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Abstract. Let ~H and ~K be finite composition series of length h in a group G.

The intersections of their members form a lattice CSL( ~H, ~K) under set inclu-
sion. Our main result determines the number N(h) of (isomorphism classes)

of these lattices recursively. We also show that this number is asymptotically

h!/2. If the members of ~H and ~K are considered constants, then there are
exactly h! such lattices.

Based on recent results of Czédli and Schmidt, first we reduce the problem

to lattice theory, concluding that the duals of the lattices CSL( ~H, ~K) are
exactly the so-called slim semimodular lattices, which can be described by

permutations. Hence the results on h! and h!/2 follow by simple combinatorial
considerations. The combinatorial argument proving the main result is based

on Czédli’s earlier description of indecomposable slim semimodular lattices by
matrices.

1. Introduction

The well-known concept of a composition series in a group goes back to Évariste
Galois (1831), see Rotman [25, Thm. 5.9]. The Jordan-Hölder theorem, stating that
any two composition series of a finite group have the same length, was also proved
in the nineteenth century; see Jordan [21] and Hölder [20]. A stronger statement is
obtained from the Schreier Refinement Theorem, see [25, Theorem 5.11]: if a group
has a finite composition series, then any two of its composition series have the same
length. Let

(1.1)
~H : G = H0 . H1 . · · · . Hh = {1},
~K : G = K0 . K1 . · · · . Kh = {1}

be composition series of a group G. Here Hi−1 . Hi denotes that Hi is a normal
subgroup of Hi−1; the sequence ~H is a composition series if Hi is a maximal normal
proper subgroup of Hi−1, for i = 1, . . . , h. Denote the set

{
Hi ∩Kj : i, j ∈ {0, . . . , h}

}

by CSLh( ~H, ~K). The notation comes from “Composition Series Lattice”. Under
containment, CSLh( ~H, ~K) is an ordered set. Sometimes we write CSL( ~H, ~K) for
CSLh( ~H, ~K). Since CSLh( ~H, ~K) has a largest element and is closed with respect to
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intersection, CSLh( ~H, ~K) is a finite lattice. The join of X,Y ∈ CSLh( ~H, ~K) is the
intersection of {Z : X ⊆ Z, Y ⊆ Z and Z ∈ CSLh( ~H, ~K)}. Let N (h) denote the
number of isomorphism classes of all lattices CSLh( ~H, ~K) formed from composition
series with length h. In other words, N (h) counts the number of lattices of the form
CSLh( ~H, ~K); isomorphic lattices are counted only once.

If we view all the Hi and Kj as constants, then CSLh( ~H, ~K) becomes a mul-
tipointed lattice, which we denote by CSL̈h( ~H, ~K). If ~H ′ and ~K ′ are composition
series of length h in a group G′, then the multipointed lattices CSL̈h( ~H, ~K) and
CSL̈h( ~H ′, ~K ′) are isomorphic if there is a lattice isomorphism ϕ : CSLh( ~H, ~K) →
CSLh( ~H ′, ~K ′) such that ϕ(Hi) = H ′

i and ϕ(Ki) = K ′
i, for i = 0, . . . , h. The number

of (isomorphism classes of) multipointed lattices CSL̈h( ~H, ~K) of length h will be
denoted by N̈ (h).

Our main goal is to determine N (h) and N̈ (h). Proposition 3.1 gives a sim-
ple explicit formula for N̈ (h), and Proposition 7.1 gives a satisfactory asymptotic
formula for N (h). Theorem 5.3, our main result, yields only a recursive way to
compute N (h). Due to the fact that we count specific lattices, even this recursion
is far more efficient than the best known way to compute all finite lattices of a given
size s; see Heitzig and Reinhold [19] for s ≤ 18, and the references therein.

We will also consider the abstract class of lattices CSLh( ~H, ~K). This abstract
class has recently been characterized by Czédli and Schmidt [11]. To make our
approach self-contained and to give a sharper result, we give a direct proof of
this characterization; see Proposition 2.3. Also, we prove a join-embedding result,
Proposition 2.6, for the multipointed versions of these lattices.

