipartite Maximal Elements Property of Czédli
[3, Corollary 3.4] into account. Either in the meantime or at the beginning, it is
reasonable to check if (J(D);≤) satisfies the seven previously known properties; see
Czédli [3] and Czédli and Grätzer [7] where these properties are (first) proved or
cited from Grätzer [20] and [21]. The properties occurring in the present paper are
also useful as well as the known properties of lamps (translated to illuminated sets)
are also useful since they exclude lots of case; see, Section 5 for some properties of
lamps.

After parsing all the cases “permitted by known properties”, we can decide if
there exists an abstract illuminated system S such that (S;≤) is isomorphic to
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(J(D);≤). If such an S does not exists, then D cannot be represented in the
required way and the algorithm concludes with “no”. If S exists and the conjecture
right after Lemma 4.6 is true, then the algorithm concludes with a positive answer.

If S exists but either we do not know whether the conjecture is true or we need
to construct D, then we can do the following. Based on S (and slightly modifying
it to a similar system from time to time when we bump into obstacles), we try
to construct D; indeed, S serves as an outline and a bird’s-eye view of D. If we
succeed, the algorithm concludes with “yes” and L is also found. Otherwise, we try
to construct D from another S. If, after constructing all S with (S,≤) ∼= (J(D);≤)
but failing to construct L from them, the algorithm yields a negative answer.

5. Some easy lemmas about lamps

In this section, as a preparation for Sections 6 and 7, we prove some easy state-
ments.

Lemma 5.1. If L is as in (2.2), I, J ∈ Lamp(L), and I is geometrically under
I (in notation, I δ J), then I ⊀ J in Lamp(L). Equivalently, if and I ≺ J in
Lamp(L), then I δ J cannot hold.

Proof. Suppose the contrary. Then I δ J and, by Lemma 2.2, (I, J) ∈ ρBody. Since
I δ J , Lit(I) and Lit(J) are sufficiently disjoint in the sense of (3,4) of Czédli [3],
contradicting (I, J) ∈ ρBody. �

For U ∈ Lamp(L), let ↓gRoof(U) denote the set of those geometric points of the
full geometric rectangle (of the C1-diagram of L) that are on or below Roof(U).
More precisely, a geometric point (x, y) (given in the usual coordinate system) of
the full geometric rectangle belongs to ↓gRoof(U) if and only if (x, y′) ∈ Roof(U)
for some y′ such that y′ ≥ y.

Lemma 5.2. If L is from (2.2) and I < J holds in Lamp(L), then ↓gRoof(I) ⊆
↓gRoof(J).

Proof. If I ≺ J , then (I, J) ∈ ρBody by Lemma 2.2, whence Body(I) ⊆ ↓gRoof(J)
gives the required inclusion ↓gRoof(I) ⊆ ↓gRoof(J). Otherwise, the inclusion fol-
lows from its just-mentioned particular case by transitivity. �

Next, we prove the following lemma; the conjunction of this lemma with Lemma
4.3 is stronger than Czédli and Grätzer [7, Lemma 4.3].

Lemma 5.3. For L from (2.2) and I, J,K ∈ Lamp(L), if I δ J and K < I, then
K ⊀ J . That is, if I is geometrically under J , then no element of the principal
ideal ↓I is covered by J in Lamp(L).

Proof. Assume that I δ J and K ≤ I. Lemma 5.2 gives that ↓gRoof(K) ⊆
↓gRoof(I). Hence, Foot(K) ∈ ↓gRoof(I). Actually, Foot(K) ∈ GInt(↓gRoof(I))
since at least one precipitous edge going upwards starts at or above Foot(K). Since
I δ J , GInt(↓gRoof(I)) ∩ GInt(Lit(J)) = ∅. Hence, Foot(K) /∈ GInt(Lit(J)), that
is, (K,J) /∈ ρinfoot. Therefore, the required K ⊀ J follows by Lemma 2.2. �

Lemma 5.4. If L is from (2.2), I, J,K ∈ Lamp(L), J δ K, and I ≤ J , then
I δ K.

