
THE MATRIX OF A SLIM SEMIMODULAR LATTICE

GÁBOR CZÉDLI

Abstract. A finite lattice L is called slim if no three join-irreducible ele-
ments of L form an antichain. Slim semimodular lattices play the main role

in G. Czédli and E. T. Schmidt [5], where lattice theory is applied to a purely
group theoretical problem. Here we develop a unique matrix representation

for these lattices.

1. Introduction

By a slim lattice we mean a finite lattice M such that J0(M ), the poset (partially
ordered set) of its join-irreducible elements, contains no three-element antichain.
In virtue of R.P. Dilworth [7], a finite lattice M is slim iff J0(M ) is the union of
two chains. By [5, Lemma 6], slim lattices are planar. A lattice L is called (upper)
semimodular, if b ∨ c covers or equals a ∨ c for all a, b, c ∈ L such that b covers a
(in notation, a ≺ b). For the rudiments of lattice theory the reader is referred to
G. Grätzer [8].

Because of their links to combinatorics and geometry, these lattices constitute an
important branch of Lattice Theory; see M. Stern [14] for an overview. Semimodular
and slim semimodular lattices have recently proved to be useful in strengthening a
classical group theoretical result, the Jordan-Hölder theorem; see G. Grätzer and
J. B. Nation [11] for the start and [5] for the final result. Motivated by [11] and
[5], two visual recursive methods of constructing slim semimodular lattices have
recently been given in G. Czédli and E. T. Schmidt [6]. See also Remark 35 later.

Our goal is to present a somewhat less pictorial but equally or even more useful
approach to these lattices. Namely, a unique “matrix representation” and a “vector
representation” of slim semimodular lattices will be given, see Theorem 24 together
with Remarks 30-32. A possible benefit is that a slim semimodular lattice can be
determined by a very little amount of data, see Remark 32.

All lattices occurring in the present paper are assumed to be finite. Since chains
would usually cause unpleasant problems (like a matrix without rows) and they do
not need any representation, our lattices are usually assumed not to be chains; in
short, we deal mostly with “non-chain” lattices.

2. Some preliminary facts

Let K and L be lattices. We say that ϕ : K → L is a cover-preserving join-
homomorphism, if ϕ(a∨b) = ϕ(a)∨ϕ(b) and, in addition, x � y implies ϕ(x) � ϕ(y)
for all a, b, x, y ∈ K. Notice that this is the “right” morphism concept for finite
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2 G. CZÉDLI

semimodular lattices, because cover-preserving join-homomorphic images of these
lattices are semimodular by G. Grätzer and E. Knapp [9, Lemma 16]; see also [14,
Section 6.3]. On the other hand, cover-preserving join-homomorphic images of slim
lattices are trivially slim.

A join-congruence α of L, that is, a congruence of the join-semilattice (L;∨),
is called a cover-preserving join-congruence, if the canonical L → L/α, x 7→ [x]α
mapping is a cover-preserving join-homomorphism. Due to finiteness, L/α is not
only a join-semilattice but it is a lattice. Hence it will be called a quotient lattice
instead of a quotient join-semilattice. As a reformulation of the previously men-
tioned result for a cover-preserving join-congruence α, we note that L/α is slim and
semimodular, provided L is slim and semimodular, respectively.

Let L be a slim semimodular lattice. By a covering square of L we mean a
quadruple $ = (a∧b, a, b, a∨b) such that a∧b ≺ a and a∧b ≺ b, and, consequently,
a ≺ a ∨ b and b ≺ a ∨ b. With this notation, a and b are called the corners of $,
while a∧ b and a∨ b are called the top (element) and the bottom of $, respectively.

Consider a join-congruence α of L. By an α-forbidden covering square we mean
a covering square (a ∧ b, a, b, a∨ b) such that the α-classes [a]α, [b]α, [a ∧ b]α are
pairwise distinct but [a]α = [a ∨ b]α. The importance of this notion is revealed by

Lemma 1 (G. Czédli and E. T. Schmidt [3]). Let α be a join-congruence of a finite
semimodular lattice L. Then α is cover-preserving iff L has no α-forbidden covering
square.

As usual, the principal ideal {x ∈ L : x ≤ a} and the principal filter {x ∈ L :
x ≥ a} are denoted by ↓a and ↑a, respectively. A lattice L is called glued sum
indecomposable, or briefly, indecomposable, if L 6= ↓a ∪ ↑a for all a ∈ L \ {0, 1}.

3. Grid systems and minimal grid systems

By a grid lattice we mean a non-chain lattice that is the direct product of two
finite chains. For a grid lattice G, we fix the notation as follows: J0(G) is the union
of two chains, C = {0 = c0 ≺ c1 ≺ · · · ≺ cm} and D = {0 = d0 ≺ d1 ≺ · · · ≺ dn},
whose intersection is {0}. In figures, C and D will usually be on the southwest
and on the southeast boundary, respectively. Here m,n ∈ N = {1, 2, . . .}, and we
always assume that m ≤ n. Each element of G can uniquely be written in the form

ci ∨ dj, where 0 ≤ i ≤ m and 0 ≤ j ≤ n.

The pair (m,n) is called the type of the grid lattice. Grid lattices of type (1, n) are
also called strips.

Definition 2. By a grid system we mean a pair K = (G;α) such that G is a grid
lattice, α is a cover-preserving join-congruence of G, and G/α is not a chain. Some
notation and terminology:

• typ(K) := typ(G) = (m,n);
• typ`(K) = typ`(G) := m and typr(K) = typr(G) := n;
• typ(K ′) ≤ typ(K ′′) iff typ`(K ′) ≤ typ`(K ′′) and typr(K ′) ≤ typr(K ′′);

Remark 3. Although m = typ`(K) ≤ typr(K) = n is always assumed, many
of the forthcoming arguments do not use this assumption. Then we are allowed
to refer to left-right symmetry, explicitly or implicitly. Notice also that we often
assume that G/α is indecomposable; then it is not a chain iff it consists of at least
three elements.
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Figure 1. Ki satisfies each of (gr1), . . . , (gr4) but (gri)

Let K̂ = (Ĝ; α̂) be another grid system. ThenK and K̂ are said to be isomorphic,
if there is a lattice isomorphism ϕ : G → Ĝ such that ϕ(α) = α̂. We are interested
in grid systems only up to isomorphism.

We are motivated by [3, Corollary 2], see also G. Grätzer and E. Knapp [10],
which asserts that each slim semimodular non-chain lattice L is (isomorphic to)
G/α for an appropriate grid system K = (G;α). This K is far from being unique.
In order to provide a much deeper insight into the theory of slim semimodular
lattices, we will soon designate a unique grid system K to L. Notice that we will
not use [3, Corollary 2]; in fact, it will become a corollary.

