
SOME NEW CLOSURES ON ORDERS

GÁBOR CZÉDLI

Abstract. For each of the relations “less than or equal to”, “less than”,
“covered by”, and “covered by or equal to”, we characterize finite orders

(also called posets) with the property that the pair of Galois closure op-
erators induced by the relation in question coincides with the pair of clo-

sure operators introduced and applied in our previous paper in 2007. We
also consider the “less than or equal to” relation between the set of join-

irreducible elements and the set of meet-irreducible elements, and we show
that the above-mentioned pairs of closure operators coincide for finite mod-

ular lattices.

1. Introduction and the results

It goes back to Galois that each (binary) relation ρ ⊆ A(0) × A(1) deter-
mines a pair ~G = ~G(A(0), A(1), ρ) of closure operators. Another pair, ~C =
~C(A(0), A(1), ρ), of closure operators has been introduced in [1]; its definition is
postponed to the next section. For the relation considered in [1], ~C 6= ~G, and
this is the main reason that ~C was so useful there. This leads to

Problem 1. Characterize relations ρ with ~C(A(0), A(1), ρ) = ~G(A(0), A(1), ρ).

A reasonable answer can be expected only for particular classes of relations.
The present paper deals with some familiar relations for orders (also called
posets). Only the rudiments of lattice theory is assumed to be known by the
reader.

For a finite lattice L, let J(L) =
{
x ∈ L \ {0} : x is join-irreducible

}
and

M (L) =
{
x ∈ L \ {1} : x is meet-irreducible

}
. Notice that

(
J(L),M (L),≤

)
is

known to be the least amount of data to describe an arbitrary finite lattice L,
see Wille [4], and it is called the standard context of L in the literature of Formal
Concept Analysis.
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Proposition 2. Let L be a finite lattice. If L is modular, then

~C
(
J(L),M (L),≤

)
= ~G

(
J(L),M (L),≤

)
.

We will point out in Remark 7 that the converse is not true.
For a finite order Q = (Q,≤), let max(Q) resp. min(Q) denote the set of

maximal resp. minimal elements of Q. The length of Q, denoted by length(Q),
is defined to be max{length(C) : C ⊆ Q and C is a chain}. ForX ⊆ Q, let L(X)
denote the set {y ∈ Q : y ≤ x for all x ∈ X} of lower bounds of X. Dually,
U (X) denotes the set of upper bounds of X. Note that U (∅) = L(∅) = Q. We
will write U (a, b) rather than U ({a, b}), and the same convention applies for L.

The following statements deal with the strict ordering relation, the covering
relation, the ordering relation, and the “covers or equal” relation of finite orders,
respectively.

Proposition 3. Let Q = (Q,≤) be a finite order. Then ~C(Q,Q,<) is equal to
~G(Q,Q,<) if and only if U

(
Q \ max(Q)

)
6= ∅ and L

(
Q \ min(Q)

)
6= ∅.

Corollary 4. Let Q = (Q,≤) be a finite order. Then ~C
(
Q,Q,≺

)
= ~G

(
Q,Q,≺

)

if and only if length(Q) ≤ 1, U
(
Q \ max(Q)

)
6= ∅ and L

(
Q \ min(Q)

)
6= ∅.

The disjoint union (or cardinal sum) of the orders (Q1,≤1) and (Q2,≤2) is
(Q1 ∪Q2,≤1 ∪ ≤2) where Q1 is assumed to be distinct from Q2. For example,
an n-element antichain is the disjoint union of n chains of length 0.

Theorem 5. Let Q = (Q,≤) be a finite order. Then ~C(Q,Q,≤) = ~G(Q,Q,≤)
if and only if either |max(Q)| = |min(Q)| = 1, or |max(Q)| ≥ 2, |min(Q)| ≥ 2
and(

∀x, y, z, t ∈ max(Q)
) (
x 6= y and z 6= t imply L(x, y) = L(z, t)

)
,

(
∀x, y, z, t ∈ min(Q)

) (
x 6= y and z 6= t imply U (x, y) = U (z, t)

)
.