Proof. Apply Lemma 5.2. �
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Yet we state another easy lemma. For an illustration, see Figure 8 in Czédli and
Grätzer [7].

Lemma 5.5. Assume that L is from (2.2), A0, A1, A2 and B1 are from Lamp(L),
A0 λ A1 λ A2, B1 ≺ A0, and B1 ≺ A2. Then B1 δ A1.

Proof. By Lemma 2.2, (B1, A0), (B1, A2) ∈ ρBody. Hence Body(B1) ⊆ Lit(A0) ∩
Lit(A2), see Czédli and Grätzer [7, Figure 8], and we obtain that B1 δ A1. �

Figure 7. The posets CTF(2), . . . , CTF(7)
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6. An infinite family of new properties of congruence lattices of
SPS lattices

For an integer n ≥ 2, we define the poset Crown with Two Fences of order n, in
notation CTF(n) as follows; see also Figure 7. The elements of CTF(n) are a0, a1,
. . . , an−1, b0, b1, . . . , bn−1, c0, c1, . . . , cn−1, d0, d1, . . . , dn−1, x0, x1, . . . , xn−2,
and y0, y1, . . . , yn−2; they are pairwise distinct. The edges (in other words, the
prime intervals) are as follows, the arithmetic in the subscripts is understood on Zn,
that is, modulo n: ci ≺ ai and ci ≺ bi for i ∈ Zn, di ≺ bi and di ≺ ai+1 for i ∈ Zn,
xj ≺ cj and xj ≺ cj+1 for j ∈ {0, 1, . . . , n − 2}, and yj ≺ dj and yj ≺ dj+1 for
j ∈ {0, 1, . . . , n−2}. In the figure, the maximal elements of CTF(n) are grey-filled.

For posets P1, P2 and a map (ALSO KNOWN AS function) ϕ : P1 → P2, we say
that ϕ is an embedding if

for any x, y ∈ P1, x ≤ y in P1 if and only if ϕ(x) ≤ ϕ(y) in P2. (6.1)

If ϕ : P1 → P2 is an embedding and, in addition,

for any x, y ∈ P1, x ≺ y in P1 if and only if ϕ(x) ≺ ϕ(y) in P2, (6.2)

then ϕ is called a cover-preserving embedding. Finally, if ϕ : P1 → P2 is an embed-
ding such that ϕ(x) is a maximal element of P2 for every maximal element x ∈ P1,
then ϕ is a maximum-preserving embedding. By an SPS lattice we still mean a
slim semimodular lattice.

Definition 6.1. For an integer n ≥ 2 and a poset P , we say that P satisfies the
CTF(n)-property if there exists no cover-preserving embedding ϕ : CTF(n) → P
that is also maximum-preserving.

Theorem 6.2. For every integer n ≥ 2 and any SPS lattice K, J(ConK) satisfies
the CTF(n)-property.

Proof. By way of contradiction, suppose that the theorem fails for some n ≥ 2. By
Lemma 2.2(ii), (J(L);≤) ∼= (Lamp(L);≤) for a slim rectangular lattice L. Hence,
there is a maximum-preserving and cover-preserving embedding ϕ : CTF(n) →
Lamp(L); for x ∈ CTF(n), we denote ϕ(x) by the corresponding capital letter,
X. By left-right symmetry and the Bipartite Maximal Elements Property, see
Czédli [3, Lemma 3.4], we can assume that A0, . . . , An−1 are left boundary lamps
while B0, . . . , Bn−1 are right boundary lamps. (There can be other boundary lamps
but they are not ϕ-images and cause no trouble.) Let Ai λbnd Aj mean that Ai
is to the left of Aj on the left upper boundary of L. Similarly, Bi λbnd Bj means
that Bi is to the left of Bj on the right upper boundary of L. We know from (i)
and (iii) of Lemma 2.2 that

if x ≺ y in CTF(n), then (X,Y ) ∈ ρBody and so Body(X) ⊆ Lit(Y ). (6.3)