Definition 4. By a minimal grid system we mean a grid system K = (G;α) such
that

• G/α is indecomposable;
• whenever K ′ = (G′;α′) is a grid system with G′/α′ ∼= G/α, then typ(K) ≤

typ(K ′).

The above definition does not make it easy to recognize minimal grid systems or
to work with them. In particular, it is not clear whether minimal grid systems are
determined by their quotient lattices; see Remark 29 later. See also Remark 28 for
an alternative definition of minimality.

Therefore we define an equivalent notion. The goal of the current section is
to prove that the two notions are equivalent. The least congruence, that is, the
equality relation, of G will be denoted by ωG. By a principal congruence we mean a
congruence generated by a single pair of elements. Clearly, the adjective “principal”
can be omitted from (gr1) below.

Definition 5. Let K = (G;α) be a grid system. Then K is called a regular grid
system iff it satisfies the following four conditions:

(gr1): ωG is the only (principal) lattice congruence included in α;
(gr2): cm is the least element of [cm]α, and dn is the least element of [dn]α;
(gr3): for k = 1, . . . ,m− 1, (ck, dk) /∈ α;
(gr4): (cm, 1) /∈ α and (1, dn) /∈ α.

As Figure 1 indicates, the conditions listed in Definition 5 are independent.
Concerning (gr3), notice that (gr2) evidently implies that (cm, dm) /∈ α.

In order to prove that minimal grid systems and regular grid systems are the
same, we need some auxiliary statements.

Lemma 6. Let γ be a principal lattice congruence generated by a pair of covering
elements in the grid lattice G = C × D. Then the set of two-element γ-blocks is
either

{
{ci−1∨ds, ci∨ds} : 0 ≤ s ≤ n

}
, for some i ∈ {1, . . . ,m}, or

{
{ct∨dj−1, ct∨
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dj} : 0 ≤ t ≤ m
}
, for some j ∈ {1, . . . , n}. The rest of the γ-blocks are one-element.

Finally, γ is a cover-preserving join-congruence.

Proof. The last statement follows easily from Lemma 1. The rest is evident. �

Lemma 7. If α and β are cover-preserving join-congruences of a finite semimod-
ular lattice L and α ⊆ β, then β/α is a cover-preserving join-congruence of the
quotient lattice L/α.

Proof. By way of contradiction, assume that (C = A ∧ B,A,B,D = A ∨ B) is
a β/α-forbidden covering square in L/α. In particular, (A,D) ∈ β/α. Since the
α-blocks are convex join-subsemilattices (see, e.g., G. Czédli and E. T. Schmidt [4,
Lemma 10]), c :=

∨
C belongs to C. Since x ∨ c ∈ A for any x ∈ A, there is a y ∈

A∩↑c. Choose an element a such that c ≺ a ≤ y. Then C = [c]α < [a]α ≤ [y]α = A,
because c is the largest element of C. But C ≺ A in L/α, so [a]α = A. Similarly, c
has a cover b ∈ B. It follows from semimodularity that (c = a ∧ b, a, b, d := a ∨ b)
is a covering square of L. Clearly, d ∈ D, and (c, a, b, d) is a β-forbidden covering
square. This contradiction completes the proof by Lemma 1. �

Corollary 8. Let K = (G;α) be a minimal grid system or a regular grid system.
Then, for 0 ≤ i < j ≤ m and 0 ≤ k < t ≤ n, (ci, cj) /∈ α and (dk, dt) /∈ α.

Proof. Suppose the contrary, say, (ci, cj) ∈ α. Then (ci, ci+1) ∈ α, because the α-
blocks are convex. Let γ be the join-congruence generated by (ci, ci+1). Clearly, it
is a lattice congruence, and γ ⊆ α. This settles the case when K is regular, so we as-
sume thatK is a minimal grid system. By Lemmas 6 and 7, (G/γ, α/γ) is a grid sys-
tem. The Second Isomorphism Theorem, see S. Burris and H.P. Sankappanavar [2,
Thm. 6.15], gives that G/α ∼= (G/γ)/(α/γ). This together with typ(G/γ) < typ(G)
contradict the minimality of K. �

Lemma 9. Minimal grid systems are regular.

Proof. Let K = (G;α) be a minimal grid system. Then (gr1) follows from Lemma 6
and Corollary 8.

By way of contradiction, we next suppose that, say, cm is not the least element
of [cm]α. Since the α-block [cm]α is a convex set and closed with respect to joins,
there is a j ∈ {0, . . . , n} such that cm−1∨dj ∈ [cm]α, and so (cm−1∨dk, cm∨dk) ∈ α
for all k ∈ {j, . . . , n}. Let G′ = ↓(cm−1 ∨ dn). Clearly, typ(G′) < typ(G). Let α′

be the restriction of α to G′. By Lemma 1, α′ is cover-preserving. The Third
Isomorphism Theorem, see [2, Thm. 6.18], yields that G/α ∼= G′/α′. This together
with typ(K ′) = typ(G′) < typ(G) = typ(K) contradict the minimality ofK. Hence
we get (gr2) by left-right symmetry.

For 1 ≤ k ≤ m − 1, let ek = ck ∨ dk. By way of contradiction, suppose that
(ck, dk) ∈ α. Then [ck]α = [dk]α = [ek]α, and we claim that

(1) [ek]α is comparable with all elements of G/α.

To show (1), let [ci∨dj]α be an arbitrary element ofG/α. If k ≤ i and k ≤ j, or k ≥ i
and k ≥ j, then [ci ∨ dj]α is clearly comparable with [ek]α. Assume that j ≤ k ≤ i.
Then ck ∨ dj ∈ [ek]α by convexity, whence ci ∨ dj = ci ∨ dj ∨ ck ∨ dj ≡ ci ∨ dj ∨ ek

(mod α) yields that [ci ∨ dj]α = [ci ∨ dj]α∨ [ek]α ≥ [ek]α. Since the case j ≥ k ≥ i
is analogous, (1) follows.
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We get from Corollary 8 that [ek]α = [ck]α is distinct from [0]α. So (1) and the
indecomposability of K/α yield that [ck]α = [1]α. Since [ck]α is convex, (ck, cm) ∈
α. This contradicts Corollary 8. Hence left-right symmetry yields (gr3).

