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Horn sentences in submodule lattices

GABOR CZEDLI

To the memory of Andrds P. Huhn

1. Introduction. Given a ring R with 1, a lattice is said to be representable by
R-modules if it is embeddable in the lattice of submodules of some R-module.
The class L(R) of all lattices representable by R-modules is known to be a quasi-
variety, i.e., to be axiomatizable by universal Horn sentences (cf. HERRMANN and
PoGUNTKE [9], HurcHINSON [11] and, for another proof, [3]). The study of these
quasivarieties was started in HurcaiNsoN [10]. The main problem in this theory is
to classify the possible quasivarieties of the form L(R). This needs to answer the
following question:

(1.1) When does the inclusion L(R;)SL(R;) hold?

Denoting by R-Mod (x) the category of R-modules with cardinality less than or
equal to a given cardinal %, the main result of [10] is the following.

Theorem 1.2 (HurcuiNsoN [10]). L(R,)SL(R;) if and only if for each in-
finite cardinal x there exists an exact embedding functor R;-Mod (%)~ R,-Mod.

Note that even a stronger result (cf. HurcuinsoN [11B]) is true: L(R,)SL(R,)
iff there is an exact embedding functor R;-Mod-~R,-Mod.

By the help of this theorem, HUTCHINSON [10] proves a number of interesting
results concerning (1.1). As the proof and the applications of this theorem require
a good command of category theory and a hard technique, it seems reasonable to
develop another approach to (1.1). As L(R) is a quasivariety, the inclusion L(R,)<
CL(R,) holds if and only if every Horn sentence satisfied in L(R,) is also satisfied
in L(R,). Therefore (1.1) can be reduced to the following problem:

(1.3) When does a Horn sentence hold in L(R)?
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18 G. Czédli

Our aim in the present paper is to investigate the connection between properties
of rings R and Horn sentences holding in L(R). We give some answer to (1.3) in
Theorem 3.5, which, among others, enables us to give new proofs for some results
of HurcHINsON [10] concerning (1.1). Although our description (Theorems 4.1 and
4.2) of the ring properties that can be characterized by Horn sentences is not com-
plete, it leads to a solution of the following problem of JONssoN [13]:

(1.4) Is there a strong Mal’tsev condition for any Horn sentecne y which charac-
terizes if y holds in the congruence lattices of algebras of an n-permutable
variety?

The connection between ring properties and lattice identities, which are partic-
ular Horn sentences, was firstly studied by HERRMANN and HUHN [8]. After Andras
P. Huhn had personally initiated me into their research with C. Herrmann, we
with G. Hutchinson settled the case of lattice identities in [12]. The present paper
resembles [12] in some extent; e.g., the use of Mal'tsev conditions is the main tool
of investigations in both papers. The results of this paper are taken from the author’s
thesis [4].

2. Preliminaries. By a ring we always mean a ring with 1, and modules are
always unitary left modules. Suppose R is a ring, let R-Meod denote the class of
R-modules. If M is an R-module then Con (M) and Su (M) will stand for the lattice
of congruences and that of submodules of R, respectively. Fora class .# of modules,
let Con (#)={Con(M): Mc.#} and Su(#)={Su(M): Mc.#}. Then L(R)=
=IS Su(R-Mod). As Con (M)z=Su(M) for any M€ R-Mod (cf. BIRKHOFF [1, p.
159]), we have L(R)=IS Con (R-Mod). It is worth pointing out that exactly the
same Horn sentences hold in L(R), Su (R-Mod) and Con (R-Mod), whence, in many
of the forthcoming results, L(R) can be replaced by any of the other two. The lattice
variety generated by L(R) will be denoted by HL(R), which consists of all homo-
morphic images of lattices in L(R).

For any integers m and n, let D(m, n) denote the sentence (in the first-order
language of rings with 1) “(3x)(m-x=n-1)" where k.y or ky is an abbreviation
for y+y+...+y (k times if k>0) or 0 (if k=0) or —|k|-py (f k<0). D(m,n)
is called a divisibility condition. Denoting the set of prime numbers by P, a map
S: {0}UP~w+1 is called a spectrum if

(@) SO) < w
and

(B) if S(0)=0 then S(p)=max {i: 0=i and p' divides S(0)} holds for all
pEP.

For any spectra S; and S,, let $;=S, mean that S,(0) divides S,(0) and,
for all peP, S;(p)=S.(p). Equipped with this (ordering) relation, the set # of
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all spectra turns into a complete lattice (cf. Theorem 2.1 later). For a ring R, let
Sg be the map {0}UP—>w-+1 defined by Sg(0)=char R=min {i: i=1 and D(0, i)
holds in R}, the characteristic of R (here min §=0) and, for peP, Sy(p)=
=min {i: 0=i<w and D(p'*?, p) holdsin R} (here min #=w). HUTCHINSON [12]
has shown that S} is a spectrum; it will be called the spectrum of R.

Now, for a spectrum S with S(0)=0, let FR({x,: pcP}) be the free commu-
tative ring with 1 on the free generating set {x,: p€P}, let Jg denote the ideal of
this ring generated by {p*P(px,—1): pc¢P and S(p)<w}, and put Rs=
=FR({x,: peP})/Js. For S(0)=m=0, we put Rg=Z,, the factor ring of the
ring Z of integers modulo .

For an integer n and a prime p, let exp (n, p) denote sup {i: O0=i<w and p’
divides n}. Then the main result of [12] is the following

Theorem 2.1 (HutcHINSON [12]). (a) HL(R) and S mutually determine each
other.

(b) The lattice varieties of the form HL(R), R is a ring, form a complete lattice
£ r under the inclusion.

(c) ¥y is isomorphic to L. In fact, the map ¥Lp—~Ls, HL(R)—Sy is a
lattice isomorphism whose inverse is Ls—+Ly, S—HL(Ry).

