On duality of submodule lattices

Gábor Czédli and Géza Takách

JATE Bolyai Institute, Szeged, Aradi vértanúk tere 1, H-6720 HUNGARY.

E-mail: czedli@math.u-szeged.hu

JATE Bolyai Institute, Szeged, Aradi vértanúk tere 1, H-6720 HUNGARY.

E-mail: takach@math.u-szeged.hu

Key words: submodule lattice, lattice identity, duality.

Mathematics Subject Classification: Primary 06C05, secondary 08B10.

Dedicated to the memory of George Hutchinson

Abstract. An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ .

This research was partially supported by the NFSR of Hungary (OTKA), grant no. T023186 and T022867, and also by the Hungarian Ministry of Education, grant no. FKFP 1259/1997 and MKM KF 402/96.

Given a ring R, always with unit element $1 = 1_R$, the class of left modules over R is denoted by R-Mod. Let T(R) denote the set of all lattice identities that hold in the submodule lattices of all R-modules, i.e., in the class of $\{\operatorname{Sub}(M): M \in R$ -Mod $\}$. Using the heavy machinery of abelian category theory and Theorem 4 from [3], Hutchinson [2, 3] has proved the following duality result.

Main Theorem (Hutchinson [2, 3]). For every ring R, T(R) is a selfdual set of lattice identities. In other words, a lattice identity λ holds in $\{Sub(M) : M \in R-Mod\}$ iff so does the dual of λ .

The goal of the present paper is to give an easy new proof of this theorem. Our elementary approach does not resort to category theory and uses much less from [3] than the original one.

Proof of the Main Theorem. Let λ be a lattice identity. Since $\operatorname{Sub}(M) \cong \operatorname{Con}(M)$ for every $M \in R$ -Mod and R-Mod is a congruence permutable variety, by Wille [5] or Pixley [4] (or cf. [3] for more details) there is a strong Mal'cev condition $U(\lambda)$ such that $\lambda \in T(R)$ is equivalent to the satisfaction of $U(\lambda)$ in R-Mod. Using the fact that each n-ary term $f(y_1, \ldots, y_n)$ in R-Mod can uniquely be written in the form $r_1y_1 + \ldots + r_ny_n$ with $r_1, \ldots, r_n \in R$, $U(\lambda)$ easily turns to a system of linear equations

$$Ay = b \cdot 1_R \tag{1}$$

where A is an integer matrix, b is a column vector with integer entries, and y is the column vector of ring variables (cf. [3] for concrete examples). So we obtain that

$$\lambda \in T(R) \text{ iff } Ay = b \cdot 1_R \text{ is solvable in } R.$$
 (2)

We can easily infer from this observation that for any rings R_i $(i \in I)$ and their direct product we have

$$T(\prod_{i \in I} R_i) = \bigcap_{i \in I} T(R_i). \tag{3}$$

A classical matrix diagonalization method, due to Frobenius ([1], cf. also [3]), asserts that for any integer matrix A there exist invertible integer matrices B and C with integer inverses such that BAC is a diagonal matrix. Choosing B and C according to this result, multiplying (1) by B from the left and introducing the notations M := BAC, $z := C^{-1}y$, c := Bb we easily conclude that the solvability of (1) in R is equivalent to the solvability of

$$Mz = c \cdot 1_R \tag{4}$$

in R.

Now, for integers $m \geq 0$ and $n \geq 1$ let D(m, n) denote the "divisibility condition" $(\exists x)(mx = n \cdot 1)$ where $mx = x + \ldots + x$ (m times) and 1 stands for the ring unit. The set $\{(m, n) : m \geq 0, n \geq 1, \text{ and } D(m, n) \text{ holds in } R\}$ will be denoted D(R). Since M in (4) is a diagonal matrix, the solvability of (4) in R depends only on D(R). Hence, combining the previous assertions and (2), we conclude that

$$D(R)$$
 determines $T(R)$, (5)

i.e., $D(R_1) = D(R_2)$ implies $T(R_1) = T(R_2)$. Clearly, for arbitrary rings R_i , $i \in I$,

$$D(\prod_{i \in I} R_i) = \bigcap_{i \in I} D(R_i). \tag{6}$$

Now we claim that for arbitrary rings R and R_i $(i \in I)$

if
$$D(R) = \bigcap_{i \in I} D(R_i)$$
 then $T(R) = \bigcap_{i \in I} T(R_i)$. (7)

Indeed, $\bigcap_{i\in I} T(R_i) = T(\prod_{i\in I} R_i)$ by (3). Since $D(\prod_{i\in I} R_i) = D(R)$ by (6) and the premise of (7), (5) yields $T(\prod_{i\in I} R_i) = T(R)$, proving (7).

