
SUMS OF LATTICES AND A RELATIONAL CATEGORY

GÁBOR CZÉDLI

Abstract. We introduce a new relational category of lattices, and an analo-
gous category of complete lattices. These categories allow us to construct sums

of (complete) lattices. While previous constructions used two functors (or, for
complete lattices, a single functor that had an adjoint), we need only a single

functor (and no additional property when complete lattices are considered).
In the finite case, the present construction is easy to visualize.

1. Introduction

Roughly speaking, sum refers to a construction that, for any lattice L and a
congruence Θ of L, produces L from K = L/Θ and the system of Θ-classes. As
surveyed in Section 5, this construction and its particular cases and analogous
constructions were considered by several papers, including [1], [2], [5], [6], [7], [15],
[16] and [20], Graczyńska [5] being the first. (Details and further authors will be
mentioned in Section 5.) Except for some particular cases ([1], [2] and [16], to be
discussed later), the system of lattices to be summed is described by two functors
from K into the category of lattices with certain mappings as morphisms.

The chief goal of this paper is to give an equivalent, easy-to-visualize construc-
tion based on a single functor into an appropriate category of (complete) lattices
with certain relations as morphisms. “Easy-to-visualize” means that, in the finite
case, sums can be perfectly described by diagrams like Figure 1. (Figure 1 will be
explained later.)

In order to introduce the key notion of the present paper, let L1 = (L1,≤1) and
L2 = (L2,≤2) be lattices. Roughly speaking, a relation ρ ⊆ L1 × L2 will be called
an atop relation, if taking disjoint copies of L1 and L2 and putting L2 atop L1

modulo ρ (that is, adding ρ to the union of ≤1 and ≤2) we obtain a lattice. (For
example, ρ = L1 ×L2 is an atop relation, since putting L2 atop L1 modulo ρ gives
a lattice, the ordinal sum of L1 and L2. Another example: if L1 = L2 = L, then
ιL, the usual ordering ≤L of L, is an atop relation, since putting L atop L modulo
ιL yields L × 2, where 2 is the two-element lattice.)

More precisely, for i = 1, 2, let ιi stand for≤i, and let ι′i =
{(

(x, i), (y, i)
)
: (x, y) ∈

ιi
}

. Then a relation ρ ⊆ L1 × L2 will be called an atop relation, if

(1)
L = (L, ι), where L = L′

1 ∪ L′
2, L′

1 = L1 × {1} L′
2 = L2 × {2},

ρ′ =
{(

(x, 1), (y, 2)
)
: (x, y) ∈ ρ

}
, and ι = ι′1 ∪ ι′2 ∪ ρ′,
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2 GÁBOR CZÉDLI

is a lattice. If, in addition, L1, L2 and L are complete lattices, then ρ is called a
complete atop relation.

Atop resp. complete atop relations will be the morphisms of a new category
L•

r of lattices resp. C•
r of complete lattices. The class of finite lattices determines

exactly the same subcategory of L•
r as that of C•

r . Lemma 2 will give a reasonable
description for the morphisms of C•

r ; this allows reasonable pictorial representations.
Proposition 5 will show that C•

r is embeddable into a standard category of complete
lattices.

Suppose that K is a complete lattice, L is a lattice, and S : K → C•
r and T : L →

L•
r are functors. We will define the sum ΣS of S and the sum ΣT of T . While ΣS

is always a complete lattice, ΣT is an ordered set (also called “partially ordered
set” or, recently, “order”) in general, not necessarily a lattice. However, if all the
T (x), x ∈ L, are bounded lattices, then ΣT is a lattice. If ΣT is a lattice, then it is
isomorphic to the sum constructed by Graczyńska and Grätzer [6].

Section 5 presents a brief survey of earlier sum constructions. The paper is con-
cluded with a problem and a result on products of lattice varieties or, equivalently,
on lattice properties preserved by forming sums.