Outline. Sections 2, 3, and 4 are lattice-theoretic, while Sections 5, 6, and 7 are
combinatorial. Section 2 deals with the abstract class of lattices CSLh( ~H, ~K).
Section 3 proves Proposition 3.1, which asserts that N̈ (h) = h! (h factorial). By
recalling and supplementing the main result of Czédli [5], Section 4 translates the
problem of determining N (h) to a purely combinatorial problem on certain 0, 1-
matrices. Sections 5 formulates the most difficult result in this paper, Theorem 5.3,
which is a recursive formula for the exact value of N (h). This section lists some
concrete values of N (h), computed by Maple and Mathematica. The main result
is proved in Section 6. Finally, Section 7 proves that N (h) is asymptotic to h!/2.

2. Composition series and slim semimodular lattices

2.1. Basic concepts and notation. The study of semimodular lattices is an im-
portant branch of lattice theory; see Stern [28], Grätzer [14] and [15], Nation [23],
and Czédli and Schmidt [7] for surveys. Recall that a lattice L is (upper) semi-
modular if a ≺ b implies a ∨ c � b ∨ c, for all a, b, c ∈ L. Similarly, L is lower
semimodular or dually semimodular if it satisfies the dual property: a � b implies
a ∧ c � b ∧ c, for a, b, c ∈ L. Note that CSL( ~H, ~K) will turn out to be lower semi-
modular but generally is not semimodular. However, it suffices to count their dual
lattices, which are semimodular. Therefore, since all the lattice-theoretic results
that we reference were formulated for semimodular lattices, it is reasonable to work
with semimodular lattices rather than lower semimodular ones.

Except for the lattice SubG of all subgroups of G (see below), all lattices in
this paper are assumed to be of finite length, and mostly they are finite. Following
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Grätzer and Knapp [16], a finite lattice L is slim if there are no three pairwise
incomparable join-irreducible elements in L. A diagram of an ordered set is planar
if its edges can be incident only at their endpoints. By Czédli and Schmidt [8,
Lemma 2.2], every slim lattice is planar, that is, it has a planar diagram. Hence slim
semimodular lattices are easy to work with. In particular, a visual understanding
is provided by Czédli and Schmidt [9], which clearly implies that L in Figure 1 is a
slim semimodular lattice.

Slim semimodular lattices have recently proved to be useful in strengthening a
classical group theoretical result, namely, the Jordan-Hölder theorem. G. Grätzer
and Nation [18] proved that given two composition series of a group, as in (1.1),
there is a matching between their quotients such that the corresponding quotients
are isomorphic for a very specific reason: they are related by the composite of
a down-perspectivity with an up-perspectivity. In Czédli and Schmidt [8], this
matching is shown to be unique. Moreover, Czédli and Schmidt [11] have just
proved that this matching determines the lattice CSL( ~H, ~K). The main role in [8]
and [11] is played by slim semimodular lattices. These lattices are also useful in
lattice theory, see Czédli [6] and Czédli and Schmidt [10] for the latest results.

The relation “subnormal subgroup” is the transitive closure of “normal sub-
group”. Let G be a group with a finite composition series of length h. Its subnormal
subgroups form a sublattice SnSubG = (SnSubG;⊆) of the lattice SubG of all sub-
groups, by a classical result of Wielandt [29]; see also Schmidt [26, Theorem 1.1.5]
and the remark after its proof, or see Stern [28, p. 302]. It is not hard to see
that SnSubG is dually semimodular, that is, lower semimodular; see [26, Theorem
2.1.8], or the proof of [28, Theorem 8.3.3], or the proof of Nation [23, Theorem 9.8].
Hence, for ~H and ~K defined in(1.1), CSLh( ~H, ~K) is also lower semimodular by the
dual of Czédli and Schmidt [8, Lemma 2.4]. Note that the dual of [8, Lemma 2.4]
also asserts that CSLh( ~H, ~K) is a cover-preserving meet-subsemilattice of SnSubG,
that is, ifX,Y ∈ CSLh( ~H, ~K) andX ≺ Y in CSLh( ~H, ~K), then X ≺ Y in SnSubG.

In general, CSLh( ~H, ~K) is distinct from SnSubG. This follows easily from (the
abelian case of) the description of all finite groups with planar subgroup lattices,
given by Schmidt [27], and the fact that CSLh( ~H, ~K) is always a planar lattice
by Czédli and Schmidt [8, the dual of Lemma 2.2]. Furthermore, as witnessed by
the 8-element elementary 2-group (Z2; +)3, CSLh( ~H, ~K) is not even a sublattice of
SnSubG in general.

The set of non-zero join-irreducible elements and that of non-unit meet-irreducible
elements of a finite lattice L will be denoted by JiL and MiL, respectively. Let

~H ∪ ~K = {Hi : 0 ≤ i ≤ h} ∪ {Ki : 0 ≤ i ≤ h}.