For k > 0 let \mathbf{Z}_k denote the factor ring of the ring \mathbf{Z} of integers modulo k, and let $\mathbf{Z}_0 = \mathbf{Q}$, the field of rational numbers. We claim that, for any ring R,

$$D(R) = \bigcap_{D(R) \subseteq D(\mathbf{Z}_k)} D(\mathbf{Z}_k). \tag{8}$$

The proof of (8) will implicitly use the fact that for any integers $m \geq 0, n > 0$ and k > 0

$$(m,n) \in D(\mathbf{Z}_k) \iff \text{g.c.d.}(m,k) \mid n.$$
 (9)

First we deal with the case when $k := \operatorname{char} R > 0$. Here $\operatorname{char} R$ denotes $\min\{i : 0 < i \in \mathbb{Z} \text{ and } i \cdot 1_R = 0\}$, the characteristic of R, where $\min \emptyset$ is understood as 0. We assert that

$$D(R) = D(\mathbf{Z}_k),\tag{10}$$

which clearly yields (8) for char R > 0. The embedding $\mathbf{Z}_k \to R$, $x \cdot 1_{\mathbf{Z}_k} \mapsto x \cdot 1_R$ $(x \in \mathbf{Z})$ ensures that $D(\mathbf{Z}_k) \subseteq D(R)$. Now suppose that $(a,b) \notin D(\mathbf{Z}_k)$, i.e., $d := \operatorname{g.c.d.}(a,k)$ does not divide b. Let $k = k_1 d$, $a = a_1 d$ and b = qd + r, 0 < r < d. If we had $ax = b \cdot 1_R$ for some $x \in R$ then $0 = k(a_1x) = k_1ax = k_1b \cdot 1_R = k_1qd \cdot 1_R + k_1r \cdot 1_R = k(q \cdot 1_R) + (k_1r) \cdot 1_R = (k_1r) \cdot 1_R$ would be a contradiction, for $k_1r < k_1d = k = \operatorname{char} R$. Hence $(a,b) \notin D(R)$. This proves $D(R) = D(\mathbf{Z}_k)$, and (8) follows.

Now let us assume that char R = 0. Only the \supseteq part of (8) has to be verified, so suppose

$$(m,n) \notin D(R),$$

 $m \ge 0$ and n > 0; we have to show that (m, n) does not belong to the right-hand side of (8). Two cases will be distinguished.

Case 1: m = 0. Then $(m, n) \notin D(\mathbf{Z}_0)$, and $D(R) \subseteq D(\mathbf{Z}_0)$ clearly follows from $(a, b) \in D(R) \Longrightarrow a \neq 0$. Hence (m, n) = (0, n) does not belong to the right-hand side of (8).

Case 2: m > 0. First we claim that for arbitrary $0 \le a_1, \ldots, a_t \in \mathbf{Z}$ and $1 \le b_1, \ldots, b_t \in \mathbf{Z}$

$$(a_1, b_1), \dots, (a_t, b_t) \in D(R) \Longrightarrow (a_1 \dots a_t, b_1 \dots b_t) \in D(R). \tag{11}$$

Indeed, if $a_1r_1 = b_1 \cdot 1_R$ and $a_2r_2 = b_2 \cdot 1_R$ for $r_1, r_2 \in R$ then $(a_1a_2)(r_1r_2) = a_2(a_1r_1)r_2 = a_2(b_1 \cdot 1_R)r_2 = b_1(a_2r_2) = b_1b_2 \cdot 1_R$. This proves (11) for t = 2, whence it holds for t > 2 as well.

Now let $m=p_1^{f_1}\dots p_t^{f_t}$ and $n=p_1^{g_1}\dots p_t^{g_t}$ with distinct primes p_1,\dots,p_t and nonnegative integers $f_1,\dots,f_t,\,g_1,\dots,g_t$. We infer from (11) that $(p_i^{f_i},p_i^{g_i})\notin D(R)$ for some $i\in\{1,\dots,t\}$. With the notations $p:=p_i,\,f:=f_i,\,g:=g_i$ and $k:=p^{g+1},\,(p^f,p^g)\notin D(R)$ implies f>g. Hence $(m,n)\notin D(\mathbf{Z}_k)$, for $mx=0\neq n\cdot 1_{\mathbf{Z}_k}$ holds for all $x\in\mathbf{Z}_k$. Now, before showing that \mathbf{Z}_k occurs on the right hand side of (8), let us observe that if (p^{g+1},p^g) belonged to D(R) then, choosing an $r\in R$ with $p^{g+1}r=p^g\cdot 1_R$, we could obtain $p^g\cdot 1_R=p^{g+1}r=p(p^g\cdot 1_R)r=pp^{g+1}r^2=p^{g+2}r^2=\dots=p^fr^{f-g}$, which would contradict $(p^f,p^g)\notin D(R)$. Therefore $(p^{g+1},p^g)\notin D(R)$.