(d) DO, n) holds in a ring R iff Sg(0) divides n while, for m>0, D(m, n)
holds in R iff (Vp€P)(exp (m, p)=exp (n, p)=exp (n, p) =S ().

By a Horn sentence we mean a universally quantified first order lattice sentence
x of the form

22 (Po=qo & 1=q, & ... & p,=q,) = p=¢q

where —1=t<w and p,, qo,P1> s ---» Pi> G- D> q are lattice terms. (In case
t=—1 the premise is empty and y is the identity p=gq.) Let us call x regular if, for
any two rings R, and R,, S =Sg, and L(R)Ey imply L(R,)E=y. Le, x is
regular iff the satisfaction of y in L(R) depends only on S; or, equivalently, on
HL(R). By Theorem 2.1 (a), every lattice identity is regular. In Sections 4 and 8,
we will deal with ring properties characterizable by regular Horn sentences as we
have not succeeded in handling the general case. (This situation resembles [2].)
HurcHINSON [10] has shown that there are rings R, and R, such that Sk, =Sk, but
L(R,)#=L(R;), whence there exist irregular Horn sentences, too. In the forthcoming
[6] we will explicitly construct an irregular Horn sentence.

3. Mal’tsev type conditions. Given an integer n=2 and a Horn sentence y,
[3] associates a Mal'tsev condition with y such that the satisfaction of y in the con-
gruence lattices of an arbitrary n-permutable variety % is equivalent to the satisfac-
tion of this Mal’tsev condition in %. Unfortunately, the Mal’tsev conditions in [3]
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20 G. Czédli

are so complicated that instead of recalling them and adapting them to the special
case #=R-Mod it is better and shorter to develop them independently. As these
conditions will be meaningful only when % =R-Mod, they will be referred to as
Mal’tsev zype conditions.

Our Mal’tsev type conditions will be given by certain graphs. First, for any
lattice term p=p(x: x€U) we define a graph G(p) associated with p. (Here we
adopt the abbreviation p(x: x€{x;, X3, ..., x,}) for p(xy, ..., x,). U is assumed
to have a fixed order.) The edges of G(p) will be coloured by the variables x€U,
and two distinguished vertices, the so-called left and right endpoints, will have special
roles. In figures these endpoints will always be placed on the left-hand side and on
the right-hand side, respectively. An x-coloured edge connecting the vertices » and
v will often be denoted by (¥, x, v). Before defining G(p) we introduce two kinds of
operations for graphs. We obtain the parallel connection of graphs G, and G, by
taking disjoint copies of G, and G, and identifying their left (right, resp.) endpoints
(Figure 3.1).

S NN

Figure 3.1 Figure 3.2

Similarly, we obtain the serial connection of G, and G, by taking disjoint copies of
G, and G, and identifying the right endpoint of G, and the left endpoint of G,.
(The left endpoint of G, and the right endpoint of G, are the endpoints of the serial
connection, cf. Figure 3.2.) Now if p is a variable then G(p) is the following graph

P

[¢] o

b

which consists of a single edge coloured by p. Let G(p,Ap,) (G(p,Vp:), Tesp.)
be the parallel connection (serial connection, resp.) of the graphs G(p,) and G(p,).
This defines G(p) for any lattice term p via induction on the length of p. For a graph
G, let V(G) and E(G) denote the vertex set and the edge set of G, respectively. Note
that E(G(p))SV(G()XUXV(G(p)) if p=p(x: xcU).

Now let p=p(x: xcU) be a lattice term, let R be a ring, let McR-Mod, and
let ¢ be a map from U into Su(M). A map ¥: V(G (p))—~M will be called a connect-
ing map (with respect to @) if (left endpoint)y=0 and by —aycxp holds for
every edge (a, x, b))€E(G(p)). For a graph G, let (¢, ¥): G<~M denote the fact
that . V(G)—+~M is a connecting map with respect to ¢. Given a yeM, if there
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exists a connecting map y¥: V(G(p))~M such that (right endpoint)f=y then
y will be said to be attainable by G(p) (with respect to ¢). Knowing that XVY=
=X+Y={x+y: x€X and y€Y} and XAY=XNY hold for X, YeSu(M), an
easy (and therefore omitted) induction on the length of p yields the following

Lemma 3.3. For any ye€M, y€p(xe: xcU) iff y is attainable by G(p)
with respect to ¢.

The following lemma will also be useful.

Lemma 3.4. Assume that t(x: xcU) is a lattice term, M and K are modules
over aring R, Yy: M—~K is a homomorphism, u: U—~Su(M) and ¢: U —~Su(K) are
maps, and xf S xo for all x€U. Then t(xu: xc UMWY S t(xp: xcU).

Proof. The proof goes via induction on the length of ¢ If €U, ie. tisa
variable, then the statement is obvious. If the statement is already true for #; and 7,
then for r=17V1, we have

tixp: x€ )Y = (t,(xu: x€ U)+t,(xp: x€U))Y =
=ti(xp: x€Y+ta(xpu: x€UW S ty(x@: xcU)+t,(xp: xcU) = t(xp: x€U),
while in the case t=t,At, we have
txp: x€ U = (f,(xp: x€ UYNty(xpu: x€ U)W S
€ tilep: x€ W Nt(xp: x€UW S t(xp: x€ U)Nty(xe: x€U) = t(xp: x€U).