As one may expect, Theorem 5 will be needed in the proof of the following
theorem; the orders mentioned in this theorem are defined by Figure 1.
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Figure 1. Tmn, Gmn and Hmn
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Theorem 6. Let Q = (Q,≤) be a finite order. Then ~C(Q,Q,�) = ~G(Q,Q,�)
if and only if one of the following possibilities holds:

• Q is (isomorphic to) Tmn for some m,n ≥ 1;
• Q is Gmn for some m,n ≥ 2;
• Q is Hmn for some m,n ≥ 2;
• length(Q) ≤ 1 and Q is a disjoint union of chains.

2. More about ~C(A(0), A(1), ρ)

While ~G(A(0), A(1), ρ) is very important in mathematics and it has applica-
tions even outside mathematics, see Wille [4], the definitions below will look
neither friendly nor natural at the first sight. However, the proof of the main
result of [1] is based on ~C, although the result itself has nothing to do with
closure operators. Some hopes of further applications of ~C are mentioned in [2]
and [3].

The notation (A(0), A(1), ρ) will express that A(0) and A(1) are nonempty sets
and ρ ⊆ A(0) × A(1) is a binary relation. Let us fix (A(0), A(1), ρ), and let

ρ0 = ρ and ρ1 = ρ−1 (1)

throughout the paper. The set of all subsets of A(i) will be denoted by P (A(i)).
It is often convenient to depict (A(0), A(1), ρ) in the usual form: a binary

table with row labels from A(0), column labels from A(1), and a cross in the
intersection of the x-th row and the y-th column iff (x, y) ∈ ρ. For example,

A(0) = {a1, . . . , a5}, A(1) = {b1, . . . , b4}, ρ :

b1 b2 b3 b4
a1 × ×
a2 × ×
a3 × × ×
a4 ×
a5 × × ×

. (2)

As usual, a mapping D(i) : P (A(i)) → P (A(i)) is called a closure operator on
A(i), if X ⊆ D(i)(X) ⊆ D(i)(Y ) = D(i)

(
D(i)(Y )

)
holds for all X ⊆ Y ⊆ A(i).

If the D(i), i = 0, 1, are closure operators, then ~D = (D(0),D(1)) is called a
pair of closure operators. If ~E is another such pair, then ~D ≤ ~E means that
D(i)(X) ⊆ E (i)(X) for all i ∈ {0, 1} and all X ∈ P (A(i)).

For X ∈ P (A(i)), let

Xρi = {y ∈ A(1−i) : for all x ∈ X, (x, y) ∈ ρi},

and, again for X ∈ P (A(i)), define

G(i)(X) := (Xρi)ρ1−i =
⋂

y∈Xρi

({y}ρ1−i) .
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Then ~G = (G(0),G(1)) is the well-known pair of Galois closure operators.
Next, we define a sequence ~Ci, i = 0, 1, 2, . . . , of pairs of of closure operators.

For X ∈ P (A(i)), let

Xψi := {Y ∈ P (A(1−i)) : there is a surjection ϕ : X → Y with ϕ ⊆ ρi}.

Clearly, ∅ψi = {∅}, so ∅ψi is never empty. Using the table of ρ, the elements of
Xψi are easy to imagine pictorially. For example, let i = 0, that is, let X ⊆ A(0)

be a set of rows. Select a cross in each row of X, then the collection of the
columns of the selected crosses is an element of Xψ0, and each element of Xψ0

is obtained this way. For example, if X = {a1, a2} in the table given in (2), then
Xψ0 consists of {b1}, {b1, b2}, {b1, b3} and {b2, b3}.

Let ~C0 = ~G. If ~Cn is already defined then let

C(i)
n+1(X) := C(i)

n (X) ∩
⋂

Y ∈ Xψi

⋃

y ∈ C(1−i)
n (Y )

{y}ρ1−i . (3)

This defines the pair ~Cn+1 = (C(0)
n+1, C

(1)
n+1).