Now, to show $D(R) \subseteq D(\mathbf{Z}_k)$, let $(c,d) \notin D(\mathbf{Z}_k)$, $0 \le c$, $1 \le d$; we have to show that $(c,d) \notin D(R)$. If c=0 then $(c,d) \notin D(R)$ follows from char R=0, so c>0 can be supposed. Let $c=p^uc_1$ and $d=p^vd_1$ such that p does not divide c_1d_1 . We infer from (9) that u>v and $v\le g$. Hence there are integers x and y with $p^v=\mathrm{g.c.d.}(p^u,d)=xp^u+yd$. If (c,d) belonged to D(R), i.e., if there was an element $r\in R$ with $cr=d\cdot 1_R$, then we would have

$$p^{g} \cdot 1_{R} = p^{g-v}(p^{v} \cdot 1_{R}) = p^{g-v}(xp^{u} + yd) \cdot 1_{R} =$$

$$= p^{g+u-v}x \cdot 1_{R} + p^{g-v}yd \cdot 1_{R} = p^{g+u-v}x \cdot 1_{R} + p^{g-v}yc \cdot r =$$

$$= p^{g+1}((xp^{u-v-1} \cdot 1_{R} + p^{u-v-1}yc_{1} \cdot r)),$$

which would contradict $(p^{g+1}, p^g) \notin D(R)$. Thus $(c, d) \notin D(R)$, proving (8).

By (7) and (8), T(R) is the intersection of some $T(\mathbf{Z}_k)$. Therefore it suffices to show that

$$T(\mathbf{Z}_k)$$
 is selfdual for every $k \ge 0$. (12)

The mentioned strong Mal'cev conditions of Wille and Pixley easily imply that, for any lattice identity λ , $\lambda \in T(\mathbf{Z}_k)$ iff λ holds in $\mathrm{Sub}(\mathbf{Z}_k^t)$ for all positive integers t where \mathbf{Z}_k^t is considered a \mathbf{Z}_k -module in the natural way. (In fact, \mathbf{Z}_k^t is the free \mathbf{Z}_k -module on t generators.) Hence (12) and the Main Theorem will prompt follow from

for
$$k \ge 0$$
, $\operatorname{Sub}(\mathbf{Z}_k^t)$ is a selfdual lattice. (13)

Although there are deep module theoretic results implying (13), the tools we have already listed make a short elementary proof possible. The elements of \mathbf{Z}_k^t will be row vectors, and for $\vec{x} = (x_1, \dots, x_t) \in \mathbf{Z}_k^t$ the transpose of \vec{x} will be denoted by \vec{x}^* . Standard matrix notations like $\vec{x}\vec{y}^* = x_1y_1 + \dots + x_ty_t$ will be in effect. We claim that

$$\varphi : \operatorname{Sub}(\mathbf{Z}_k^t) \to \operatorname{Sub}(\mathbf{Z}_k^t),$$
$$S \mapsto S^{\perp} := \{ \vec{x} \in \mathbf{Z}_k^t : (\forall \vec{y} \in S) (\vec{x} \vec{y}^* = 0) \}$$

is a dual lattice automorphism and, in addition, an involution. All the necessary properties of φ can be checked very easily except that

$$(S^{\perp})^{\perp} \subseteq S. \tag{14}$$

Assume that k > 0, and let 1_k denote the ring unit of \mathbf{Z}_k . First we prove (14) for the case when t = 1. Since \mathbf{Z} is a principal ideal domain, we easily conclude that S is necessarily of the form $\{xu \cdot 1_k : x \in \mathbf{Z}\}$ for some positive divisor u of k in \mathbf{Z} . The same holds for the submodule S^{\perp} , so it is of the form $\{vx \cdot 1_k : x \in \mathbf{Z}\}$ for an appropriate positive divisor v of k in \mathbf{Z} . Since $(u \cdot 1_k)(v \cdot 1_k) = 0$, we obtain

$$k \mid uv.$$
 (15)

On the other hand, $(k/u) \cdot 1_k$ is clearly orthogonal to all members of S, so it is in S^{\perp} , whence $(k/u) \cdot 1_k = vx \cdot 1_k = v(x \cdot 1_k)$ for some $x \in \mathbf{Z}$. Therefore $(v, k/u) \in D(\mathbf{Z}_k)$, and (9) gives $v \mid k/u$, i.e.,

$$uv \mid k.$$
 (16)

From (15) and (16) we have v = k/u. Hence, giving the role of u to v we obtain $(S^{\perp})^{\perp} = \{x(k/(k/u)) \cdot 1_k : x \in \mathbf{Z}\} = \{xu \cdot 1_k : x \in \mathbf{Z}\} = S$.