Assume that (gr4) fails. Then, say, (dn, em∨dn) ∈ α. Let j be the smallest index
in {0, . . . , n} such that (dj, cm ∨ dj) ∈ α. Observe that j 6= 0 by Corollary 8. Let
i ∈ {0, . . . ,m} be the smallest index with (ci∨dj−1, cm∨dj−1) ∈ α. The minimality
of j gives that 0 < i. Since the covering square with top ci∨dj is not an α-forbidden
square by Lemma 1, we obtain that (ci ∨dj−1, ci∨dj) ∈ α. Hence ci∨dj−1 ∈ [dj]α.
Since ci ∨dj−1 6≥ dn, (gr2) implies [dj]α 6= [dn]α = [1]α. Clearly, [dj]α = [cm ∨dj]α
is comparable with all elements of G/α. Therefore, the indecomposability of G/α
yields that [dj]α = [0]α. This contradicts Corollary 8. �

Given a (fixed) planar diagram of a slim lattice L, the left boundary chain, the
right boundary chain, and the boundary of L are denoted by Bleft(L) and Bright(L),
and B(L) = Bleft(L) ∪ Bright(L), respectively. For example, for L in Figure 2 we
have Bleft(L) = {c∗0, . . . , c∗4, e1, e2, 1}, Bright(L) = {d∗0, . . . , d∗6, 1}, and the elements
of J0(L) are the black-filled ones. Note that Bleft(L) and Bright(L) are maximal
chains in L.

Lemma 10 ([6, Lemmas 2, 4, 6 and 7]). Let L be a slim lattice.
(1) B(L) is uniquely determined, and J0(L) ⊆ B(L). Furthermore, Bleft(L) and

Bright(L) are maximal chains in L.
(2) If x, y ∈ Bleft(L) and x ≺ y, then x is meet-irreducible or y is join-

irreducible.
(3) If, in addition, L is indecomposable, then the set {Bleft(L),Bright(L)} is

uniquely determined, that is, Bleft(L) and Bright(L) are unique up to left-
right symmetry.

(4) Each element of L has at most two covers.

In virtue of part (3), we consider our diagrams up to left-right symmetry. That
is, as if they were drawn on a transparent sheet, and no matter which side of the
sheet is up.

Lemma 11. Let K = (G;α) be a grid system such that G/α is indecomposable.
Then, up to left-right symmetry, [ci]α ∈ Bleft(G/α) for i = 0, . . . ,m, and [dj]α ∈
Bright(G/α) for j = 0, . . . , n.

Proof. We know that [cm]α 6= [0]α, because G/α is not a chain. Let i0 be the
smallest index such that [ci0]α is distinct from [0]α. Since α is cover-preserving,
[ci0]α is an atom ofG/α. By Lemma 10 and indecomposability,G/α has exactly two
atoms. They are necessarily on the boundary ofG/α. So, up to left-right symmetry,
[ci0]α belongs to Bleft(G/α). Clearly, so does [0]α. We prove [ci]α ∈ Bleft(G/α) by
induction on i.

We next assume that i0 < i ≤ m and [ci−1]α ∈ Bleft(G/α). By way of contra-
diction, we also assume that

(2) [ci]α /∈ Bleft(G/α).

Then, since α is cover-preserving, [0]α 6= [ci−1]α ≺ [ci]α. Observe that

(3) [ci]α is join-reducible in G/α.

Indeed, otherwise (2) together with Lemma 10 would imply that [ci]α belongs to
Bright(G/α), whence its unique lower cover, [ci−1]α, would also belong to Bright(G/α).
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Then, belonging to both boundary chains, [ci−1]α would be comparable with all
elements of G/α, contradicting the indecomposability of G/α.

Based on (3), there are indices s and t such that [ci−1]α 6= [cs ∨ dt]α ≺ [ci]α.
Clearly, s < i and 0 < t. Since [ci−1∨dt]α = [ci−1∨cs∨dt]α = [ci−1]α∨ [cs∨dt]α =
[ci]α, there is a smallest j such that [ci−1 ∨ dj]α = [ci]α. We know that 0 < j,
because [ci−1]α 6= [ci]α. Since [ci−1]α ≤ [ci−1 ∨ dj−1]α ≤ [ci−1 ∨ dj]α = [ci]α and
the second inequality is strict by the minimality of j, we obtain that [ci−1]α =
[ci−1 ∨ dj−1]α. Let us consider an arbitrary z ∈ G with [ci−1]α < [z]α. Then, for
y := z ∨ ci−1 ∨ dj−1, we have [z]α = [z]α ∨ [ci−1]α = [z]α∨ [ci−1 ∨ dj−1]α = [y]α.
We have y 6= ci−1 ∨ dj−1, because otherwise [z]α = [y]α = [ci−1 ∨ dj−1]α = [ci−1]α.
Hence ci−1 ∨ dj−1 < y, that is, ci−1 ∨ dj ≤ y or ci ∨ dj−1 ≤ y. In the first case,
[ci]α = [ci−1 ∨ dj ]α ≤ [y]α = [z]α, while [ci]α ≤ [z]α is even more evident in the
second case. This shows that [ci]α is the only cover of [ci−1]α. Therefore the unique
element covering [ci−1]α in Bleft(G/α) is [ci]α. This contradicts (2). �

Let L be a slim, indecomposable non-chain lattice. Then J0(L) has exactly two
maximal elements, which we call the top corners of L. Denoting them by ĉ and d̂

such that h(ĉ) ≤ h(d̂) holds for their heights (understood in L, not in J0(L)), we
define the type of L as

typ(L) = (typ`(L), typr(L)) := (h(ĉ), h(d̂)).

Notice that ĉ and d̂ are on the boundary of L by Lemma 10. Since they are incom-
parable, they belong to distinct boundary chains. This explains the terminology
and allows us to speak of the top left corner and the top right corner of L. (Usually,
ĉ is on the left.)

Lemma 12. Let K = (G;α) be a grid system such that G/α is indecomposable.
Then typ(G/α) ≤ typ(K). Further, if there is a principal lattice congruence γ of
G such that ωG 6= γ ⊆ α, then typ(G/α) < typ(K).

Proof. As always, let (m,n) = typ(K). Since each element of G/α is of the form
[ci ∨ dj]α = [ci]α ∨ [dj]α, we infer that

(4) J0(G/α) ⊆ {[ci]α : 0 ≤ i ≤ n} ∪ {[dj]α : 0 ≤ j ≤ m}.

Since α is cover-preserving, h([ci]α) ≤ i and h([dj]α) ≤ j. This implies typ(G/α) ≤
typ(K).