The easiest way to digest formula (3) is to think of it pictorially. For example,
let i = 0 and X ⊆ A(0), and suppose that ~Cn = (C(0)

n , C(1)
n ) is already well-

understood. Then a row z belongs to C(0)
n+1(X) if and only if z ∈ C(0)

n (X) and, in
addition, for each set Y ∈ Xψ0 of columns there is a column y in C(1)

n (Y ) such
that y intersects the row z at a cross. (Notice that y need not be unique and it
depends on Y .)

Finally, let

~C = (C(0), C(1)) :=
( ∞∧

n=0

C(0)
n ,

∞∧

n=0

C(1)
n

)
,

which means that, for all X ∈ P (A(i)) and i ∈ {0, 1}, C(i)(X) =
⋂∞

n=0 C
(i)
n (X).

It was routine to prove in [1] that we have indeed defined pairs of closure
operators. Clearly, ~G = ~C0 ≥ ~C1 ≥ ~C2 ≥ · · · ≥ ~Cn ≥ · · · ≥ ~C holds. It
follows from [1] in a straightforward way that, for each n ∈ N, there is a finite
(A(0), A(1), ρ) such that ~C0 > ~C1 > ~C2 > · · · > ~Cn. (For n = 6, this is witnessed
by (A(0), A(1), ρ) of Figure 2 in [1].)

Notice that while ~G(A(0), A(1), ρ) induces two dually isomorphic lattices, this
fails for ~C(A(0), A(1), ρ) in general. Indeed, in case of the table given in (2),
a straightforward but tedious calculation1 shows |{X ∈ P (A(0)) : C(0)(X) =
X}| = 12 while |{X ∈ P (A(1)) : C(1)(X) = X}| = 10.

1Alternatively, the 2006 computer program in the author’s web site can do this calculation.
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3. Proofs

Notice that ~C = ~G iff ~C1 = ~G, and this fact will be used implicitly in our
proofs. Given a context (A(0), A(1), ρ), by the dual context we mean

(A(1), A(0), ρ−1).

Clearly, if Ld = (Ld,≤d) denotes the dual of L, then
(
J(Ld),M (Ld),≤d

)
is the

dual of the context
(
J(L),M (L),≤

)
. Since the conditions in all of our statements

are self-dual, we will show only that C(0)
1 = G(0), since this will imply ~C1 = ~G

by duality. Remember that ρ = ρ0 always denotes the relation in question, and
ρ1 stands for ρ−1. Formula (1) will be used often without referring to it.

Proof of Proposition 2. Let L be a finite modular lattice. Denote J(L) and
M (L) by J and L. The restriction of the lattice ordering to J × M will also
be denoted by ρ = ρ0. Since modularity is a self-dual lattice property, by the
duality principle it suffices to show that C(0)

1 = G(0), that is, C(0)
1 (X) = G(0)(X)

for all X ⊆ J .
IfX = ∅, then ∅ρ0 = M implies G(0)(∅) = Mρ1 = ∅, whence C(0)

1 (∅) = G(0)(∅).
Next, let X = {a1, . . . , an} ⊆ J with |X| = n ≥ 1, and let

x ∈ G(0)(X) = (Xρ0)ρ1 = ([a1 ∨ · · · ∨ an) ∩M )ρ1 = (a1 ∨ · · · ∨ an] ∩ J

be an arbitrary element. Let Y = {b1, . . . , bn} ∈ Xψ0. This means that aj ≤
bj ∈M for j = 1, . . . , n (but the bj are not necessarily distinct). Then, dually to
the displayed formula above, G(1)(Y ) = [b1 ∧ · · ·∧ bn)∩M . Let b = b1 ∧ · · ·∧ bn.
According to formula (3), we have to show that

there exists a y ∈ [b)∩M such that x ≤ y.

This is evident when x ∨ b 6= 1, since [x ∨ b) ∩M is not empty in this case. So,
by way of contradiction assume that x ∨ b = 1. Then

1 = x ∨ b = (b1 ∧ · · · ∧ bn) ∨ x ≤ b1 ∨ · · · ∨ bn ∨ x
= (a1 ∨ b1) ∨ · · · (an ∨ bn) ∨ x = (b1 ∨ · · · ∨ bn) ∨ (a1 ∨ · · · ∨ an ∨ x)
= (b1 ∨ · · · ∨ bn) ∨ (a1 ∨ · · · ∨ an)

= (a1 ∨ b1) ∨ · · · (an ∨ bn) = b1 ∨ · · · ∨ bn.