2. Atop and complete atop relations

We need some notation. Let L1 = (L1,≤1) = (L1, ι1) and L2 = (L2,≤2) =
(L2, ι2) be lattices. For a ∈ Li, let ↓a = {x ∈ Li : x ≤i a} and, dually, ↑a = {x ∈
Li : a ≤i x}. For ρ ⊆ L1 × L2, X ⊆ L1 and Y ⊆ L2, let

Xρ = {y ∈ L2 : (x, y) ∈ ρ for all x ∈ X} and
ρY = {x ∈ L1 : (x, y) ∈ ρ for all y ∈ Y }.

Recall that ideals and filters are non-empty by definition. Our notation and termi-
nology are standard, see Grätzer [9].

Lemma 1. Let L1 = (L1,≤1) and L2 = (L2,≤2) be lattices, and let ρ ⊆ L1 × L2.
Then ρ is an atop relation iff for every a1 ∈ L1 and a2 ∈ L2, {a1}ρ is a filter of
L2, ρ{a2} is an ideal of L1, {a1}ρ ∩↑a2 has a least element (that is, {a1}ρ ∩↑a2 is
a principal filter of L2), and ↓a1 ∩ ρ{a2} has a greatest element.

Proof. To show the “if” part, let L denote the ordered set defined in (1), and assume
that c = a∨1 b in L1, d ∈ L2, and a, b ∈ ρ{d}. Then ↓c∩ρ{d} is a principal ideal, so
↓c∩ρ{d} = ↓e for some e ∈ L1. Observe that e ∈ ↓c and c = a∨1 b ∈ ↓c∩ρ{d} = ↓e
imply e = c, whence (a, 1)∨ (b, 1) = (c, 1) in L. The rest is even easier. �

Lemma 2. Let L1 = (L1,≤1) = (L1, ι1) and L2 = (L2,≤2) = (L2, ι2) be complete
lattices, and let ρ ⊆ L1 × L2. Then the following four conditions are equivalent,
and (d) implies (e).

(a) ρ is a complete atop relation.
(b) For all subsets X ⊆ L1 and Y ⊆ L2, Xρ is a principal filter of L2 and ρY

is a principal ideal of L1.
(c) There exist a complete meet-subsemilattice E1 of L1, a complete join-subsemi-

lattice E2 of L2 and an order isomorphism ϕ : E1 → E2 such that ρ =
{(x1, x2) : x1 ≤1 y and yϕ ≤2 x2 for some y ∈ E1}.
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(d) There are E1, E2 and ϕ as in Condition (c) such that, with the notation

x∗ρ =
∧

{y ∈ E1 : x ≤1 y} and y∗ρ =
∨

{x ∈ E2 : x ≤2 y},

we have ρ = {(x, y) ∈ L1 × L2 : (x∗ρ)ϕ ≤2 y}
= {(x, y) ∈ L1 × L2 : xϕ ≤2 y∗ρ}.

(e) {x}ρ = ↑((x∗ρ)ϕ) and ρ{y} = ↓((y∗ρ)ϕ−1) for every x ∈ L1 and y ∈ L2.

In connection with Conditions (c) and (d), note that 1 =
∧

∅ belongs to E1 and
0 =

∨
∅ belongs to E2.

Proof of Lemma 2. Assume (b). Let X be an arbitrary subset of L1, and let a be
the join of X in L1. Then there is a (unique) b ∈ L2 such that Xρ = ↑b. Since
x ∈ ρ{b} for all x ∈ X and ρ{b} is a principal ideal of L1, we obtain that a ∈ ρ{b}.
This implies that a is the join of X in L. Now let ∅ 6= Xi ⊆ Li with joins ai in Li,
i = 1, 2. Since (L, ι) is a lattice by Lemma 1, a1 ∨ a2 exists in L, and it is clearly
the join of X1 ∪ X2 in L. Hence (b) implies (a).