To prove the second part, observe that K ′ := (G/γ, α/γ) is a grid system with
typ(K ′) < typ(K) by Lemmas 6 and 7. By the Second Isomorphism Theorem,
(G/γ)/(α/γ) ∼= G/α, whence typ(G/α) = typ((G/γ)/(α/γ)) ≤ typ(K ′) < typ(K)
by the first part of the lemma. �

Lemma 13. If K = (G;α) is a regular grid system, then G/α is indecomposable.

Proof. Let K = (G;α) be a regular grid system. Assume, by way of contradiction,
that v = ci ∨ dj ∈ G such that [0]α 6= [v]α 6= [1]α and [v]α is comparable with all
elements of G/α. We can also assume that v is the largest element of [v]α.

Suppose that i < m. If we had [ci+1]α ≤ [v]α, then (v, ci+1 ∨ v) ∈ α would
contradict the maximality of v in its α-block. Hence [ci+1]α > [v]α. This and the
maximality of v yield

(5) (ci+1, ci+1 ∨ v) ∈ α and (v, ci+1 ∨ v) /∈ α,
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Applying Lemma 1 (to the whole G) we infer that the strip [ci, ci+1∨v] = [ci, ci+1∨
dj] does not contain any α-forbidden covering square. This fact together with (5)
imply that each edge of the chain [ci, v] is collapsed by α. Hence, by transitivity,
(ci, v) ∈ α. Let G′ = ↓v, and let α′ be the restriction of α to G′. It is clear
by Lemma 1 that α′ is a cover-preserving join-congruence. Therefore the already
mentioned [9, Lemma 16] yields that G′/α′ is a semimodular lattice. In this lattice,
the height of [v]α′ = [ci]α′ is i by Corollary 8. Similarly, the height of [dj]α′ is j.
We conclude from the Jordan-Hölder theorem applied to G′/α′ that

(6) if i < m, then the length of the interval
[
[dj]α′, [v]α′] is i− j.

In particular, if i < m, then j ≤ i. By left-right symmetry,

(7) if j < n, then (dj+1, dj+1 ∨ v) ∈ α and (v, dj+1 ∨ v) /∈ α,

and

(8) if j < n, then the length of the interval
[
[ci]α′, [v]α′] is j − i.

In particular, if j < n, then i ≤ j.
Suppose that i < m. Then j ≤ i, and j < m ≤ n implies i ≤ j. Hence

i = j < m, whence (6) and (8) imply [ci]α = [v]α = [di]α, which is excluded by
(gr3). Therefore i = m. Since j < m = i ≤ n would imply its opposite, i ≤ j,
we know that m ≤ j. From v 6= 1 we get that j < n. Then (7) yields that
(dn, 1) = (dn ∨ dj+1, dn ∨ dj+1 ∨ v) ∈ α, which contradicts (gr4). �

Lemma 14. Assume that K = (G;α) is a regular grid system. Then [cm]α and
[dn]α are the top corners of G/α.

Proof. Let L = G/α; remember, it is not a chain. Assume that [cm]α is join-
reducible. Then there are x, y ∈ G such that [x]α < [cm]α, [y]α < [cm]α, and
[x∨ y]α = [x]α∨ [y]α = [cm]α. Clearly, x, y /∈ ↑cm. Hence x∨ y /∈ ↑cm as well, and
x ∨ y ∈ [cm]α contradicts (gr2). This proves that [cm]α ∈ J0(L).

If [cm]α not maximal in J0(L), then [cm]α < [dn]α by Lemma 13 and (4). Hence
J0(L) has a largest element, [dn]α. It is the largest element of L, which contradicts
the indecomposability of L, ensured by Lemma 13. �

Proposition 15. A grid system is minimal if and only if it is regular.

Proof. We know from Lemma 9 that minimal grid systems are regular.
Conversely, let K = (G;α) be a regular grid system. Then G/α is an indecom-

posable lattice by Lemma 13. Corollary 8 together with Lemma 14 yield that for
typ(K) = typ(G) we have

(9) typ(K) = typ(G/α).

Therefore, ifK ′ = (G′;α′) is another grid system withG′/α′ ∼= G/α, then Lemma 12
implies typ(K ′) ≥ typ(G′/α′) = typ(G/α) = typ(K). Thus, K is a minimal
grid system. For a later reference we record an evident consequence of typ(K ′) ≥
typ(K):

�(10) |G′| ≥ |G|.

In what follows, the terms minimal grid system and regular grid system will be
equivalent.
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Figure 2. L, the matrix of L, and K∗ = ψ(L)

Definition 16. Let K = (G;α) be a regular grid system. Let L be an indecom-
posable slim semimodular non-chain lattice, and let Bleft(L) and Bright(L) denote
its boundary chains according to Lemma 10.

• Let ϕ(K) be the lattice G/α.
• Let c∗ and d∗ be the top left corner and the top right corner of L. Let
C∗ = {0 = c∗0 ≺ · · · ≺ c∗m∗ = c∗} be the chain Bleft(L) ∩ ↓c∗, and let
D∗ = {0 = d∗0 ≺ · · · ≺ d∗n∗ = d∗} be the chain Bright(L) ∩ ↓d∗. Define a
grid G∗ := C∗ × D∗. Let α∗ ⊆ G∗ × G∗, a relation on G∗, be defined by
(c∗i , d

∗
j) ≡ (c∗h, d

∗
k) (mod α∗) iff c∗i ∨ d∗j = c∗h ∨ d∗k. Finally, let1

ψ(L) = K∗ = (G∗;α∗).

A part of the above definition is visualized in Figure 2, where the α-blocks are
indicated by dotted thick curves. (The matrix and the grey cells will be relevant
only later). It is not hard to see (and it follows trivially from [6]) that L in the
figure is an indecomposable slim semimodular lattice. Here, d∗5 does not belong to
J0(L), the set of the black-filled elements; this indicates that C∗ and D∗ need not
be subsets of J0(L) in general.

Proposition 17. Let K = (G;α) be a regular grid system, and let L be an inde-
composable slim semimodular non-chain lattice. Then

• ϕ(K) is an indecomposable slim semimodular non-chain lattice;
• ψ(L) is a regular grid system;
• ψ(ϕ(K)) ∼= K;
• ϕ(ψ(L)) ∼= L.

Proof. As already mentioned in Section 2, ϕ(K) is a slim semimodular lattice by [9,
Lemma 16 ]. By Lemma 13, it is indecomposable. It is not a chain by definitions.
This proves the first part of the proposition.