If G is a graph and H is a set then let HXG denote the graph whose vertex
set and edge set are HXV(G) and {((%, @), x, (b, b)): (a, x, b)€E(G)}, respectively.
Note that HXG is isomorphic to | G, the disjoint union of |H| copies of G.

heH

Let us fix a ring R and a Horn sentence x of the form (2.2) where #=0. (The
assumption =0 does not hurt the generality as any lattice identity p=q is equiva-
lent, modulo lattice theory, to the Horn sentence x=x=p=gq.) Let U be the set
of variables occurring in y. Before formulating Theorem 3.5, we have to define cer-
tain modules over R. It seems reasonable to outline our goal roughly before the
following tedious definition. In order to obtain a necessary condition for the satis-
faction of y in L(R) we will start from a “small” module M?, submodules X° for
x€U, and an element f,€p(X°: x€U). If po(X°: x€U)=qo(X?: x€U) fails then,
in order to improve this failure, we will extend X°, xcU, and M° to appropriate
X' and M, respectively. Then, by extending X?, x€U, and M* to X% and M2 if
necessary, we will try to remedy the failure of p,(X*: x€U)=q,(X*: x€U); etc.
After o steps we will obtain M®= | ) M™ and, for xcU, X°= |J X™ Now

m<o m<ao

the premise of x will hold for X, x¢U, and the satisfaction of yin L(R) will imply
fi€q(X®: xeU)= |J g(X™: x€U). Lemma 3.3 will be our main tool in doing so.
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Now the precise definition comes. First we define lattice terms p; and ¢; for
t<i<w:let p;and ¢; be p; and g;, respectively, where j=i mod (t+1) and 0=j=t.
For any integer m=0, we intend to define a graph G™, a subset F™ of V(G™), an
R-module M™ and submodules X™ of M™ (for all xc¢U) by induction such that
V(G™) S M™, M™ is freely generated by F™ and, forall xc U, X™ is the submodule of
M™ generated by {c—b: (b, x, c)€ E(G™)}, in notation X™=[c—b: (b, x, c)EE(G™)].
(Here we have a map U-Su(M™) which we denote by capitalizing and adding a
superscript, e.g. x—X™ and y—~Y¥" for x,y,€U.) As G™ and F™ will determine
M™ and X™, xcU, it will suffice to define the former two.

Let G*:=G(p) and F°:=V(G(p))\{left endpoint}, and, in order to ensure
V(G*YS M°, identify the left endpoint of G® and the zero of M°.

Assume that G™-', F™-1, M™-! and X™-, x€U, have already been defined
for some m=1. Now the definition ramifies as we want to define two kinds of our
graphs and modules.

(@) Choose a subset S, of M™-'! such that S,SP" ! where P" '=
=p.(X™-1: xcU).

(b) Choose a subset S,, of M™~" such that Pr\NQr 1<[S,]SPm ' where
Pr=1 Om=1! and [S,,] denote p,(X™-': x€U), ¢,,(X™*: x€U) and the submodule
generated by S,,.

In both cases, we put

Fmi= Fm=1U({m} X S, X(V (G(g.))\{left endpoint, right endpoint})).
We obtain G™ from G™-*U({m}XS,,XG(g,)) by identifying the zero of M™ and
all the (m, s, left endpoint), s€S,,, and by identifying (m, s, right endpoint) and s
for every s¢S,. Then V(G"-H)SV(G")SM™ and G™-!is a (weak) subgraph
of G™, i.e., E(G""D)CSEG"NF (G YXUXV(G™')). Therefore X"-'CXx™,
x€U. Obviously, F"-*CF™ and M™-'C M™

Now we have defined G™, F™, M™ and X™, x€U, for all m=0. Note that, in
both cases, these things depend on the choice of S, S,, S;, ... because we want
to make the following theorem easy to handle. We also note that the choice S; =P,
S,=P}, S;=P3, ... is always possible. Let f; denote the right endpoint of G*=G(p),
then we have

Theorem 3.5. (A) Suppose that Sy, S,, Ss, ... are chosen according to (a).
If there exists a non-negative integer n such that fi€q(X": x€U) then y holds in
L(R) or, equivalently, in Su(R-Mod).

(B) Suppose that S,, S,, Ss, ... are choosen according to (b). Then x holds in
L(R) if and only if there exists a non-negative integer n such that fi€q(X": x€U).

Proof. It suffices to prove (A) and the “only if”” part of (B).
To prove (A), assume that f,€q(X": x€U) holds for some n. Let 4€¢ R-Mod,
for xcU let X’€Su(A), let a,€p(X’: x€U), and assume that p,(X’:xcU)<
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Cqi(X’: xcU) holds for i=t (whence for i<w as well). Let ¢ denote the map
U-Su(A), x—~X’. We need to show a;€¢(X’: xc€U). Via induction on m, we
intend to define two maps, #™: V(G™—~A4 and y™: M™—~A for any m=0 such
that

(I,) (o, 1™): G"™5~A4, and Yy™: M™—~A is a homomorphism extending both ™
and n°.

By Lemma 3.3, g, is attainable by G(p)=G°® with respect to ¢. l.e., there is a map
n°: V(G*)—~A such that fin°=gq, and (@, n°): G°>A4. Extend 5°tF° to a hom-
omorphism ¥°: M°~A. (Here } stands for the restriction.) As M?° is frecly gen-
erated by F° {° exists and is uniquely determined. Since 0n°=(left endpoint)n°=0,
Y0 extends #°, too, and (J,) is satisfied.

Now let m=1 and suppose (I,,_,). Le., (¢, ™~ *): G" 15~ 4 and Yy™~! extends
both y™-* and n°. For x¢U,

X1yt = [e—b: (b, x, JCEG™ Y"1 =

= [ey™—1—by™=1: (b, x, )EE(G™ Y] = [en™*—by™~: (b, x, )€ E(G™ V] & X,
whence, by Lemma 3.4,

St S PRIt = p, (X1 XE UM S P (X7 XEU) S gul(X': %€ V),
Le., S,¥™-1Sq.(X’: xcU). By Lemma 3.3, for every s€S,, s,¥™ ! is attainable
by G(gm)={m}x{s}XG(g,) with respect to ¢. Le., there is a map »™ such that
(@, n™: {m}X{s}XG(g,)<~A and (m, s, right endpoint)"=sy™~'. Put y"=
=y"-UTJ 5™ Then 4™ is really a map from ¥(G™) into 4, and it extends ™~

SESm

Farther, if s€S,, then sy™=(m, s, right endpoint)y™=sy™-1. Now let y™: M"™—~4
be the unique homomorphism that extends y™F™. For any u¢ F™~1C F™ ™=
=u"=u"~'=wy™-1. Hence Y™MF"-'=ym-1F"-! and [F"Y=M"-1 yield
that Y™ extends y™-'. For ucV(G™)N\F™ either ucV(G™-') and uy™=un™ ‘=
=ufm-t=uP™ or ucS, and un™=(m, u, right endpoint)y®=wuy™-'=upy™. Hence
Y™ is an extension of #™. As n™-! and 4™, scS,,, are connecting maps, so is n™
Le., (@, n™): G™< A4, and (1,,) holds.