Still assuming (b), let us keep the rudiments of Galois connections (for example,
pages 68-69 of Grätzer [8]) in mind. Then we see that E′

1 := {ρY : Y ⊆ L2} and
E′

2 := {Xρ : X ⊆ L1} are closure systems and ϕ′ : E′
1 → E′

2, X 7→ Xρ is a dual
isomorphism. Since E′

1 consists of principal ideals and E′
2 consists of principal

filters, we conclude easily that (b) implies (c).
Clearly, (c) and (d) are equivalent.
Assume (d). Let X ⊆ L1, and let a denote the join of X in L1. To see that a is

the join of X in L, assume that b ∈ Xρ. Then (x∗ρ)ϕ ≤2 b for all x ∈ X. The join
of {(x∗ρ)ϕ : x ∈ X}, taken in L2, belongs to E2, so it is of the form yϕ for some
y ∈ E1. Clearly, yϕ ≤2 b. Since ϕ is an isomorphism, x ≤1 x∗ρ ≤1 y for all x ∈ X.
Hence a ≤1 y, and a∗ρ ≤1 y. Therefore, (a∗ρ)ϕ ≤2 yϕ ≤2 b gives that (a, b) ∈ ρ, so
a ≤ b in L, as requested. Now, it is easy to see that (d) implies (a).

The rest of the proof is trivial, whence it is omitted. �

3. Two relational categories

Our morphisms will be relations. The product of two morphisms, α and β, is
the usual αβ =

{
(x, y) : there is an z with (x, z) ∈ α and (z, y) ∈ β

}
.

Theorem 3. The class L•
r of all lattices, as objects, together with all atop relations,

as morphisms and the lattice orderings ιL (also denoted by ≤L), as identities,
constitute a category.

Proof. Clearly, the ιL act as identity morphisms. Assume that ρ ⊆ L1 × L2 and
τ ⊆ L2 × L3 are atop relations. To ease the notations, we can assume that L1, L2

and L3 are pairwise disjoint; then instead of L′
i and ι′i of (1), we can work with

Li and ιi in the natural way. Let Lij = Li ∪ Lj for i 6= j. Let ≤12 be the union
of ≤1, ≤2 and ρ. Similarly, let ≤23 be the union of ≤2, ≤3 and τ . We know for
(i, j) ∈ {(1, 2), (2, 3)} that Lij = (Lij ,≤ij) is a lattice. Let ≤13 denote the union
of ≤1, ≤3 and ρτ . Notice that Li is clearly a convex sublattice of Lij and ≤i is the
restriction of ≤ij to Li for all i 6= j ∈ {1, 2, 3}. We have to show that (L13,≤13) is
a lattice; then the statement will follow.

Let a1, b1 ∈ L1. To show that they have a join in L13, let c3 ∈ L3 such that
a1, b1 ≤13 c3. Then there are a2, b2 ∈ L2 such that a1 ≤12 a2 ≤23 c3 and b1 ≤12
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b2 ≤23 c3. Then a1 ∨1 b1 ≤12 a2 ∨2 b2 ≤23 c3 since L12 and L23 are lattices. Hence
a1 ∨1 b1 = a1 ∨13 b1.

Next, let a1 ∈ L1 and b3 ∈ L3; we want to show that they have a join. Choose a
c2 ∈ L2 such that c2 ≤23 b3. (For example, c2 := u2 ∧23 b3 where u2 ∈ L2.) Define
d2 := a1 ∨12 c2 and e3 := d2 ∨23 b3, and notice that e3 is an upper bound of {a1, b3}
in L13. Let x3 ∈ L13 be an arbitrary upper bound. Then b3 ≤13 x3 gives x3 ∈ L3.
Since a1 ≤13 x3, there is a y2 ∈ L2 such that a1 ≤12 y2 ≤23 x3. Let y′2 = y2 ∧2 d2,
and notice that a ≤12 y′2 ≤2 d2. Hence d2 = a1 ∨12 c2 ≤12 y′2 ∨2 c2 ≤2 d2

implies d2 = y′2 ∨2 c. Consequently, e3 = d2 ∨23 b3 = y′2 ∨23 c2 ∨23 b3 =
y′2 ∨23 b3 ≤23 y2 ∨23 b3 ≤23 x3. Therefore, e3 ≤3 x3 and e3 ≤13 x3, proving that
e3 = a1 ∨13 b3. �

Proposition 4. The class C•
r of complete lattices, as objects, with all the complete

atop relations, as morphisms, and the lattice orderings ιL, as identities, constitute
a category.

Proof. We keep several notations of the previous proof, but we use a different
technique for the sake of a later reference to (2).