Let η : G∗ → L, (c∗i , d∗j) 7→ c∗i ∨ d∗j . Using part (1) of Lemma 10, we obtain that
η is a surjective join-homomorphism. Hence its kernel, α∗, is a join-congruence. It

1If m∗ = n∗, then ψ(L) is defined only up to isomorphism.
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follows that G∗/α∗ = ϕ(ψ(L)) is isomorphic to L. This proves the fourth part of
the proposition.

Suppose that (c∗i , d∗j ) ≺ (c∗h, d
∗
k) in G∗, and keep the above definition of η. Then

(h, k) = (i + 1, j) or (h, k) = (i, j + 1), and the semimodularity of L yields that
η(c∗i , d

∗
j) � η(c∗h, d

∗
k). Hence η is cover-preserving, and so is its kernel, α∗. Since

G∗/α∗ ∼= L is not a chain, ψ(L) = K∗ is a grid system.
Next, we assume that γ 6= ωG∗ is a principal lattice congruence of G∗ such that

γ ⊆ α∗. We already know that G∗/α∗ = ϕ(ψ(K)) ∼= L is indecomposable. Hence,
using Lemma 12, we conclude that typ(L) = typ(G∗/α∗) < typ(K∗) = typ(G∗) =
typ(L). This contradiction proves that (gr1) holds for K∗.

To prove (gr2) for K∗, assume that (c∗, 0) ≡ (c∗i , d
∗
j) (mod α∗). Then, by the

definition of α∗, c∗ = c∗i ∨ d∗j holds in L. But c∗ is join-irreducible, whence c∗ = c∗i
or c∗ = d∗j . If c∗ = d∗j , then c∗ ≤ d∗ yields that 1 = c∗ ∨ d∗ = d∗ ∈ J0(L), which
contradicts the indecomposability of L. Hence c∗ = c∗i , and (c∗, 0) ≤ (c∗i , d

∗
j). This

proves (gr2).
Similarly, if (0, d∗) ≡ 1G∗ = (c∗, d∗) (mod α∗), then d∗ = c∗ ∨ d∗ gives c∗ ≤ d∗,

and we get the same contradiction as above. Hence K∗ satisfies (gr4).
If 1 ≤ k ≤ m − 1 and (c∗k, 0) ≡ (0, d∗k) (mod α∗), then c∗k = c∗k ∨ 0 = 0 ∨ d∗k = d∗k

belongs to both border chains of L, which contradicts its indecomposability. Hence
ψ(L) = K∗ satisfies (gr3), and it is a regular grid system.

To prove the third part of the proposition, let L′ := ϕ(K) = G/α. Its top corners
are [cm]α and [dn]α by Lemma 14. Since α is cover-preserving, Corollary 8 yields
that [ci−1]α ≺ [ci]α for 1 ≤ i ≤ m. All the [ci]α are on the left boundary chain
by Lemma 11. Hence Bleft(L′) ∩ ↓[cm]α = {[c0]α ≺ · · · ≺ [cm]α} and, similarly,
Bright(L′) ∩ ↓[dn]α = {[d0]α ≺ · · · ≺ [dn]α}. Hence, with the notation K ′ =
(G′;α′) := ψ(L′) = ψ(ϕ(K)), we have G′ =

{
([ci]α, [dj]α) : 0 ≤ i ≤ m, 0 ≤ j ≤ n

}

and ([ci]α, [dj]α) ≡ ([ch]α, [dk]α) (mod α′) iff [ci]α ∨ [dj]α = [ch]α ∨ [dk]α in L′,
that is, iff ci ∨ dj ≡ ch ∨ dk (mod α). Hence

τ : ψ(ϕ(K)) → K, ([ci]α, [dj]α) 7→ ci ∨ dj

is clearly an isomorphism. �

4. Grid matrices and source cells

Let L be a slim semimodular non-chain lattice. Since it is planar, the edges of
the (fixed) planar diagram divide the plane into regions. The minimal regions are
called cells. Let Cells(L) denote the set of all cells of L. We know from [9] and
[6, Proposition 1] that the cells (called 4-cells in [6]) and the covering squares of L
are the same. By an α-forbidden cell we mean an α-forbidden covering square, of
course.

Next, let G be a grid lattice. It will be convenient to refer to the cells of G
by their top elements. For 1 ≤ i ≤ m := typ`(G) and 1 ≤ j ≤ n := typr(G),
let $(i, j) denote the cell with top ci ∨ dj. That is, $(i, j) is the covering square
(ci−1 ∨ dj−1, ci ∨ dj−1, ci−1 ∨ dj, ci ∨ dj). With u = ci ∨ dj, the cell $(i, j) is also
denoted by $(u).

By a grid matrix we mean a pair (G;F ), where G is a grid and F is unary
relation on (that is, a subset of) the set Cells(G). The elements of F will be called
F -cells. In figures, the F -cells will be the grey-filled cells. The type of a grid matrix
A = (G;F ) is, of course, defined to be typ(G). Similarly, typ`(A) := typ`(G) and
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Figure 3. A grid matrix and the corresponding 0-1 matrix

typr(A) := typr(G). Another grid matrix, (G′;F ′), is said to be isomorphic with
(G;F ), if there is a lattice isomorphism G → G′ that maps F onto F ′. We are
interested in grid matrices only up to isomorphism. There is an obvious connection
between grid matrices and (ordinary) 0-1 matrices, illustrated by Figure 3 and to
be discussed later. This connection allows us to speak of rows and columns of grid
matrices; they are southwest-northeast and southeast-northwest strips, respectively,
see Figure 3. For example, the i-th row is the set {$(i, j) : 1 ≤ j ≤ n}. For another
example of a grid matrix and the corresponding 0-1 matrix see Figure 2.

Given a cover-preserving join-congruence α of a slim semimodular lattice L, by
a source cell of α we mean a covering square $ = (a ∧ b, a, b, a ∨ b) such that
{a, b} ⊆ [a ∨ b]α but a ∧ b /∈ [a ∨ b]α. By a source element of α we mean the top
of a source cell of α. If there is no danger of ambiguity, we will simply say “source
cell” and “source element” without mentioning α. The set of source cells and that
of source elements of α will be denoted by

(11) Sc(α) and Se(α), respectively.

The purpose of the following definition is to describe regular (that is, minimal) grid
systems by grid matrices.

Definition 18. Let A = (G;F ) be a grid matrix of type (m,n). (Remember that
m ≤ n.) Then A is called a regular grid matrix, if the following five conditions hold:

(mr1): every row of A contains at most one F -cell, and the same holds for
every column;

(mr2): |F | < m;
(mr3): for k = 1, . . . ,m− 1, |F ∩ Cells(↓(ck ∨ dk))| < k;
(mr4): if $(i, n) ∈ F , then there is an i′ such that 1 ≤ i′ < i and there is no
F -cell in the i′-th row;
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Figure 4. Ai satisfies each of (mr1),. . . ,(mr5) but (mri)

(mr5): if $(m, j) ∈ F , then there is a j′ such that 1 ≤ j′ < j and there is
no F -cell in the j′-th column.