Since Mi
(
CSLh( ~H, ~K)

)
is obviously a subset of ~H ∪ ~K, the set Mi

(
CSLh( ~H, ~K)

)

contains no three-element antichain. Hence

(2.1) CSL( ~H, ~K) is a dually slim, dually semimodular lattice.

As usual, N denotes {1, 2, 3, . . .}, and N0 stands for N ∪ {0}. The isomorphism
class of a lattice L, that is, the class {L′ : L′ ∼= L}, is denoted by I(L). If K(y) is
a class of lattices depending on a parameter (or a list of parameters) y, then K(y)∼=
stands for the corresponding class {I(L) : L ∈ K(y)} of isomorphism classes. Since
K will be treated as a property, to separate the notation above from that for the dual
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class {Lδ : L ∈ K(y)}, the dual class is denoted by Kδ(y). We can combine these
two notations without extra parentheses; namely, Kδ(y)∼= = {I(Lδ) : L ∈ K(y)}.

For a group G of finite composition series length, let CSL(G) be the class of
lattices CSL( ~H, ~K) such that ~H and ~K are composition series of G. Similarly, for
h ∈ N0, the class of lattices CSLh( ~H, ~K), where ~H and ~K are composition series of
length h, is denoted by CSL(h). The class of slim semimodular lattices of length h
is denoted by SSL(h). Note that SSLδ(h) is the class of lower semimodular dually
slim lattices of length h.

Also, there are self-explanatory “multipointed” variants of the notations intro-
duced above. If L is a slim semimodular lattice with designated maximal chains

(2.2)
C = {0 = c0 ≺ c1 ≺ · · · ≺ ch = 1},
D = {0 = d0 ≺ d1 ≺ · · · ≺ dh = 1}

such that JiL ⊆ C∪D, then the multipointed lattice (L;∨,∧, C,D) will be denoted
by L̈. The class of these multipointed lattices of length h is denoted by SSL̈(h).
Note that when we dualize L̈, then ci and dj in L̈ correspond to ch−i and dh−j in
L̈δ, respectively. Generally, if M̈ is a multipointed lattice, then its lattice reduct
is denoted by M . If the members of the composition series described in (1.1) are
considered constants, then CSLh( ~H, ~K) turns into a multipointed lattice denoted
by CSL̈h( ~H, ~K). The class of these multipointed lattices is denoted by CSL̈(G) and
CSL̈(h) for a given group G and for a given length h ∈ N0, respectively.

The classes SSL(h)∼=, SSL̈(h)∼=, SSLδ(h)∼=, SSL̈δ(h)∼=, CSL̈(G)∼=, and CSL̈(h)∼= are
actually finite sets. With our new notation, N (h) and N̈ (h) are defined by

(2.3) N (h) = |CSL(h)∼=| and N̈ (h) = |CSL̈(h)∼=|.

2.2. Another look at slim semimodular lattices. Semimodular lattices have
important links to combinatorics and geometry. We recall one of these links, which
is somewhat related to our work. A finite lattice is (locally) upper distributive if all
of its atomistic intervals are boolean. The following theorem is due to Adaricheva,
Gorbunov, and Tumanov [1, Theorems 1.7 and 1.9], Dilworth [12], and Mon-
jardet [22]; see also Armstrong [2, Theorem 2.7], Avann [3], and the references
given in [22].

Theorem 2.1. For any finite lattice L, the following conditions are equivalent.

(i) L is locally upper distributive.
(ii) L is semimodular and it satisfies the meet-semidistributivity law, that is,

x ∧ y = x ∧ z ⇒ x ∧ y = x ∧ (y ∨ z), for all x, y, z ∈ L.

(iii) Every element of L has a unique irredundant decomposition as a meet of meet-
irreducible elements.

(iv) Every maximal chain of L consists of 1 + |MiL| elements.
(v) L is (isomorphic to) the lattice of feasible sets of an antimatroid.

Czédli and Schmidt [9, Lemma 2] observed that every element in a slim lattice
has at most two covers. This implies the following statement.

Corollary 2.2. The slim semimodular lattices are exactly the locally upper dis-
tributive lattices whose elements have at most two upper covers.
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2.3. Preliminary lemmas. A cyclic group is nontrivial and simple if and only if
it is of prime order. The first part of the following proposition is due to Czédli and
Schmidt [11]; the second part strengthens a statement of [11].