Let X ⊆ L1. By (b) of Lemma 2, we want to show that

Xρτ = ↑b3,(2)

where a2 =
∧

Xρ, Xρ = ↑a2,

b3 =
∧

{a2}τ , and {a2}τ = ↑b3.

Clearly, ↑b3 ⊆ Xρτ . To show the reverse inclusion, assume that y3 ∈ Xρτ . Then,
for each x ∈ X, there is a zx ∈ {x}ρ ∩ τ{y3}. Set z =

∨
{zx : x ∈ X} in L2. Then

z ∈ τ{y3}, which gives y3 ∈ {z}τ , and z ∈ Xρ = ↑a2, which gives a2 ≤2 z. Hence
y3 ∈ {z}τ ⊆ {a2}τ = ↑b3, indeed. Thus, (2) is shown, and ρτ is a complete atop
relation by (b) of Lemma 2 and duality. �

Let C∨ resp. C∧ denote the category of complete lattices with complete join-
homomorphisms resp. complete meet-homomorphisms, respectively. A functor is
called an embedding functor if it sends distinct morphisms to distinct morphisms.
Define

F∨(L) = F∧(L) = L, F∨(ρ) : x 7→
∧

{x}ρ, F∧(ρ) : y 7→
∨

ρ{y}.

Proposition 5. F∨ : C•
r → C∨ is a covariant embedding functor, and F∧ : C•

r → C∧
is a contravariant embedding functor.

Proof. (2) for singleton X shows that F∨ is a functor. The rest is trivial. �

Remark 6. Let 1 denote the one-element lattice. Then there is only one morphism
ρ : 1 → (Z,≤) in L•

r. However, there are infinitely many lattice homomorphisms
from 1 to (Z,≤), but none of them has to do anything with ρ. This explains why
we do not try to present a similar statement for L•

r .

Remark 7. It is evident by Proposition 5 that two objects of C•
r are isomorphic (in

the sense of category theory) iff they are isomorphic complete lattices.

Remark 8. Let C∧op denote the category opposite to C∧, and let Iop : C∧ → C∧op

be the contravariant functor which acts identically on objects and reverses all mor-
phisms. Notice that we compose functors from left to right, that is, (F∧ ◦ Iop)(ρ)
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means Iop(F∧(ρ)). Then, by Proposition 5, F∧
op = F∧◦Iop is a covariant C•

r → C∧op

embedding functor, and so is F∨ × F∧
op : C•

r → C∨ × C∧op. However, F∨ × F∧
op is

not an isomorphism. Indeed, if 2 denotes the two-element lattice, then there are
nine 2 → 2 morphisms in C∨ × C∧op but there are only two in C•

r .

4. The sum of atop and complete atop systems

Let K be a lattice, and consider it a small category with the usual sense: the
objects are the elements of L, for x ≤ y there is exactly one morphism x → y,
and there is no x → y morphism if x 6≤ y. By a K-indexed atop system resp.
complete atop system we mean a functor S : K → L•

r resp. S : K → C•
r . Notice

that S captures the following information: the set {S(x) : x ∈ K} of (complete)
lattices and the set {ρxy : x ≤ y ∈ K} of (complete) atop relations, and we know
that ρxyρyz = ρxz whenever x ≤ y ≤ z ∈ K. We call S a complete atop system
resp. an atop system, if we do not want to specify K.

The sum ΣS of S is defined to be the ordered set ΣS = (ΣS,≤), where ΣS =⋃
x∈K

(
S(x) × {x}

)
and (u, x) ≤ (v, y) iff x ≤ y and (u, v) ∈ ρxy.

Theorem 9. Let K be a lattice, and let S be a K-indexed complete atop system.
Then ΣS is a lattice. If K is a complete lattice, then so is ΣS.