Figure 4 witnesses that the conditions in Definition 18 are independent. Given
a grid G, let u = ci ∨ dj be the top of a cell of G, and let

(12) ϑ(u)

denote the smallest join-congruence that collapses u with its two lower covers. The
following definition presupposes (11) and (12).

Definition 19. • Let K = (G;α) be a regular grid system. Then µ(K) =
µ(G;F ), the grid matrix associated with K, is defined to be (G; Sc(α)).

• Let A = (G;F ) be a regular grid matrix. Then the grid system associated
with A is defined to be σ(A) = σ(G;F ) := (G; β) where

(13) β :=
∨

{ϑ(u) : $(u) ∈ F}.

(The join is taken in the congruence lattice of (G;∨).)

Proposition 20. Let K = (G;α) be a regular grid system, and let A = (G;F ) be
a regular grid matrix. Then

• µ(K) is a regular grid matrix;
• σ(A) is a regular grid system;
• σ(µ(K)) = K;
• µ(σ(A)) = A.

The proof of Proposition 20 will need the following auxiliary statements.

Lemma 21 ([4, Lemma 11]). Let αi, i ∈ I, be congruences of a join-semilattice
(L;∨), and let β denote their join in the congruence lattice of (L;∨). Then, for each
x, y in L, (x, y) ∈ β iff there is a k ∈ N0 and there are elements x = z0 ≤ z1 ≤ · · · ≤
zk = vk ≥ vk−1 ≥ · · · ≥ v0 = y in L such that {(zj−1, zj), (vj−1, vj)} ⊆

⋃
i∈I αi for

j = 1, . . . , k.

The following statement is an evident consequence of Lemma 21, and it will be
illustrated in Figure 5.

Corollary 22. Let ϑ(u) be the join-congruence defined at (12). Then
• [u]ϑ(u) = {ci−1 ∨ dj, u, ci ∨ dj−1},



12 G. CZÉDLI

Figure 5. The join-congruence ϑ(u)

• [ck ∨ dj]ϑ(u) = {ck ∨ dj, ck ∨ dj−1} for i < k ≤ m,
• [ci ∨ dt]ϑ(u) = {ci ∨ dt, ci−1 ∨ dt} for j < t ≤ n,
• and all other ϑ(u)-blocks are singletons.

Lemma 23. Let K = (G;α) be a regular grid system. Then, in the congruence
lattice of (G;∨), α =

∨
{ϑ(u) : u ∈ Se(α)}.

Proof. Let β denote the join in question. Clearly, β ⊆ α. To show the reverse
inclusion, it suffices to show, by induction on the height h(x) of x ∈ G, that for any
x ≺ y, either (x, y) /∈ α, or (x, y) ∈ ϑ(u) for some u ∈ Se(α).

If h(x) = 0, that is, x = 0, then (x, y) /∈ α by Corollary 8. So, assume that
h(x) > 0 and (x, y) ∈ α. We conclude from Corollary 8 that x ≺ y is one of the
upper edges of a cell$. If$ ∈ Sc(α) and u denotes the top of$, then (x, y) ∈ ϑ(u),
as desired. Otherwise Lemma 1 implies that the opposite edge x′ ≺ y′ of $ belongs
to α. Since h(x′) < h(x), the induction hypothesis implies (x′, y′) ∈ ϑ(v) for some
v ∈ Se(α), which clearly yields that (x, y) ∈ ϑ(v). This completes the induction. �

Proof of Proposition 20. First we prove that the grid matrix µ(K) is regular. Sup-
pose that u ∈ Se(α), u < v ∈ G, and $(u) and $(v) are in the same row or
column. Then Corollary 22 yields that v /∈ Se(α). This shows that µ(K) satisfies
(mr1). If we had |F | ≥ m, then (mr1), Corollary 22, and Lemma 23 would yield
that (dn, 1) ∈ α, contradicting (gr4). Hence µ(K) satisfies (mr2). Similarly, (mr1),
Corollary 22, Lemma 23, and (gr3) imply that µ(K) satisfies (mr3). Finally, (mr4)
and (mr5) follow from (gr2). This proves the first part of Proposition 20.

Next, with β defined in (13), we want to verify that σ(A) = (G; β) is a regular
grid system. We first show that

(14) if (x, y) ∈ β and x ≺ y, then (x, y) ∈
⋃

{ϑ(u) : $(u) ∈ F}.

Let x ≺ y, (x, y) ∈ β,

(15) γ :=
⋃

{ϑ(u) : $(u) ∈ F},

and let us use the notation of Lemma 21, with ϑ(u) instead of αi. Then there is
a smallest i ∈ N such that zi−1 /∈ ↑y but zi ∈ ↑y; see Figure 6 for an illustration.
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Figure 6. The contradiction derived from F ∩ Cells(I) 6= ∅

Clearly, [x, zi−1] is a chain (a singleton, if i = 1), and all edges of this chain belong
to γ. Hence all edges of the chain [y, zi] belong to γ as well. Consider the interval
I = [x, zi]. Clearly, it is a strip. So, without loss of generality, we can think of
Cells(I) as a subset of a row; then the edges x ≺ y and zi−1 ≺ zi are southeast-
northwest oriented.

Assume, by way of contradiction, that F ∩ Cells(I) 6= ∅. Hence there is a j ∈
{1, . . . , i−1} such that, with the notation v := y∨zj, $(v) = (zj−1, y∨zj−1, zj, v) ∈
F . But (zj−1, zj) ∈ γ, whence Corollary 22 yields an u ∈ G such that $(u) ∈ F
and (zj−1, zj) ∈ ϑ(u). We get from Corollary 22 that u < v and, moreover, $(u)
and $(v) are distinct F -cells in the same column, contradicting (mr1). Hence we
conclude that F ∩ Cells(I) = ∅.

Since the southeast-northwest oriented edge (zi−1, zi) belongs to γ, Corollary 22
yields an F -cell $(w) to the southwest of this edge (in the row of $(zi)). But I
contains no F -cell, so $(w) is to the southwest of the edge (x, y). Hence (x, y) ∈
ϑ(w) ⊆ γ, proving (14).