Hence b1 ∨ · · · ∨ bn = 1 and this happens in the interval [b, 1] = [b, b∨ x]. Since
L is modular, this interval is isomorphic to the interval [b∧ x, x]. But x ∈ J , so
x is join irreducible also in the interval [b∧ x, x], whence 1 is join irreducible in
[b, 1], and we conclude that bj = 1 for some j. But this is a contradiction, since
bj ∈M and 1 /∈ M . Thus we have shown that C(0)

1 (X) = G(0)(X). �
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Remark 7. There are finite non-modular lattices L and K such that

~C
(
J(L),M (L),≤

)
= ~G

(
J(L),M (L),≤

)
and

~C
(
J(K),M (K),≤

)
6= ~G

(
J(K),M (K),≤

)
.

Indeed, it is easy to check that both five-element non-modular lattices, N5

andM3, can serve as L. The simplest appropriateK is probably the n-crown, for
n ≥ 4, with additional 0 and 1. That is, we can choose K as the (2n+2)-element
lattice ({0, a0, . . . , an−1, b0, . . . , bn−1, 1},≤) where the {a0, . . . , an−1} is the set
of atoms, {b0, . . . , bn−1} is the set of coatoms, and aj < bk iff k ∈ {j, j + 1}
(here j + 1 is understood modulo n). For n = 4, a trivial computation shows
that K does the job. Since, for any n ≥ 4, K is just the straightforward lattice
theoretic reformulation of (A(0), A(1), ρ) of Figure 2 in [1]; the details about K
are omitted.

Proof of Proposition 3. Let us suppose that ~C1 = ~C1(Q,Q,<) coincides with
~G = ~G(Q,Q,<). Let A = Q \ max(Q) and B = Q \ min(Q). By way of
contradiction, suppose that U (A) or L(B) is empty. By the duality principle, it
suffices to consider the case when U (A) is empty. Then A 6= ∅, Aρ0 ⊆ U (A) = ∅,
whence G(0)(A) = (Aρ0)ρ1 = ∅ρ1 = Q. Let x ∈ max(Q) ⊆ Q = G(0)(A) =
C(0)
1 (A). Clearly, Aψ0 is not empty, so we can choose a Y ∈ Aψ0. However,

since x is a maximal element, x ∈ {y}ρ1, i.e. x < y, holds for no y ∈ G(1)(Y ).
Hence x /∈ C(0)

1 (A), a contradiction.
To prove the converse, suppose that A has an upper bound a and B has a

lower bound b. We can assume that a ∈ max(Q) and b ∈ min(Q). If A or B is
empty, then Q is an antichain, ρ = ∅, and ~C1 = ~G follows easily from the fact
that Xψi is empty when X is nonempty. Hence we assume that neither A nor
B is empty.

Clearly, x < a for all x ∈ A, whence a /∈ minQ, that is, a ∈ B. Similarly,
b < y for all y ∈ B and b ∈ A. In particular, b < a. Notice that, for any
∅ 6= U ⊆ Q, Uρ0 ⊆ B and Uρ1 ⊆ A.

Let X be a subset of Q. If X = ∅, then G(0)(∅) = (∅ρ0)ρ1 = Qρ1 = ∅ yields
C(0)
1 (∅) = G(0)(∅). If X 6⊆ A then Xψ0 = ∅ yields C(0)

1 (X) = G(0)(X) again.
Hence we can assume that ∅ 6= X ⊆ A. Then Xρ0 ⊇ {a} yields

G(0)(X) = (Xρ0)ρ1 ⊆ {a}ρ1 = L(a) \ {a} ⊆ A.