Now 4™ and Y™, satisfying (7,,), are defined for all m=0. From (I,) we conclude
that, for xcU,

X*y* = [c—b: (b, x, )CE(GNY" = [cy"—byY": (b, x, )€ E(G")] =
= [en"—bn": (b, x, )EE(GM] E X"

Hence Lemma 3.4 yields a=fin’=£fyY"cq(X": xcUW"CSq(X’: xcU). This
proves (A).

To prove the “only if” part of (B), assume that y holds in L(R) and F™, G™,
M™, X" 0=m<w, xcU) are defined according to (b). Then F°C F'C F2¢C...,
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MCMCM2C... and G°CG'SGAS&... . Put F®= | F™ and G°:= |J G"
m<o m<o
(ie, V(GD=U V(G™) and E(G®)= |J E(G™)). Let M* be the R-module
m<o

m<aw

freely generated by F“ and, for xcU, let X°=[c—b: (b, x, c)€G®]. It is easy
to see that V(G®)S M, M®= {J M™ and, for xcU, X°={J X™ We will

m<o m<o

show that the submodules X®, xcU, satisfy the premise of y.
Let the map U~—Su (M"), x—X' be denoted by ¢, I=w. Since X*= |J X™

m<o

and X°CX'CX®CS.., we obtain that, for any map #n: V(G(p;) ~M®,
(9%, n): G(p;)> M iff there is an m such that (™%, n): G(p;)>M®, j+l<m<o
and j=m mod (z+1). Hence, denoting the right endpoint of G(p;) by r and apply-
ing Lemma 3.3, we obtain

(3.6)  pi(x°: xcU) = {b: 3n)(rn =b and (9°,n): G(p)) <> M*)} =
={b: @N@Em)j+1l<m<w, j=mmod(t+1),rn=b
and (™%, n): G(py) =~ M®)} =
=U{b: @n)(rn=b and (o™, m): G(p)=> M)}
j*tl<m<wand j =mmod(t+1)) =
=U(p;(x™': x€U): j+1<m < o and j = mmod (1+1)).

Since (™, identical map): {m}X {s} X G(g,)<> M®, Lemma 3.3 yields s€¢g,,(X™: xc U)
for any s€S,,, m<w. Therefore [S,]1Sg.(X™: x€U). For j+l<m=<w and
j=m mod (t-+1) we obtain
pi(X™ Y x€U) = pp(X™1: x€U)=Pp-l=
= (Pr~N\@r HUEPRINER ) SIS, IUgR &
E gn(X™: xcU)Ug, (X" 1 xeU) S
S gn(X?: x€U)U g, (X*: x€U) = q,(X*: x€U) = q;(X°: x€ V).

This inclusion and (3.6) yield p;(X“: x€U)Sq;(X°: x€U), whence the premise of
x holds for X¢, xcU. As Su(M®)EL(R), p(X®?: xcU)Sq(X®: x€U). Lemma

3.3 yields f1€p(X®: x€U) as (¢°, identical map): G(p)<~ M. An argument anal-
ogous to (3.6) shows that ¢q(X®: xcU)= |J q(X™: x€U). Hence we have

Siep(X©: xcU)Sq(X°: x€U)= |J q(X™: xcU). Therefore there is an n such
that f,€q(X": x€U), which completes the proof.

4, Regular Horn sentences. Let U denote the set {x, y, z, ¢, e} of variables, and
define the following lattice terms over U (the meet and join will be denoted by - and
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-+, respectively):
pi=@x+))(z+D, woy=(x+2)(p+1), we=x,
Sis1:= W+ D(+2) and wiii= (54 +0)(x+2) for i=0.

By induction, this defines s; and w; for all i=1, j=-1. Now let m, n and k be
non-negative integers, put

Do= ((e+w,,_1)w_1+x)z, go:= 6
g:= (W +») 4+ D)+ W) (x+y+e)+x+z,
and let y(m, n, k) denote the Horn sentence
Po=qy=>p=4qg.
Theorem 4.1. For any ring R and non-negative integers m,n, k, the Horn

sentence y(m,n, k) holds in L(R) if and only if there exists a non-negative integer
i such that the divisibility condition D(mn'**, kn') holds in R.

Note that, in virtue of Theorems 2.1 (d) and 4.1, y(m, n, k) is regular. To avoid
the feeling that (3i)(D(mr'*", kn®)) in the above theorem is just a haphazard ring
property we state the following result, which is almost the converse of Theorem 4.1.
While we have collected all we need to prove Theorem 4.1, the following theorem
will be proved only in Section 8.

Theorem 4.2. Let y be a regular Horn sentence. Assume that there is a ring
R* of characteristic 0, i.e., Sg(0)=0, such that y holds in L(R*). Then there
are positive integers m,,n, and k, such that, for any ring R, y holds in L(R) if

and only if D(m,n**, k,n}) holds in R for some integer i=0.