Next, assume that (dn, 1) ∈ β. By the convexity of [1]β, all the edges ci−1∨dn ≺
ci ∨ dn, i = 1, . . . ,m, are collapsed by β. It follows from Corollary 22 and (14)
that |F | ≥ m, contradicting (mr2). Since (cm, 1) ∈ β would similarly lead to
|F | ≥ n ≥ m, we have shown that (G; β) satisfies (gr4).

If we had [cm]β ≤ [dn]β, then [cm ∨ dn]β would equal [dn]β, whence (dn, 1) ∈ β
would contradict (gr4). Since [dn]β ≤ [cm]β would lead to (cm, 1) ∈ β, a contradic-
tion again, we infer that [cm]β ‖ [dn]β. Hence G/β is not a chain, and (G; β) is a
grid system.

It follows from Corollary 22 and (14) that no two elements of C are collapsed by
β, and the same holds for D. Hence (G; β) satisfies (gr1) by Lemma 6.

Assume that cm is not the least element of [cm]β. The convexity of [cm]β yields a
j such that cm−1 ∨ dj ∈ [cm]β; we can assume that j is minimal with this property.
Since j = 0 would clearly contradict the already established (gr1), 1 ≤ j ≤ n. Then
Corollary 22, (14) and the minimality of j implies that $(cm ∨dj) ∈ F . Consider j′

guaranteed by (mr5). Since there is no F -cell in the j′-th column, Corollary 22 and
(14) imply that (cm ∨ dj′−1, cm ∨ dj′) /∈ β. On the other hand, since [cm]β contains
cm ∨ dj and cm ≤ cm ∨ dj′−1 < cm ∨ dj′ < cm ∨ dj and [cm]β is convex, we also get
the opposite relation, (cm ∨ dj′−1, cm ∨ dj′) ∈ β. This contradiction shows that cm
is the least element of [cm]β, and (gr2) for (G; β) follows by left-right symmetry.
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Finally, assume that 1 ≤ k ≤ m − 1 and (ck, dk) ∈ β. Then (ck, ck ∨ dk) ∈ β,
whence (ck ∨ dj−1, ck ∨ dj) ∈ β for j = 1, . . . , k. Using Corollary 22 and (14) as
before, we derive that Cells(↓(ck ∨ dk)) contains at least k distinct F -cells. This
contradicts (mr3), and we conclude that (G; β) satisfies (gr3). We have proved the
second part of Proposition 20: σ(A) = (G; β) is indeed a regular grid system.

The third part, σ(µ(K)) = K is just the statement of Lemma 23.

To prove the fourth part, we have to show that, for β defined in (13), F = Sc(β).
Let $(u) be a cell of G with left corner a and right corner b, that is, $(u) =
(a ∧ b, a, b, u= a ∨ b).

Assume first that $(u) ∈ F . Then (a, u), (b, u) ∈ ϑ(u) ⊆ β. If (a ∧ b, a) /∈ β
and (a ∧ b, b) /∈ β, then $(u) ∈ Sc(β), as intended. Otherwise we have, say,
(a ∧ b, a) ∈ β. It follows from Corollary 22 and (14) that the row of $(u) contains
an F -cell distinct from $(u), contradicting (mr1). This proves that F ⊆ Sc(β).

Conversely, assume that $(u) ∈ Sc(β). Then (a, u) ∈ β, whence it is in γ by
(14). Hence there is an F -cell $(v) in the column of $(u) to the southeast of $(u)
by Corollary 22. However, $(v) is not to the southeast of the edge a∧b ≺ b, because
(a ∧ b, b) /∈ β. Hence v = u, implying $(u) = $(v) ∈ F . Thus, Sc(β) ⊆ F . �

Keeping Definitions 16 and 19 in mind, the composite of Propositions 17 and 20
reads as follows.

Theorem 24 (Main Theorem). Let L be a (glued sum) indecomposable slim semi-
modular non-chain lattice, and let A = (G;F ) be a regular grid matrix. Then

• Mtx(L) := µ(ψ(L)) is a regular grid matrix;
• Lat(A) := ϕ(σ(A)) is an indecomposable slim semimodular non-chain lat-

tice;
• Lat(Mtx(L)) ∼= L;
• Mtx(Lat(A)) ∼= A.

As an illustration, Figure 2 depicts an L in the scope of this theorem together
with the associated grid matrix Mtx(L) = (G∗;F ), where F is the collection of the
grey cells, and the corresponding 0-1 matrix.

5. A category theoretical version

Next, we briefly give a slightly strengthened formulation of the Main Theorem.
Readers not familiar with the rudiments of category theory may want to skip over
this section.

Corollary 25. Consider the category S of indecomposable slim semimodular non-
chain lattices with isomorphisms, the category R of regular grid systems with iso-
morphism, and the category M of regular grid matrices with isomorphisms. These
three categories are equivalent.

Proof. For K = (G;α) and K ′ = (G′;α′) in R and an isomorphism f : K → K ′, we
define ϕ(f) to be the mapping G/α → G′/α′, [x]α 7→ [f(x)]α′. It is easy to check
that this way ϕ becomes a functor R → S. In order to prove that this functor is
an equivalence, S. Mac Lane [12, Theorem IV.4.1] makes it sufficient to show that
ϕ is full, it is faithful, and each object L of S is isomorphic to the ϕ-image of an
appropriate object K of R.



THE MATRIX OF A SLIM SEMIMODULAR LATTICE 15

The last condition is evident, because L is isomorphic to ϕ(ψ(L)) by Proposi-
tion 17.

Since top corners are necessarily mapped to top corners, it is easy to see that each
object of R has at most two automorphisms, and the same holds for each object of
S. (Note that if an object has two automorphisms then m = n.) Therefore the hom
sets, both in R and S, consist of at most two morphisms. Hence it is straightforward
to check that, for K,K ′ ∈ R, ϕ : hom(K,K ′) → hom(ϕ(K), ϕ(K ′)) is surjective
and injective. That is, ϕ is full and faithful. This proves that ϕ : R → S is an
equivalence functor.

For an M-morphism f , let σ(f) = f (the same mapping). This way σ becomes
a functor M → R. Essentially the same argument as above proves that σ is an
equivalence.

Finally, the composite functor Lat = σ ◦ ϕ is an M → S equivalence. �

Remark 26. In contrast with ϕ, ψ is not a functor. The reason is that ψ(L) is
defined only up to isomorphism in general. Indeed, if m∗ = n∗, then left and right,
that is, c∗ and d∗, can be interchanged. Similarly, µ is not a functor either.