Suppose that x ∈ G(0)(X) and let Y ∈ Xψ0 be arbitrary. Then Y ρ1 ⊆ A gives
G(1)(Y ) = (Y ρ1)ρ0 ⊇ Aρ0 3 a. Since x ∈ A, x ∈ {a}ρ1. Hence a can play
the role of y in formula (3), and we obtain that x ∈ C(0)

1 (X). This shows that
C(0)
1 = G(0). �
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Proof of Corollary 4. Suppose length(Q) ≥ 2. Then we can choose a, b, c ∈ Q
such that a ≺ b, b ≺ c and c ∈ max(Q). Let X = {a, b}. Then G(0)(X) =
({a, b})ρ0)ρ1 = ∅ρ1 = Q. If C(0)

1 = G(0), then c ∈ Q = G(0)(X) = C(0)
1 (X) and

Y = {b, c} ∈ Xψ0 imply that c ∈ {y}ρ1, i.e. c ≺ y, for some y ∈ G(1)(Y ),
which contradicts c ∈ max(Q). Hence C(0)

1 = G(0) implies length(Q) ≤ 1. Then
(Q,Q,≺) is exactly the same context as (Q,Q,<), and the rest of the statement
follows from Proposition 3. �

Proof of Theorem 5. Assume that ~C1 = ~G. Suppose first that |min(Q)| = 1,
i.e., Q has a unique least element 0. Let X = ∅. Then C(0)

1 (X) = G(0)(X) =
Qρ1 = {0} and Y = ∅ ∈ Xψ0 yields that there is a y ∈ G(1)(Y ) with 0 ∈ {y}ρ1.
Thus G(1)(Y ) = G(1)(∅) = (∅ρ1)ρ0 = Qρ0 = {z ∈ Q : t ≤ z for all t ∈ Q} is
nonempty. Therefore Q has a greatest element and |max(Q)| = 1. The duality
principle gives that |min(Q)| = 1 iff |max(Q)| = 1, and the condition of the
theorem holds.

Next, suppose that |min(Q)| > 1. Then |max(Q)| > 1 either. By way of
contradiction, let us assume that L(u, v) (where u 6= v) is not constant on
max(Q). Then we can choose a three-element subset {a, b, c} of max(Q) such
that L(a, b) 6⊆ L(a, c). Then there is an element x ∈ L(a, b) \ L(a, c). Let
X = {a, b}. We obtain G(0)(X) = (Xρ0)ρ1 = L

(
U (a, b)

)
= L(∅) = Q, so

c ∈ G(0)(X). Let Y = X. Then Y ∈ Xψ0 and ~C1 = ~G imply that there
is an element y ∈ G(1)(Y ) with c ∈ {y}ρ1, i.e, c ≤ y. Since c ∈ max(Q),
c = y ∈ G(1)(Y ) = (Y ρ1)ρ0 = U

(
L(a, b)

)
. This and x ∈ L(a, b) yield x ≤ c,

contradicting x ∈ L(a, b)\L(a, c). We have shown that L is constant on {(u, v) :
u, v ∈ max(Q) and u 6= v}. It follows from the duality principle that U is
constant on {(u, v) : u, v ∈ min(Q) and u 6= v}.

In order to prove the converse, suppose first that 0, 1 ∈ Q, i.e., |max(Q)| =
|min(Q)| = 1. Then 1 ∈ U (Q) = U

(
L(∅)

)
= G(1)(∅). Since G(1) is monotone,

1 ∈ G(1)(Y ) for any Y ⊆ Q. Moreover, {1}ρ1 = Q. Hence 1 can always serve as
y in formula (3), and we conclude that C(0)

1 = G(0).
From now on we suppose that |max(Q)| = |min(Q)| ≥ 2, L is constant on

{(u, v) : u, v ∈ max(Q) and u 6= v}, and U is constant on {(u, v) : u, v ∈
min(Q) and u 6= v}. Then G(0)(∅) = L

(
U (∅)

)
= L(Q) = ∅ gives C(0)

1 (∅) =
G(0)(∅). So, it suffices to consider a nonempty subset X of Q.

Let Y ∈ Xψ0. Then Y is nonempty either. We distinguish two cases according
to U (Y ).