Proof of Theorem 4.1. We will apply Theorem 3.5 (B) with the choice
S;=p;(H’~': heU). The graph G°=G(p) is given in Figure 4.3, whence X=X"=
=[], Y=Y°=[fi—-f2], Z=Z°=[f;] and T=T"=[f,—f;]. Since G(40)=G(g;),
0=j<w, has no “inner vertex”, i.., IV(G(qj))|=2, we have F/=F={f,, fz.fs}
and M'=M" 0=j<w. Let F and M denote F° and M?, respectively. As the only
edge of G(g;)=G(q,) is coloured by e, all the edges in E(G))\E(G®) are coloured

Figure 4.3
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by e, and we have X/=X° Yi=Y% Zi=Z T/=T° E°={0} and E’=
=[EI"*Upo(HI™t: he U)|=E " +py(H’~*: heU). We claim that
P=[fil, W;=Ifetjfs] for j=-1,
4.9 S;=[fi—fa—ifs] for i=1, and
EJ = Pj~*= {rfy: r€R and n'r =0}

where ¥ stands for »(H°: heU) if »€{p, w;, s;}. These formulas can be obtained
by an elementary calculation, only a part of which will be presented. As any element
a of M can uniquely be written of the form a=r, fi+r; f+r; f3 where ry, ry, r,€R,
we can compute as follows.

P=X+Y)N(Z+T) =
={a€M: (3ry, 1,13, 1€R)a = 1 fo+1:(fi—fD) = rafstrd(i—f))} =
={a€M: 3ry, ry, 15, 1R (@ = 1o i+ (ri—r)fa = 1 i+ (s —r)fo)} =
={a€M: (3ry, 1y, 13, 1€ R)(a = 1oy +(ry—1fe = o fi+(rs—1)f;  and
ra=ry, r—ry=0,r5—r, =0)} = {ac M: @ryeR)(a = rof)} = {rafi: 126 R} =[fi].

The rest of (4.4) follows similarly via induction. Another elementary computation
of the same nature yields

q(H’: he U) = {afi+bfs+cfs: a, b, c€R and (Fr€ R)Y(mn/+1r = kn'a)}.

Therefore f;=1f,+0f+0f;¢q(H’: he¢U) iff D(mn’**,kn’) holds in R, and a
reference to Theorem 3.5 (B) completes the proof.

5. Systems of ring equations. Let v and » be natural numbers and, for i<v, let
fi(y;: j<u) be a ring term (i.e., a term in the language of unitary rings). Then

fOpi=w=0, 0=i=<uy,

is called a system of ring equations. This system is said to be solvable in a ring R
iff there exist elements r;, j<u, in R such that fi(r;: j<u)=0 for i<w.

Lemma 5.1. For any Horn sentence y there is a set {E,: n<w} of systems
of ring equations such that

(i) for any ring R, y holds in L(R) iff there exists an n<w such that E, is
solvable in R;

(ii) Ey, Ey, E,, ... is a weakening sequence in the sense that, for any n<o and
any ring R, if E, is solvable in R then sois E,,,.
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The proof will only be outlined as it is relatively easy but would need a lot of
technical preliminaries. First, consider a Mal'tsev condition (An<w)(U,), where
U,, Uy, Us, ... is a weakening sequence of strong Mal’tsev conditions, such that,
for any congruence permutable variety ¥, y holds in Con (¥") iff (3n<w) (U, holds
in ¥"). The existence of this Mal’tsev condition was proved by JOnsson [13]; a Mal’tsev
condition of this kind is explicitly given in [3]. We can easily associate a system E,
of ring equations with each U, such that, for any ring R, U, holds in R-Med (which
is a congruence permutable variety) iff E, is solvable in R (cf., e.g., [2, Claim 5.1]
or {12, proof of Theorem 2] where analogous or particular cases are handled).

Corollary 5.2. Let R be the direct product of two rings, R, and R,. Then
L(R)=L(R,)VL(R,) in the lattice of quasivarieties of lattices.

Proof. We only need to show that an arbitrary Horn sentence y holds in L(R)
iff it holds in both L(R,) and L(R,). It is easy to see that a system of ring equations
is solvable in Riff it is solvable both in R, and R,. Now if L(R)) =y and L(R,) =y
then, by Lemma 5.1, there are m and k such that the appropriate E,, and E, are
solvable in R, and R,, respectively. Put n=max {m, k}. Then E, is solvable in R,
and R,, whence it is solvable in R and L(R)=yx. Conversely, if L(R)=y is assumed
then L(R,)=yx and L(R,)=y follows similarly and even more easily.

6. Two results of G. Hutchinson. In this section we will deduce two results of
HuTtcaiNsoN [10] from the results of Sections 3 and 5.

Corollary 6.1 (HurcaINSON [10, Proposition 2]). Assume that R, and R,
are rings and there is a homomorphism of R, into R, (preserving 1, of course).
Then L(R,)SL(R).

Proof. Let ¢: R,—~R, be a ring homomorphism. It suffices to show that any
Horn sentence holding in L(R,) holds in L(R;), too. But this is evident by Lemma
5.1 as ¢ maps any solution of E, in R, to a solution of E, in R,.

Proposition 6.2 (HuTcHINSON [10]). Let R, and R, be rings with the same
spectrum S=Sg =Sy, and assume that either R, and R, are torsion free or
S(0), the characteristic of R, and R,, is a square free (i.e., divisible by p* for no
prime p) positive number. Then L(R,)=L(R;).