6. Concluding remarks

Remark 27. It is known that each slim semimodular lattice L is a join-homomorphic
image of a grid; see [10], and see also [3] and M. Stern [14, Theorem 6.3.14]. Since
we have not used this result in our proofs, now it becomes an easy corollary of
Proposition 17. Indeed, L is clearly a join-homomorphic image of the grid ψ(L),
provided L is indecomposable, while the non-indecomposable case follows easily
from the indecomposable one.

Remark 28. Replacing “typ(K) ≤ typ(K ′)” by “|G| ≤ |G′|” in Definition 4, we
get an alternative notion of a minimal grid system. Let us call the new variant a
size minimal grid system, while the original notion is referred to as a type minimal
grid system. It is not hard to see that size minimal grid systems and type minimal
grid systems are the same. Indeed, “size minimal” evidently implies “type mini-
mal”, which implies “regular” in virtue of Lemma 9. Finally, (10) in the proof of
Proposition 15 takes care of the implication “regular” ⇒ “size minimal”.

Remark 29. Combining Propositions 15 and 17 we obtain that, for each indecom-
posable slim semimodular non-chain lattice L, there exists a minimal grid system
K = (G;α) with L ∼= G/α, and this K is unique up to isomorphism. While the
existence part seems to be a consequence of [10], the uniqueness part does not.

Remark 30. Grid matrices can easily be described by 0-1 matrices. Namely, the
grid matrix (G;F ) of type (m,n) is described by the 0-1 matrix B = (bij)m×n,
where bij = 1 for $(i, j) ∈ F and bij = 0 for $(i, j) /∈ F . Pictorially, B is derived
in the following way: first we write 1 into every grey cell and we write 0 elsewhere,
then we turn the diagram by 45 degrees clockwise, and finally reflect it with respect
to a horizontal axis. However, we should be careful, because the 0-1 matrix is not
unique when m = n. (To make it unique we should make no distinction between a
matrix and its transposed matrix.)

Remark 31. Another way to describe matrices is to use vectors. Given a grid
matrix A = (G;F ), its grid vector ~v(A) = ~v(G;F ) is defined to be

~v(A) =:= (typ`(A), typr(A) : (i1, j1), . . . , (it, jt)),
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Figure 7. The glued sum decomposition of L

where F = {$(i1, j1), . . . , $(it, jt)}. The “: (i1, j1), . . . , (it, jt)” part is missing if
F = ∅. For example, the grid vector of the matrix in Figure 3 is

(4, 5 : (1, 3), (2, 1), (3,4)),

while that of the matrix in Figure 2 is

(4, 6 : (1, 5), (2, 2), (4,6)).

As the first attempt to make the grid vector unique, we can try to stipulate that
(i1, j1), . . ., (it, jt) should be listed in lexicographic order; however, it helps only
when m < n. Indeed, the grid vectors (4, 4 : (2, 4), (3, 1)) and (4, 4 : (1, 3), (4, 2))
determine the same grid matrix. (To make the grid vector of a grid matrix unique,
we should make no distinction between two grid vectors if one of them can be
“flipped” and then rearranged to the other one.)

In virtue of Theorem 24, an indecomposable slim semimodular non-chain lattice
L is perfectly described by its grid vector ~v(Mtx(L)). Observe that ~v(Mtx(L))
provides a very concise description of L up to isomorphism.

Remark 32. Each slim semimodular lattice L can be decomposed as a glued sum

(16) L1 + · · ·+ Lt (t ∈ N)

such that each Li is either a chain or an indecomposable slim semimodular non-
chain lattice and each chain summand in (16) is as long as possible. See Figure 7
for an illustration. This decomposition is unique. Although Mtx(Li) is undefined
if Li happens to be a chain, let us agree that then ~v(Mtx(Li)) simply means the
length of the chain Li, which is a nonnegative integer. With this convention, L can
satisfactorily be described by the grid hypervector

(17)
(
~v(Mtx(L1)); . . . ;~v(Mtx(Lt))

)

up to isomorphism. This is the most concise known description of a slim semimod-
ular lattice L. For example, L from Figure 7 is described by the grid hypervector

(
(1, 1); 2; (2, 2 : (2, 2))

)
.

Note that for arbitrary finite lattices the most concise known description is given
by R. Wille [15].
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Remark 33. According to [9] (cited in [6, Proposition 9]), all planar semimodular
lattices can easily be obtained from slim ones. This together with (17) can be used
to describe a planar semimodular lattice with a very little amount of data; the
straightforward technical details will be omitted.

Remark 34. It is natural to ask what happens if J0(L) is the union of three but
not fewer chains; however, there is not much hope for a satisfactory answer. While
some of our auxiliary statements could be saved for this situation, the difficulty
is well exposed by the following consideration. Let G3 be the direct product of
three non-singleton chains, and let α be a cover-preserving join-congruence of G3.
We can assume that J0(G3/α) is not the union of two chains. Then K3 = (G3;α)
is a “three-dimensional” grid system, and we know from [3] that L is a cover-
preserving join-homomorphic image of an appropriate K3. Define Se(α) as the set
of v ∈ G3 \ J0(G3) satisfying

• v is not the least element of [v]α; and
• for any covering square $ with top v and for any corner x of $, α does not

collapse x with the bottom of $.
It follows from Lemma 1 that α collapses each v ∈ Se(α) with all its lower covers.
Then, as it is easy to see, (gr1) still implies that Se(α) determines α. The real
problem is how to characterize those subsets X of G3 \ J0(G3) that are of the form
Se(α), (G3;α) being a three-dimensional grid. The key to the “two-dimensional
case” is the easy observation that X is of this form iff it is an antichain. However,
this condition is not sufficient even when G3 is the eight-element Boolean lattice.
Indeed, then two coatoms form a subset that cannot be Se(α).

Remark 35. Let S2 and M2 denote the class of slim semimodular lattices and that
of modular lattices generated by two chains, respectively. An anonymous referee has
pointed out that there is an interesting analogy between these two classes. Indeed,
semimodularity is a generalization of modularity, and slimness means being join-
generated by two chains. A classical result of G. Birkhoff [1, Section III.7] states
that all members of M2 are distributive. Note that after presenting his proof,
Birkhoff acknowledges that similar arguments were used by O. Schreier [13] and
and H. Zassenhaus [16]. Now that M2 has this very strong property, it is not so
surprising that the analogous class, S2, has some nice properties as well. Like [9],
[10] and [6], the present work is a part of the search for these properties.

Acknowledgment. The author is grateful to both referees for their valuable com-
ments, including Remark 35.
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semimodular lattices, Algebra Universalis, to appear.



18 G. CZÉDLI
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