First, suppose that U (Y ) is nonempty, and let us fix an element z ∈ U (Y ).
Since Y ∈ Xψ0, U (X) ⊇ U (Y ), so U (X) ⊇ {z}, whence G(0)(X) = L

(
U (X)

)
⊆

L({z}) = {z}ρ1. On the other hand, the transitivity of the ordering gives
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U (Y ) ⊆ U
(
L(Y )

)
= G(1)(Y ), whence z ∈ G(1)(Y ). Now it is clear from formula

(3) that C(0)
1 (X) = G(0)(X).

Secondly, we suppose that U (Y ) is empty. Then there are y1, y2 ∈ Y and
z1, z2 ∈ max(Q) such that y1 ≤ z1, y2 ≤ z2 and z1 6= z2. Since G(1)(Y ) =
U

(
L(Y )

)
is an order filter including Y , {z1, z2} ⊆ G(1)(Y ). Now let x be an

arbitrary element of G(0)(X), and choose an element x̃ ∈ max(Q) such that
x ≤ x̃. If x̃ = zj for some j ∈ {1, 2}, then we can chose y = x̃ = zj in formula
(3). Hence we can assume that |{x̃, z1, z2}| = 3. Using the assumption that L is
constant for distinct maximal elements we obtain

x̃ ∈ G(1)({x̃, z1}) = U
(
L(x̃, z1)

)
= U

(
L(z1, z2)

)

= G(1)({z1, z2}) ⊆ G(1)
(
G(1)(Y )

)
= G(1)(Y ),

and therefore the choice y = x̃ for formula (3) works again. This shows that
C(0)
1 (X) = G(0)(X) for any X ∈ P (A(0)). So, C(0)

1 = G(0). �

Proof of Theorem 6. Consider (Q,Q,�), and suppose Q is one of the orders
listed in the theorem. We have to show that C(0)

1 = G(0). If length(Q) ≤ 1,
then (Q,Q,�) coincides with (Q,Q,≤), whence Theorem 5 easily implies that
C(0)
1 = G(0). So we can assume that length(Q) ≥ 2. Then Q is Tmn for some
m,n ≥ 1. Let

K =
{
X ∈ P (Q) :

(
∀Z ∈ P (Q)

) (
Z ⊂ X⇒G(0)(Z) ⊂ G(0)(X)

)}
.

If C(0)
1 and G(0) agreed on K, then, for any X ∈ P (Q), we could take a minimal

element Z of {X ′ ∈ P (Q) : X ′ ⊆ X and G(0)(X ′) = G(0)(X)}, and from Z ∈ K
we could deduce

C(0)
1 (X) ⊇ C(0)

1 (Z) = G(0)(Z) = G(0)(X),

implying C(0)
1 = G(0).

Hence it suffices to show that C(0)
1 (X) = G(0)(X) holds for all X ∈ K. More-

over, it suffices to consider a small subset K ′ of K with the following property:
for each X in K, there is an automorphism of Q that maps X to an element of
K ′. Let A = {a1, . . . , am}, A+ = A∪{b}, D = {d1, . . . , dn}, D+ = D∪{b}, and
assume that m ≥ 2 and n ≥ 2. (The case m = 1 or n = 1 is simpler and will
not be detailed.)

Let us compute G(0)(X) for “all” X ⊆ Tmn with |X| ≤ 2; “all” means that
“all apart from automorphisms of Tmn”. The possible subsets X are listed in
the first row of Table (4) below with the abbreviation x and xy for {x} and
{x, y}, respectively. The corresponding values G(0)(X) in the second row imply
easily that each member of K consists of at most two elements. Hence the third
row of the table defines an appropriate K ′. (The fourth row, which is useful for
later computations, comes easily from the second row by duality.)
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X ∅ a1 a1, a2 b a1, b a1, d1 b, d1 d1 d1, d2

G(0)(X) ∅ a1 A+ b A+ Q b, d1 b, d1 Q
X ∈ K ′? yes yes yes yes yes yes no yes yes
G(1)(X) ∅ a1, b Q b a1, b Q D+ d1 D+

(4)

Now, we can easily list all possible Y ’s from formula (3) (up to isomorphism,
again), and then we can check that C(0)

1 (X) = G(0)(X) for X ∈ K ′; the tedious
details will be omitted.