Proof. First we prove the statement under the following stronger assumption:
either S(0) is a prime or R, and R, are torsion free. It is sufficient to show that L(R,)
and L(R;) satisfy exactly the same Horn sentences. Therefore it suffices to show
that an appropriate construction needed by Theorem 3.5 (B) does not depend (in
a sense to be defined later) on the choice of RE¢{R;, R,}.
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Let F={fi, /s, ..., f,} be a set, let RE{R;, R;}, and let M be the free R-
module generated by F. A submodule C of M will be called normal, if it is of the
form [3(c;f;: 1=j=t): i<nc] with a suitable nc<w and integers c;;. The
form [3(c;f;: 1=j=1): i<ng] will be called a normal form of C. Note that if
only F is fixed then distinct submodules (necessarily over distinct rings) may have
identical normal forms. We need

Claim 6.3. Assume that C, DESu(M) are given by the respective normal
forms [ 3 (c;;f;: 1=j=1): i<nc] and [3(d;;f;: 1=j=1): i<np]. Then there are
normal forms of C+D and CND that depend only on the normal forms
[Z(eijfi: 1=sj=1): i<nc] and [ 3 (d;;: 1=j=1): i<np)] but do not depend on
R€ {'Rh -RZ }

Proof of Claim 6.3. The statement is trivial for C+D as [ 3 (e;;f;: 1=j=1):
i<nc+np], where e;=c; for i<nc and e;=d,_, ; for nc=i<nc+np, is a
normal form of C+D. Dealing wiht CND, put n=nc+np, and let y and r stand
for n-dimensional column vectors. Then the system of linear equations

2y i=n))—=2 (@ijYugeit i<np)=0 (I1=j=9

can be written of the form By=0 for a suitable integer matrix B. It is easy to see
that, denoting the entries of x by r;,

CND ={3(r; 3 (ci;; f;: 1 =j=1):1i<ne): réR" and Br = 0}.

A classical matrix diagonalization method of Frobenius yields that there are integer
square matrices 4 and C of appropriate sizes such that 4 and C are invertible,
their inverses are integer matrices and ABC is a diagonal matrix, i.e., the jth entry
of the ith row is 0 whenever ij (cf. FRoBENIUS [7]; this result is quoted with a
proof in [12, p. 284 and Appendix]). Denoting C~r by r’ and observing that, by
the existence of A=1, Br=0 is equivalent to 4Br=0, we have

{reR*: Br = 0} = {rcR*: (ABC)(C'r) =0} =
= {reR": (AreR"((4BC)r' =0 and r = Cr')}.

As ABC is diagonal, (ABC)r' =0 is equivalent to gorq=0, 8,71=0, ..., g—1F7-1=0
where the integers gy, i, ..., 8,1 are the diagonal entries of ABC and ry, ..., r,_,
are the entries of '€ R". For each /, the equation g;r;=0 either makes no restric-
tion on r; or implies r;=0. Really, if R is torsion free then g0 implies r;=0;
if $(O)=Sz(©0)=p is a prime and p does not divide g; then there is a g’ such
that g'g;=1 mod (p) and g;r;=0 implies r;=1r=g'g;r;=g’0=0 while g;7;=0
holds for all r{€¢R when p divides g;. Put I={i: i<n and g;7;=0 holds for any
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¥/€R}, and let h,, 0=i,/<n, be the entries of the matrix C. Then r,=
=3 (hyr{: I<n) and we have
CND =

={Sr3yfy 1 =j=1):i<ng): @reRY(E=Cr
and r{ =0 for all {1)}=
={SC Qi 1<n)-Z(eyfy 1=j=0:i<ng): VeR and rf =0 for I I} =
={Z S ey i<ndfi: 1=j=1): l<n): €R" and r{ = 0 for {1} =
=[Z (S (hacy: i<n)f: 1=j=1): l€l],
proving Claim 6.3.

Now, returning to the proof of Proposition 6.2, we intend to show that it is
possible to choose subsets S,, in Theorem 3.5 (B) so that F"={f;,f,, ..., f; } be
the same for R=R, and R=R, and, for x€U, X™ be given in a normal form
independent of Re€{R,, R,}. This is clearly true for m=0; to start our induction
step let us assume that this is true for m—1, m=1. Then, by Claim 6.3, P 1=
=p(X™~': x€U) also has a normal form [ 3 (c{Tf;: 1=j=t,.,): i<n™] which
does not depend on RE{R,,R,}. Put S, _{s i<n™} where 5;=3 (c™f;:
1=j=t,_,). Then F™ does clearly not depend on RE{R,, R;} and, by Claim 6. 3

X" =X""1+3 ([v-u}: (u x, )EE(GMHNE(G" ) =
Xk 3 (3 (-l (3, DEE(m)X (X G(gn): 1 =< 1)

can be given by a normal form not depending on R€{R;, R,}. Now a final use of
Claim 6.3 yields that, for all m, g(X™: x€¢U) can be given by a normal form, say,
[Z@$ f;: i=j=t,): i<k™] which does not depend on RE{Ry, R,}. Let y=
=P V15 -+o» Vw1 ), and observe that fcq(X™: xcU) iff the following system
E,, of productless ring equations

>@My;: i <k™y—1 =
APy i<k™=0 for 1<j=1t,,

which does not depend on R€{R,, R,}, is solvable in R. Based on the afore-men-
tioned result of Frobenius, it has been shownin[12] (cf. Theorem 2.1 (d) and [12,
Theorem 3]) that the solvability of any system of productless ring equations in an
arbitrary ring depends only on the spectrum of this ring. But now S, ,=5=8g,,
whence E,, is solvable in R, iff it is solvable in R,. Hence Theorem 3.5 (B) proves
the proposition under the stronger assumption we considered.

The case S(0)=1 being trivial, consider the case S(0)=pyp,...p, where
Dos P1» ---» P are distinct primes. It is known that, for R€{R,, R;}, R is isomorphic
to a direct product i g R® where Szw(0)=p;, i=n (cf, e.g., McCoy [14, The-
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orem 28]). By Corollary 5.2, L(R)=\ L(R®), whence Proposition 6.2 follows

from its special case we have already proved.

7. Two sufficient conditions for regularity. Consider a Horn sentence y of the
form (2.2).

Proposition 7.1. If all q;, 0=i=t, are join-free then y is regular.

Proof. We will use Theorem 3.5 (B) with S,,:=P"~'. As G(g,,) has no inner
vertex, Fm"=F""1=_.=F° if xc¢U occurs in ¢, then X™"=X""1+P"1 and
Xm=x""1 if xcU does not occur in g,. Hence there are lattice terms ¢, such
that ¢(X™: x€U)=gq, (X°: x€U), 0=m, and these g,, do not depend on the ring
in question. By Theorem 3.5 (B), L(R)k=y is equivalent to (3m)( f;€4,(X°: xcU)).