We claim that

for i ∈ {0, 1, . . . , n− 2}, if Ai λbnd Ai+1, then Bi λbnd Bi+1. (6.4)

We prove this by way of contradiction. Suppose that Ai λbnd Ai+1 holds but
Bi λbnd Bi+1 fails. Then Bi+1 λbnd Bi. Since we know from (6.3) that Body(Ci) ∈
Lit(Ai)∩Lit(Bi) and Body(Ci+1) ∈ Lit(Ai+1)∩Lit(Bi+1), we obtain that Ci δ Ci+1.
In virtue of Lemma 5.3, Ci δ Ci+1 and Xi < Ci implies that Xi ⊀ Ci+1. This is a
contradiction since ϕ is cover-preserving. We have proved (6.4).
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Next, we claim that

for i ∈ {0, 1, . . . , n− 2}, if Bi λbnd Bi+1, then Ai+1 λbnd Ai+2; (6.5)

here i + 2 is understood in Zn, that is, (n − 2) + 2 = 0. To prove (6.5) by way
of contradiction, suppose that Bi λbnd Bi+1 but Ai+2 λbnd Ai+1. Then, similarly
to the argument given for (6.4), (6.3) yields that Di+1 δ Di. Using Di+1 δ Di,
Yi < Di+1, and Yi ≺ Di, Lemma 5.3 gives a contradiction and proves (6.5).

Clearly, either A0 λbnd A1 or A1 λbnd A0 (that is, A0 ρ A1, see Lemma 4.3(ii)).
By symmetry, (6.4) and (6.5) also hold for ρ. Thus, we can assume that A0 λbnd A1,
and we can argue as follows; when referencing (6.4) or (6.5) over implication signs,
the value of i will be indicated. We obtain that

A0 λbnd A1
(6.4,i=0)

=⇒ B0 λbnd B1
(6.5,i=0)

=⇒ A1 λbnd A2
(6.4,i=1)

=⇒ B1 λbnd B2

(6.5,i=1)
=⇒ A2 λbnd A3

(6.4,i=2)
=⇒ B2 λbnd B3

(6.5,i=3)
=⇒ A3 λbnd A4 . . .

. . . An−2 λbnd An−1

(6.4,i=n−2)
=⇒ Bn−2 λbnd Bn−1

(6.5,i=n−2)
=⇒ An−1 λbnd A0.


(6.6)

By the first three lines of (6.6) and the transitivity of λbnd, we have that A0 λbnd

An−1. But this contradicts the last line of (6.6), where An−1 λbnd A0. The proof
of Theorem 6.2 is complete. �

Figure 8. CDE(6)
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7. Another infinite family of new properties

Following Czédli and Schmidt [14], patch lattices are slim rectangular lattices
in which the corners are coatoms. These lattices have only two boundary lamps.
Hence, if L is a slim patch lattice, then J(ConL) only has two maximal elements,
whereby J(ConL) trivially satisfies CTF(n) for all n ≥ 2. This means that Theorem
6.2 says nothing on the congruence lattices of slim patch lattices. This observation
motivates us to present another infinite family of properties; these properties are
interesting even in the study of congruence lattices of slim patch lattices.

For an integer n ≥ 3, we define the poset Crown with Diamonds and Emeralds2

of order n, denoted by CDE(n), as follows; note that CDE(6) is drawn in Figure 8.
First, let

1

2
Zn := {0, 0.5, 1, 1.5, 2, 2.5, . . . , n− 1, n− 0.5};

it is an additive abelian group and Zn is one of its subgroups. That is, we perform
the addition and subtraction in 1