In order to prove the converse direction, assume that ~C1 = ~G. If length(Q) =
0 then Q is an antichain, which is a disjoint union of chains, and there is nothing
to prove.

Next, assume that length(Q) = 1 andQ is not a disjoint union of chains. Then
Theorem 5 applies, so 2 ≤ |max(Q)|, 2 ≤ |min(Q)|, L is constant on {(u, v) :
u, v ∈ max(Q), u 6= v} and U is constant on {(u, v) : u, v ∈ min(Q), u 6= v}.
Since Q is not a disjoint union of chains, there are a1, b1, b2 ∈ Q such that
a1 < b1 and a1 < b2, or dually. So we can assume that a1 < b1 and a1 < b2. If
we had an element c ∈ max(Q) ∩ min(Q), then ∅ = L(b1, c) 6= L(b1, b2) ⊇ {a1}
would lead to a contradiction. Therefore, taking length(Q) = 1 into account, we
obtain that

Q is the disjoint union of max(Q) and min(Q). (5)

Notice also that the diagram of Q is connected as a graph, since otherwise we
could find an x ∈ max(Q) with L(b1, x) = ∅. Let

B = {x ∈ max(Q) : a1 ≤ x}, and remember that b1, b2 ∈ B.

Since a1 is connected with all elements of min(Q) in the graph and |min(Q)| ≥ 2,
there is an a2 ∈ min(Q) \ {a1} which is less than some element of B. So we can
assume that a2 < b1. Let

A := {x ∈ min(Q) : x < b1}, and notice that a1, a2 ∈ A.

If we had an element c ∈ max(Q) \ B, then a1 /∈ L(b1, c) = L(b1, b2) ⊇ {a1}
would be a contradiction. Hence B = max(Q), and we obtain A = min(Q)
similarly. Hence, by (5), Q is the disjoint union of A and B.

Let m = |A| and n = |B|. If, for a ∈ A and b ∈ B, a < b holds only when
{a1, b1} ∩ {a, b} 6= ∅, then Q is Hmn. Otherwise we may suppose that a2 < b2.
Then, for any b ∈ B \ {b1}, a2 ∈ L(b1, b2) = L(b1, b) yields a2 < b. Hence
U (a1, a2) = B, and for any a ∈ A\{a1} we have U (a1, a) = U (a1, a2) = B. This
means that Q = Gmn, and the case length(Q) = 1 is settled.

Next, suppose that length(Q) ≥ 2, and introduce the notation

mid(Q) = Q \
(
max(Q) ∪ min(Q)

)
.
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Let us observe that for any u, v ∈ Q,

if u ≺ v then G(0)({u, v}) = {x : x � v}

and G(1)({u, v}) = {x : u � x}. (6)

Indeed, G(0)({u, v}) = ({u, v}ρ0)ρ1 = {v}ρ1 = {x : x � v}, and the other
equation follows by duality.

First of all, we consider the case when length(Q) ≥ 3. Then there are elements
a, b, c ∈ Q and d ∈ max(Q) such that a ≺ b ≺ c ≺ d. Let X = {b, d}. Then
C(0)
1 (X) = G(0)(X) = (Xρ0)ρ1 = ∅ρ1 = Q. Let Y = {c, d} ∈ Xψ0. Then,

for all y ∈ G(1)(Y ), we have c ≤ y by (6), so a 6� y, whence a /∈ {y}ρ1,
and a /∈ C(0)

1 (X) = Q by formula (3), a contradiction. Hence length(Q) ≥ 3 is
excluded, and from now on we assume that length(Q) = 2. Clearly, then mid(Q)
is an antichain.

The first step in the case length(Q) = 2 is to show that, for any b 6= c,

if b, c ∈ mid(Q), then |L(b, c)| ≤ 1 and |U (b, c)| ≤ 1. (7)

Suppose, by way of contradiction, that d1, d2 ∈ U (b, c) and d1 6= d2. Let X =
{d1, d2}, and choose an element a such that a ≺ b. Since X ⊆ max(Q), we
obtain that a ∈ Q = ∅ρ1 = G(0)(X) = C(0)

1 (X). Let Y = X ∈ Xψ0. By
formula (3) there is a y ∈ G(1)(Y ) with a � y. But Y ρ1 ⊇ {b, c} implies
y ∈ G(1)(Y ) = (Y ρ1)ρ0 ⊆ {b, c}ρ0, that is, b � y and c � y. Since b ‖ c, we
obtain b ≺ y. As a ≺ b, the covering b ≺ y contradicts a � y. This and the
duality principle prove (7).