Now let us fix a y€U and consider the Horn sentence y,: y=y=p=gq,, k=0.
If we apply Theorem 3.5 (B) to y;, with S,=0, 1=m, then X"=X""1= . =X°
for every x€U. Hence fi€q;(X°: x€U) is equivalent to L(R)k=y,. But x,, being
modulo lattice theory equivalent to the lattice identity p=q;, is regular by Theorem
2.1 (a). We have seen that L(R)i=y is equivalent to (Im)(L(R)k=y,). whence
the regularity of y,, completes the proof.

Note that Proposition 7.1 applies for y(m, n, k) occurring in Theorem 4.1.
We say that y satisfies the Whitman condition (W) if the finitely presented lattice
FL(U; po=4qo, P1=¢, .--» P:=q,) satisfies (W) (cf. [5]).

Proposition 7.2. If x satisfies (W) then y is regular.

Proof. By [5, Corollary 5.3] there are lattice identites x,, m=w, such
that, for any n-permutable variety ¥°, Con(¥)kEy iff (3m)(Con (¥)kE=x,)
In particular, L(R)=x iff Con (R-Mod)i=y iff (3m)(Con (R-Mod)=x,,) iff
(3m)(L(R)t=x,,), whence the regularity of the lattice identites x,, (cf. Theorem
2.1 (2)) completes the proof.

8. Proof of Theorem 4.2. With the notations of Section 2, let us recall

Claim 8.1. (HUTCHINSON [12, Proposition 4 and the proof of Theorem 3] or,
more explicitly, [2, Proposition 6.2]). If S, $,€ %5 and §,=S, then Rg is a hom-
omorphic image of Rg .

Given a spectrum S€Zg, let {p: pcP and S(p)<w} be denoted by T(S).
Let S be called cofinite iff T(S) is finite. Note that S(0)=0 for any cofinite S€.%y.
If S is an arbitrary spectrum and H is a finite subset of P then the spectrum S[H]
defined by S[H](0)=0, S[H(p)=S(p) for pc H and S[H](p)=w for pc PNH
is cofinite, and we have S=S{H] and T(S[H])CSH.
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Now let us fix a regular Horn sentence y which holds in L(R*) for some ring
R* with Sg,(0)=0. Put S*=S,.. Since y is regular, it holds in L(R,.) by The-
orem 2.1 (c). Let S° denote the zero spectrum, i.e., S°(x)=0 for all xc{0}UP,
and put R°=Rg,. (Note that S° is not the smallest element of #.) Then S°=S*,
whence, by Corollary 6.1 and Claim 8.1, y holds in L(R®).

Now consider the system of ring equations E,, Ei, E,, ... associated with
x by Lemma 5.1.

Claim 8.2. Let S€ % with S(0)=0 and let n be a non-negative integer. If
E, is solvable in Rg then there is a finite subset H of P such that E, is solvable in

RS[H]'

Proof. Let E, consist of the ring equations f;(y;: j<u)=0, i<v, and assume
that fi(a;+Js: j<w)=0+Jg, ie., fi(a;: j<w)é€Js, i<wv, for certain elements
a;¢ FR({x,: peP}), i<v (cf. Section 2). As we have only finitely many f(a;: j<u),
there is a finite subset 4 of {pSP(px,—1): p€ P and S(p)<w} such that all the
fi(a;: j<u), i<v, belong to the ideal generated by 4. Put H={p: pcP, S(p)<w
and pS®(px,—1)€A}. Then H is finite, and ACJgy, vields fi(a;: j<uw)€Jspm
for all i<wv. Hence the system of a;+Jg;y;, j<u, is a solution of E, in Rgpp.

Since E,, E,, E,, ... is a weakening sequence, the first n, of its members can
be omitted without the loss of generality, for any n,<w. Therefore, by Lemma 5.1,
we may assume that Ej; is solvable in R°. Hence, by Claim 8.2, we can fix a cofinite
spectrum S’ such that E,, and therefore every E,, is solvable in R.. (Indeed, let
S’=S°[H] for an appropriate HC P.)

For j<w, let U;:={Sk: R is a ring and E; is solvable in R}. Then U;S %s.
For each S€U; choose aring B; 5 such that E; is solvable in B; 5 and the spectrum
of B; sis S. Put A;:=[[(B;s: ScU;), the direct product of B;s, S€U;, and
let S;:=V (S: SEU,).

Claim 8.3. The spectrum of 4; is S;, S; is cofinite, E; is solvable in 4;, and,
for any ring R, if E; is solvable in R then Sp=S;.

Proof. Ej;is clearly solvable in 4; as it is solvable in all the direct factors of 4;.
Similarly, a divisibility condition D (m, ), which is a particular ring equation, holds
in A; iff D(m, n) holds in every B; 5, S€U;. As S’€U; and $’(0)=0, S;(0)=0 and
the characteristic of 4;=B; X J[ (B;s: SCUN{S’}) is also 0. Further, by
Theorem 2.1 (d), we have

min {i: A;=D(p'*?, p)} = minN({i: B; s=D(p'**, p)}: SeU,) =

=minN({i: i = exp(p}, p) = S(p)}: SEU;) = sup{S(p): S€U;} = S;(p)
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for any peP. Consequently, S; is the spectrum of 4;. From S’=S; we obtain
T(S)2T(S;), whence S; is cofinite. Finally, if E; is solvable in a ring R then
Sg€EU; yields that Sp=V (§: S€U;)=S§;.

Now let I'={S€%s: x holds in L(Rs)}, and let (S;] denote {ScZLs: S=S;},
the principal ideal of % generated by S;.

Claim 8.4. I=J ((S;]: j<w).