2Zn modulo n. For example, in 1
2Z4, we have that

2 + 2 = 0.5 + 3.5 = 0 and 1− 3.5 = 1.5. The underlying set of our poset is

CDE(n) := {ai : i ∈ Zn} ∪ {bi+0.5 : i ∈ Zn}
∪ {di,i+1.5 : i ∈ Zn} ∪ {ei,i−1.5 : i ∈ Zn}

while its edges (that is, prime intervals) are bi−0.5 ≺ ai, bi+0.5 ≺ ai, di,i+1.5 ≺ ai,
di,i+1.5 ≺ bi+1.5, ei,i−1.5 ≺ ai, and di,i−1.5 ≺ bi−1.5, for i ∈ Zn; see Figures 8 and
9 for illustration. The elements of the forms ai, bi, di,i+1.5, and ei,i−1.5 of CDE(n)
are called maximal elements, atoms, diamonds, and emeralds, respectively. Note
that |CDE(n)| = 4n.

For a poset P and an embedding ϕ : (CDE(n);≤) → (P ;≤), we say that ϕ
preserves the coatomic edges if whenever x ≺ y in CDE(n) and y is a maximal
element (that is, y is of the form ai), then ϕ(x) ≺ ϕ(y) in P . For example, any
cover-preserving embedding CDE(n) → P preserves the coatomic edges but not
conversely. We say that an order-preserving function ϕ : (CDE(n);≤) → (P ;≤)
is a de-embedding if its restriction to CDE(n) \ {diamonds} and its restriction to
CDE(n) \ {emeralds} are order embeddings.

Definition 7.1. For an integer n ≥ 3, we say that a poset P satisfies the CDE(n)-
property if there exists no de-embedding ϕ : CDE(n)→ P preserving the coatomic
edges.

Note that for n = 6, the condition on ϕ is visualized in Figure 8 as follows: ϕ
has to preserve the coverings denoted by thin solid edges but it need not preserve
the coverings indicated by the somewhat thicker “dash-dot-dash-dot”-drawn edges.
Let us emphasize that if ϕ : (CDE(n);≤) → (P ;≤) preserves the coatomic edges,
then the ϕ-images of the maximal elements of CDE(n) need not be maximal in P .
By an SPS lattice we still mean a slim semimodular lattice (which is necessarily
planar).

Theorem 7.2. For every integer n ≥ 3 and any SPS lattice K, J(ConK) satisfies
the CDE(n)-property.

Proof of Theorem 7.2. To present a proof by way of contradiction, suppose that the
theorem fails. By Lemma 2.2(ii), (J(L);≤) ∼= (Lamp(L);≤) for a slim rectangular

2This terminology is explained by Figure 9, which is built on a picture from www.clker.com.
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Figure 9. Motivating the terminology by a subposet of CDE(9)

lattice L. Hence, there is de-embedding ϕ : CDE(n) → Lamp(L) that preserves
the coatomic edges. Again, for x ∈ CDE(n), X := ϕ(x). The disjunction of
Ai1 λ Ai2 and Ai2 λ Ai1 is denoted by Ai1 ‖gλρ Ai2 . (The subscript comes from
“geometrically left or right”.) For i ∈ Zn, Ai and Ai+1 have a common lower cover,
Bi+0.5 ∈ Lamp(L). (Here and later, the arithmetics for indices is understood in
1
2Zn, that is, modulo n.) By Lemma 4.3 of Czédli and Grätzer [7] (or by Lemma
5.3 and the last sentence of Lemma 4.3),

for every i ∈ Zn, Ai ‖gλρ Ai+1. (7.1)

Next, we claim that

for every i ∈ Zn, if Ai λ Ai+1, then Ai+1 λ Ai+2. (7.2)

To show this, suppose the contrary. Then, by (7.1), Ai λ Ai+1 and Ai+2 λ Ai+1.
For the geometric relation between Ai and Ai+2, the (last sentence of) Lemma 4.3
only allows four possibilities; we are going the exclude each of these four possibilities
and then (7.2) will follow by way of contradiction.

First, let Ai+2 δ Ai. Then Lemma 5.3 applies since Ai+2 δ Ai, Di,i+1.5 <
Bi+1.5 ≺ Ai+2, and we obtain that Di,i+1.5 ⊀ Ai, a contradiction.