Now let t > 1, and let S be a submodule of \mathbf{Z}_k^t . Since S is finite, we can consider a matrix A of size $s \times t$ for some $s \geq t$ such that each vector of S coincides with at least one row of A. Although A is a matrix over \mathbf{Z}_k , not over \mathbf{Z} , using the natural ring homomorphism $\mathbf{Z} \to \mathbf{Z}_k$ for matrix entries we can easily conclude from Frobenius' aforementioned result that there are square matrices B and C over \mathbf{Z}_k with respective sizes $s \times s$ and $t \times t$ such that BAC is a diagonal matrix, and B resp. C has an inverse in the ring of $s \times s$ resp. $t \times t$ matrices over \mathbf{Z}_k . For any $\vec{y} \in \mathbf{Z}_k^t$ we have

$$\vec{y} \in S^{\perp} \iff A\vec{y}^* = 0.$$

Now let \vec{v} be an arbitrary member of $S^{\perp\perp}$. Then

$$(\forall \vec{y} \in \mathbf{Z}_k^t) \ (A\vec{y}^* = 0 \Longrightarrow \vec{v}\vec{y}^* = 0).$$

Resorting to the above-mentioned B and C and multiplying by B from the left we obtain

$$(\forall \vec{y} \in \mathbf{Z}_k^t) \ \big((BAC)(C^{-1}\vec{y}^*) = 0 \Longrightarrow (\vec{v}C)(C^{-1}\vec{y}^*) = 0 \big).$$

Since $C^{-1}\vec{y}^*$ takes all (transposed) values from \mathbf{Z}_k^t , with the notations M = BAC and $\vec{w} = \vec{v}C$ we obtain

$$(\forall \vec{z} \in \mathbf{Z}_k^t) (M \vec{z}^* = 0 \Longrightarrow \vec{w} \vec{z}^* = 0). \tag{17}$$

We know that M is a diagonal matrix, let m_{11}, \ldots, m_{tt} be its diagonal entries. Choosing \vec{z} such that all but one of its components are zero we obtain from (17) that

$$(\forall z_i \in \mathbf{Z}_k) \ (m_{ii}z_i = 0 \Longrightarrow w_i z_i = 0) \qquad (i = 1, \dots, t). \tag{18}$$

Let $S_i = \{um_{ii} : u \in \mathbf{Z}_k\} \in \operatorname{Sub}(\mathbf{Z}_k)$; (18), in other words, says that $w_i \in S_i^{\perp \perp}$. Since (14) has already been proved for t = 1, $w_i \in S_i$, and we can choose an $r_i \in \mathbf{Z}_k$ such that

$$w_i = r_i m_{ii} \qquad (i = 1, \dots, t). \tag{19}$$

Letting $\vec{r} = (r_1, \dots, r_t, 0, \dots, 0)$ (with s components) we have $\vec{r}M = \vec{w}$. Hence

$$\vec{v} = \vec{w}C^{-1} = \vec{r}MC^{-1} = \vec{r}BACC^{-1} = (\vec{r}B)A,$$

showing that \vec{v} is a linear combination of the rows of A, i.e., $\vec{v} \in S$. This proves (14) for the case k > 0.

When k = 0, $\mathbf{Z}_0 = \mathbf{Q}$, and the rudiments of linear algebra yield dim $S^{\perp} = t - \dim S$. Hence (14) follows from the evident \supseteq inclusion and the fact that both sides have the same dimension. This completes the proof of the Main Theorem.

References

- [1] G. Frobenius, Theorie der linearen Formen mit ganzen Coefficienten, J. reine und angewandte Math., 86, 1879, 146–208.
- [2] G. Hutchinson , On classes of lattices representable by modules , in: Proc. University of Houston Lattice Theory Conference , Houston , 1973 , 69–94 .
- [3] G. Hutchinson and G. Czédli , A test for identities satisfied in submodule lattices , Algebra Universalis , 8 , 1978 , 269-309 .
- [4] A. F. Pixley, Local Mal'cev conditions, Canadian Math. Bull., 15, 1972, 559–568.
- [5] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math. 113, Springer-Verlag, Berlin Heidelberg New York, 1970.