Proof. If Sel then, by Lemma 5.1, there is a j<w such that E; is solvable
in Rg. Hence S=SRSE(S,-] by Claim 8.3. Conversely, assume that S¢€(S;] for
some j<w. By Lemma 5.1 and Claim 8.3, x holds in L(4;). By Theorem 2.1 (c)
and Claim 8.3, 4; and Rs, have the same spectrum S;. The regularity of y yields
that y holds in L(st), too. Now S¢I follows from S=S;, Claim 8.1 and Corol-
lary 6.1.

Now we obtain Sy;=8,=S5,=... from the fact that E,, E,, E,, ... is a weaken-
ing sequence. Hence T(S,)27(S,)27(S:)=2.... Since T(S,) is finite, so is
H:=N(T(S;): j<w). Put S:=V (S;: j<w), then T(S)SH. Define m,, n, and
k, as follows:

myi= [[ (PP peT(S)). myi= [[ (p: pEHNT(S))
kyi= JT(P°®: peT(S)).

and

Then m,, n, and k, are positive integers.

Assume that D(m,n’™, k,ni) holds in a ring R for some i<w. Then, by
Theorem 2.1 (d), we have S(p)=exp (kxn;,p)éSR(p) for peT(S) and S(p)=
=w>i=exp (kn,, p)=Sg(p) for pc H\T(S). For pcH, S(p)is the limit of the
increasing sequence S,(p), S1(p), S2(p), ..., whence the finiteness of H yields the
existence of a j<w such that T(S;)=H and Sir(p)=S;(p) for all p¢ H. Then
Sg=.S;, and Claim 8.4 yields that Szcl. Le., x holds in L(R; ). Since Rg  and
R have the same spectrum and y is regular, ¥ holds in L(R).

Conversely, assume that R is a ring and y holds in L(R). As Rs, and R have
the same spectrum and y is regular, Sz€l. By Claim 8.4, there is a j<w such that
T(S;)=H and Sx=S;=S. Put i=max {S;(p): p€H\T(S)}, then i is a non-
negative integer. (Here max@=0.) For peT(S), exp (k,n,p)=S(p)=Sx(p)
while, for pe H\T(S), exp (k,n,, p)=i=S;(p)=Sgr(p). Hence, by Theorem 2.1
(@), D(m,n**, k,n}) holds in R. This completes the proof of Theorem 4.2.

9. On a problem of Jénsson. In this section we will give a negative answer
to (1.4), the afore-mentioned problem of JO6NssoN [13]. Let n=2 be an integer,
and consider % (0, n, 1) from Theorem 4.1. Then we have




Horn sentences in submodule lattices 33

Proposition 9.1. There is no strong Mal’tsev condition U such that, for any
congruence permutable variety ¥, y(0,n,1) holds in Con (¥") iff U holds in ¥ .

Proof. Assume the contrary, and let E be a system of ring equations such
that, for any ring R, U holds in R-Mod iff E is solvable in R (cf. the proof of Lemma
5.1). Since D(0, r) holds in Z, x(0, n, 1) holds in L(Z,) by Theorem 4.1, and we
infer that E is solvable in Z,;, i<w. Therefore E is solvable in the direct product
R=]] (Z,: i<w), whence x(0, n, 1) holds in L(R). It follows from Theorem 4.1
that there is a j<w such that D(0, ') holds in R. Consequently, D(0, »’) holds
in every direct factor Z, of R. In particular, D(0, »’) holds in Z,;.,, which is a
contradiction.

References

{11 G. BirRkHOFF, Lattice Theory, 3rd ed., Colloquium Publications 25, Amer. Math. Soc. (Provi-
dence, R. L., 1967).
[21 G. CzipLi, On properties of rings that can be characterized by infinite lattice identities, Studia
Sci. Math. Hungar., 16 (1981), 45—60.
3] G. CzépLi, Mal’cev conditions for Horn sentences with congruence permutability, Acta Math.
Hungar., 44 (1984), 115—124.
[41 G. Czfpii, Characterizing universal algebras by lattice identities, Thesis for the Candidate’s
Degree, 1983. (Hungarian)
[5} G. CzEpL1i and A. DAy, Horn sentences with (W) and weak Mal’cev conditions, Algebra Uni-
versalis, 19 (1984), 217—230.
{6] G. CzEpL1 and G. HUTCHINSON, An irregular Horn sentence in submodule lattices, Acta Sci.
Math., 51 (1987), 35—38.
[71 G. FroBentus, Theorie der linearen Formen mit ganzen Coefficienten, J. Reine Angew. Math.,
86 (1879), 146—208.
[8] C. HerrMANN und A. P, HunN, Zum Begriff der Charakteristik modularer Verbinde, Math. Z.,
144 (1975), 185—194.
[9] C. HErRrRMANN and W. PoGUNTKE, Axiomatic classes of lattices of normal subgroups, Preprint,
12, Technische Hochschule Darmstadt, 1972.
{10] G. HurcHiNsON, On classes of lattices representable by modules, in: Proc. Univ. Houston
Lattice Theory Conf. (Houston, 1973); pp. 69—94.
[11] G. HutcHINSON, On the representation of lattices by modules, Trans. Amer. Math. Soc., 209
(1975), 311—351.
[11B] G. HuTtcHinsoN, Exact embedding functors between categories of modules, J. Pure Appl.
Algebra, 25 (1982), 807—111.
{12} G. HurcHINSON and G. CzEpLi, A test for identities satisfied in lattices of submodules, Algebra
Universalis, 8 (1978), 269—309.
[13] B. JONNSON, Congruence varieties, 4lgebra Universalis, 10 (1980), 355—394.
[14] N. H. McCoyY, Rings and Ideals, Charus Math. Monographs, 8, Math. Assoc. Amer., Waverly
Press (Baltimore, 1948).

JATE BOLYAI INSTITUTE
ARADI VERTANUK TERE 1
6720 SZEGED, HUNGARY

3