Second, let Ai δ Ai+2. Then Lemma 5.3 applies to Ai δ Ai+2 and Ei+2,i+0.5 <
Bi+0.5 ≺ Ai, and we get a contradiction, Ei+2,i+0.5 ⊀ Ai+2.

Third, let Ai λ Ai+2. Then Ai λ Ai+2 λ Ai+1, Bi+0.5 ≺ Ai, and Bi+0.5 ≺ Ai+1.
Hence, Lemma 5.5 implies that Bi+0.5 δ Ai+2. Now Bi+0.5 δ Ai+2, Ei+2,i+0.5 <
Bi+0.5, and Lemma 5.3 give that Ei+2,i+0.5 ⊀ Ai+2, a contradiction again.

Fourth, let Ai+2 λ Ai. Then Ai+2 λ Ai λ Ai+1, Bi+1.5 ≺ Ai+2, Bi+1.5 ≺ Ai+1,
and Lemma 5.5 give that Bi+1.5 δ Ai. Hence, Bi+1.5 δ Ai, Di,i+1.5 < Bi+1.5, and
Lemma 5.3 imply that Di,i+1.5 ⊀ Ai, which is a contradiction. We have verified
(7.2).

Finally, using (7.1) and reflecting the diagram across a vertical axis if necessary,
we can assume that A0 λ A1. Then, keeping in mind that (n − 1) + 1 = 0 in Zn
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and using (7.2) repeatedly, we obtain that

A0 λ A1 λ A2 λ A3 λ · · · λ An−1 λ A0.

By the transitivity of λ, see (4.5), it follows that A0 λ A0, which is a contradiction
since λ is irreflexive by (4.5). This completes the proof of Theorem 7.2. �

8. Concluding remarks

The CTF(2)-property is the same as the Two-pendant Four-crown Property, see
Definition 4.1 and Theorem 4.3 in Czédli [3].

A poset P has the Three-pendant Three-crown property, see Czédli and Grätzer
[7], if there is no cover-preserving embedding of CDE(3) \ {e0,1.5, e1,2.5, e2,0.5} into
P . Since the de-embedding need not be (fully) cover-preserving in Definition 7.1
and, in case of CDE(3), it can collapse each diamond with the emerald having the
same subscript, the CDE(3)-property is stronger than the Three-pendant Three-
crown property. Indeed, it is a trivial task to add some new elements to CDE(3)
to obtain a poset that satisfies the Three-pendant Three-crown property but fails
to satisfy the CDE(3)-property. Therefore, the n = 3 instance of Theorem 7.2 is
stronger than the main result of Czédli and Grätzer [7].

The smallest instance of the CTF(n)-property and that of the CDE(n)-property
have been analysed. Hence, in the rest of this section, we assume that n ≥ 3 for
the CTF(n)-property and n ≥ 4 for the CDE(n)-property even if this will not be
mentioned explicitly.

For k ≥ 3, let Dk be the distributive lattice such that J(Dk) ∼= CTF(k). Since
crowns of different sizes cannot be embedded into each other, it is easy to see that
D satisfies the seven previously known properties, the CTF(n)-properties for all
n 6= k, and the CDE(n)-properties for all n ≥ 3. However, CTF(k) fails in Dk.
Similarly, if k ≥ 4 and D′k is the distribute lattice defined by J(D′k) ∼= CDE(k),
then D′k satisfies the seven previously known properties, the CDE(n)-properties
for all n 6= k, and the CTF(n)-properties for all n ≥ 3. Therefore, the CTF(n)-
properties, for n ≥ 3 and the CDE(n)-properties, for n ≥ 4 are new and we have
an independent infinite set of properties of congruence lattice of SPS lattices.

The injectivity of ϕ means a plenty of conditions of the pattern “if x 6= y then
ϕ(x) 6= ϕ(y)”. Observing that not all of these conditions are used in our proofs, it
is possible to strengthen the new properties given in the paper and even some of
the old properties. These details are elaborated in Czédli [5].
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