Now, to sharpen the previous assertion, we prove that, for any b 6= c,

if b, c ∈ mid(Q), then L(b, c) = U (b, c) = ∅. (8)

Suppose the contrary. By the duality principle, we can assume that L(b, c)
is nonempty. Let L(b, c) = {a}. We can choose d1, d2 ∈ max(Q) such that
b ≺ d1 and c ≺ d2. If possible, then we choose them equal: d1 = d2. Let
X = {b, c}. If U (b, c) is nonempty, then d1 = d2, Xρ0 = {d1}, and we have
d1 ∈ G(0)(X) = C(0)

1 (X). If U (b, c) is empty, then so is Xρ0, and we have
d1 ∈ Q = G(0)(X) = C(0)

1 (X) again. Let Y = X = Xψ0, and notice that
Y ρ1 = {a} by (7). Then, by formula (3), d1 � y for some y ∈ G(1)(Y ). Since
d1 ∈ max(Q), d1 = y ∈ G(1)(Y ) = (Y ρ1)ρ0 = {a}ρ0. This gives a � d1, which
contradicts a ≺ b ≺ d1. This shows (8).

Based on (8) we can prove even more: for arbitrary elements of Q, we have

if c ∈ Q, b ∈ mid(Q) and b ‖ c, then L(b, c) = U (b, c) = ∅. (9)

Suppose the contrary. By (8), c /∈ mid(Q). By the duality principle we can
assume that c ∈ max(Q). Then U (b, c) = ∅. Let a ∈ L(b, c) and choose an
element d ∈ max(Q) with b ≺ d. Let X = {a, d}. We obtain from Xρ0 = ∅
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that c ∈ Q = G(0)(X) = C(0)
1 (X). Let Y = {b, d} ∈ Xψ0. Then c � y for some

y = G(1)(Y ) by (3), and c ∈ max(Q) yields that y = c. This contradicts b ‖ c,
since b � y = c by (6). This proves (9).

Now, we are in the position to show that

if b ∈ mid(Q), then there is no c ∈ Q with b ‖ c. (10)

Suppose the contrary, and choose a, d ∈ Q with a ≺ b ≺ d. Let X = {a, d}
and Y = {b, d} ∈ Xψ0. Like in the previous step, c ∈ Q = G(0)(X) implies
the existence of an element y ∈ G(1)(Y ) with c � y. Then y ∈ U (b, c) by (6),
contradicting (9). This proves (10).

Since length(Q) = 2, we can choose elements a1 ≺ b ≺ d1 in Q. It follows
from (10) that, for any further element x, we have either x < b or b < x. Let
m = |{x ∈ Q : x < b}| and n = |{x ∈ Q : b < x}|. Clearly, Q is Tmn. �

We conclude this paper with a problem, which is more concrete than Prob-
lem 1. For motivation (and a possible application if the answer is affirmative)
see [1].

Problem (on non-degenerate triangles) 8. Let ~C = ~C(A(0), A(1), ρ) such
that

• ρ is indecomposable, that is, for every nonempty sets B(i) and C(i) with
B(i) ∪ C(i) = A(i) and B(i) ∩ C(i) = ∅, ρ is distinct from the relation(
ρ ∩ (B(0) × B(1))

)
∪

(
ρ ∩ (C(0) × C(1))

)
;

• ρ is uniform, that is, |{x}ρi| = |{y}ρi| for all x, y ∈ A(i); and
• A(0) and A(1) are finite, and both have at least three elements.

Do these assumptions imply that there exists an i ∈ {0, 1} and there are x, y, z ∈
A(i) such that C(i)({x, y}) ∩ C(i)({y, z}) ∩ C(i)({z, x}) = ∅?
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