Proof. Let H = {(ui, xi) : i ∈ I} be a subset of ΣS. Let x =
∨

i∈I xi. For each
i, S defines a unique complete atop relation ρ = ρxix ⊆ S(xi) × S(x). Applying
the notations of Lemma 2 to this ρ, let vi = (u∗ρ

i )ϕ. Armed with our previous
statements, it is straightforward to check that (

∨
i∈I vi, x) is the join of H in K. �

Figure 1. An example for a complete atop sum

Remark 10. It is an advantage of our approach that, in the finite case, we can
visualize S very easily: for each covering pair x ≺ y in K, we add the graph of ϕ
from Lemma 2 (that is, the (e, eϕ) edges) to the diagram between S(x) and S(y).
This way we also get the diagram of ΣS. For example, see Figure 1. For ρ0b, E1

and E2 from Condition (c) of Lemma 2 are denoted by black-filled elements. S is
fully given in the right-hand side such that the graph of ϕ are drawn by thick dotted
lines. (Different line styles are used in case of distinct complete atop relations.) If
we change the dotted lines into solid lines (of usual thickness), then we obtain ΣS.
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We define atop systems as K → L•
r functors where K is a lattice. The sum of an

atop system S is defined the same way as it was done for a complete atop system.

Remark 11. The sum of an atop system is an ordered set but not necessarily a
lattice. For example, let K = {0, a, b, 1} be the four-element boolean lattice, let
S(0) = S(a) = S(b) be the one-element lattice, and let S(1) = (Z,≤). Then there
is only one way to give the atop relations ρxy, x ≤ y ∈ K, and ΣS is not a lattice.

Remark 12. If S : K → L•
r is an atop system such that ΣS happens to be a lattice,

then it is trivial to see that

Θ =
{(

(u, x), (v, y)
)
: x = y

}

is a congruence of ΣS with blocks isomorphic to the S(x), x ∈ K, and (ΣS)/Θ ∼= K.
Conversely, if L is a lattice and Θ is a congruence of L, then L is (isomorphic to)
the sum of the naturally defined L/Θ-indexed atop system of the Θ-blocks. Hence
our construction gives the same lattice as earlier sums.

Proposition 13. Let K be a lattice, and let S : K → L•
r be an atop system such

that S(x) is a bounded lattice for every x ∈ K. Then ΣS is a lattice.

Proof. Let (a, x), (b, y) ∈ ΣS. Take z = x ∨ y, and let 0z denote the least element
of S(z). By Lemma 1, {a}ρ ∩↑0z has a unique least element a′. Define b′ similarly.
It is easy to see that (a′ ∨ b′, z) is the join of (a, x) and (b, y) in ΣS. �

5. Historical overview

Graczyńska [5] introduced her concept of sums of lattices closely related to P lonka
sums [18]. Speaking in the present terminology, she defines systems of lattices by
means of two functors; this is why her systems are called double systems. Since
there is no stipulation how the two functors are related, the sum in [5] is a only a
bisemilattice in general, see also Romanowska [20].

Following [5], Graczyńska and Grätzer [6] imposed some additional conditions,
including some compatibility conditions on the two functors, to guarantee that the
sum be a lattice. One can also see from [6] how complex the situation becomes
when arbitrary lattices are treated. (Our construction is simpler, but sometimes it
gives only an ordered set, not a lattice.) As a generalization of [6], double systems
of ordered sets were considered by Höft [15].

Bandelt [1] points out that the situation is much better if one considers complete
lattices only. Then the mappings in his system are residuated mappings. That is,
he uses only one functor, but he assumes that this functor has a right adjoint. (We
can also say that he uses two functors, but each of them is determined by the other
one, so “half of the double system” can be disregarded.)

Notice that, for complete lattices, instead of our functor S : K → C•
r , [6] and [1]

use the two components of the product functor S ◦ (F∨ ×F∧
op), and [1] points out

that one of the components is sufficient.
There are approaches motivated by and used in structural descriptions of some

concrete lattices. (Notice that they, [2] and [16], do not recognize that they are
rediscovering particular cases of a previously known sum construction.)

The construction given in Jedlička [16] is used to describe some lattices arising
from the Coxeter group. In effect, [16] uses only one system of mappings (which
is not a functor but does something similar), but his system consists of isomorphic
copies of a fixed lattice, indexed by another lattice.
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The basic motivation of all the above-mentioned lattice constructions is that
one starts from a congruence Θ (a complete congruence in [1]) of a lattice L, and
wants to reconstruct L from K = L/Θ and the system of the Θ-blocks, indexed
by K. (Hence these constructions automatically give a decomposition result for L).
Opposed to these constructions, congruences are not even mentioned in [2], where
sums of 2-indexed systems are defined, and these sums are used to give a structure
theorem for coalition lattices. Similarly, the purpose of an atop or a complete atop
system is rather to build than to decompose a lattice. We believe that, in the
practice, building needs simpler and easier-to-visualize tools than decomposing.
This is why we do not add complicated further conditions to the definition of an
atop system, and we do not go further than Proposition 13.

Although the present paper is based on relations rather than mappings, several
earlier ideas from Bandelt [1], [2], Graczyńska [5], and Graczyńska and Grätzer [6]
are encoded into Lemmas 1 and 2.

Sums are particularly useful when gluings are considered, see Herrmann [14] and
Day and Herrmann [4]. Particular gluings were studied in Grygiel [11], [12], and
in her further papers listed in [13]. Even the simplest gluing, the Dilworth gluing,
is better understood if we consider it a quotient lattice of the sum of a special
2-indexed system.

6. On properties preserved by sums

Let U and V be two classes of lattices, and keep Remark 12 in mind. Then
the product U ◦ V, which is due to Mal’cev [17] (see also Day [3] and Grätzer and
Kelly [10]) is defined as follows:

U ◦ V = {ΣS : ΣS is a lattice, S : K → L•
r ,

K ∈ V, and S(x) ∈ U for all x ∈ K}.
It is natural to ask which lattice properties are preserved by forming sums. Accord-
ing to the above formula, it is convenient to ask this question in terms of products
of classes. By a proper class we mean a class that has a lattice with more than one
element.

Remark 14. There are continuumly many proper quasivarieties W of lattices such
that W ◦W ⊆ W.

Indeed, take a finite simple lattice M , and let WM be the class of lattices that
have no sublattice isomorphic to M . A Horn sentence defining WM is described
as follows: consider the elements of M as variables, let a 6= b ∈ M , and let T be
the operation table of M , then T ⇒ a = b is the desired Horn sentence. Hence
WM is a quasivariety. We can clearly see, or read in the introduction of Grätzer
and Kelly [10], that WM ◦ WM ⊆ WM . For a prime number p, let M (p) be the
subspace lattice of the projective plane over the p-element field; it is a finite simple
lattice. If H is a subset of the set of all primes, then WH =

⋂
{WM(p) : p ∈ H} is

a quasivariety, and WH ◦WH ⊆ WH . Finally, H1 6= H2 implies WH1 6= WH2 .

Opposed to Remark 14, the situation for varieties is entirely different.

Remark 15. If V is a nontrivial variety of lattices such that {1,2}◦V ⊆ V, then V is
the variety of all lattices. (Although the main result of Day [3] says that V ◦V ⊆ V
implies V = {all lattices}, the proof uses only that {1,2} ◦ V ⊆ V.)

Motivated by the above remark, we formulate
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Problem 16. Let W be a non-trivial lattice variety such that W ◦ {1,2} ⊆ W.
Equivalently, such that W is closed with respect to 2-indexed atop sums. Does it
follow that W is the largest variety of lattices?

Even if we do not know if W is the largest, next we show that it is large.

Proposition 17. Let W be a non-trivial lattice variety closed with respect to 2-
indexed atop sums. Then the free lattice of W on three generators is infinite.

Figure 2. Poguntke lattices

Proof. Consider the herringbone like lattices Tn of Poguntke [19]. Figure 2 depicts
the first few of these lattices. By [19], Tn is three-generated for all 0 ≤ n < ∞. It
suffices to show that Tn ∈ W for all −1 ≤ n. Since T−1 is distributive, it is in W.
For 0 ≤ n, Tn is a 2-indexed sum of Tn−1 and 2; the graph of ϕ from Part (c) of
Lemma 2 is indicated by thick lines. Hence all the Tn belongs to W. �
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(Colloq., József Attila Univ., Szeged, 1975), pp. 161–178. Colloq. Math. Soc. Janos Bolyai,

Vol. 17, North-Holland, Amsterdam, 1977.
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