Proposition 2.3.
(i) CSL(h)∼= = SSLδ(h)∼= and CSL̈(h)∼= = SSL̈δ(h)∼=, for all h ∈ N0.
(ii) If G is the direct product of h nontrivial simple cyclic groups, then CSL(G)∼= =

SSLδ(h)∼= and CSL̈(G)∼= = SSL̈δ(h)∼= .
(iii) N (h) = |SSL(h)∼=| and N̈ (h) = |SSL̈(h)∼=|, for all h ∈ N0.

Before proving Proposition 2.3, which reduces the problem of computing the
functions in (2.3) to a lattice-theoretic question, we need some preparation.

Definition 2.4. Let L̈ be as in (2.2). We define two maps, π = π(L̈) and σ = σ(L̈),
as follows. For i, j ∈ {1, . . . , h}, let

I(i) =
{
j ∈ {1, . . . , h} : ci−1 ∨ dj = ci ∨ dj

}
,

π(i) = the smallest element of I(i),

J(j) =
{
i ∈ {1, . . . , h} : ci ∨ dj−1 = ci ∨ dj

}
,

σ(j) = the smallest element of J(j).

The set of permutations acting on {1, . . . , h}, that is, the set of bijective maps
{1, . . . , h} → {1, . . . , h}, will be denoted by Sh.

Lemma 2.5. π = π(L̈) and σ = σ(L̈) belong to Sh, provided that the assumption
and the notation of Definition 2.4 are in effect. Furthermore, σ = π−1 in this case.

Note that π is the same as the permutation defined in Czédli and Schmidt [11,
Def. 2.5]. However, Definition 2.4 serves our goal in a simpler way.

Proof of Lemma 2.5. Clearly, 0 /∈ I(i) ∪ J(j) and h ∈ I(i) ∩ J(j). If j belongs to
I(i) and j < h, then

ci−1 ∨ dj+1 = ci−1 ∨ dj ∨ dj+1 = ci ∨ dj ∨ dj+1 = ci ∨ dj+1

shows that j + 1 ∈ I(i). Since the same argument works for J(j), we conclude
that, for i, j ∈ {1, . . . , h}, both I(i) and J(j) are (order) filters of {1, . . . , h}. For
i ∈ {1, . . . , h}, let j = π(i). Since j − 1 /∈ I(i) and j ∈ I(i), we obtain

(2.4) ci−1 ∨ dj−1 < ci ∨ dj−1 ≤ ci ∨ dj = ci−1 ∨ dj.

Semimodularity implies ci−1 ∨ dj−1 � ci−1 ∨ dj. This and (2.4) yield ci ∨ dj−1 =
ci∨dj. Hence i ∈ J(j), and we obtain σ(j) ≤ i. If we had σ(j) < i, then i−1 ∈ J(j)
would imply ci−1 ∨dj−1 = ci−1∨dj, contradicting (2.4). Hence i = σ(j) = σ(π(i)),
that is, σ ◦ π is the identity map on {1, . . . , h}. By symmetry, so is π ◦ σ. �

For a set A, the powerset lattice PowA of A consists of all subsets of A. Some-
times, especially when we need a notation for the covering relation, we write x ≤ y
instead of x ⊆ y, for x, y ∈ PowA. By De Morgan’s laws, PowA is a self-dual
lattice. It is well-known, see Nation [23, the dual of Thm. 2.2], that for each lattice
M , the join-semilattice (M ;∨) has an embedding into

(
PowM ;∪

)
. In other words,

M has a join-embedding into the powerset lattice PowM . Since h < |L| in general,
the following proposition gives a more economical embedding for slim semimodular
lattices.
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Proposition 2.6. Let L̈ be as in (2.2), and let A = {a1, . . . , ah} be an h-element
set. If π = π(L̈) and σ = σ(L̈) are as in Lemma 2.5, then the map ϕ : (L;∨) →(
PowA;∪

)
, defined by

(2.5) x 7→ {ai : ci ≤ x} ∪ {ai : dπ(i) ≤ x} = {ai : ci ≤ x} ∪ {aσ(j) : dj ≤ x},

is a cover-preserving join-embedding.

Proof. The equality in (2.5) follows from σ = π−1. We claim that

(2.6) ϕ(cu ∨ dv) ⊆ ϕ(cu) ∪ ϕ(dv), for u, v ∈ {1, . . . , h}.

Assume ai ∈ ϕ(cu ∨ dv). This means that ci ≤ cu ∨ dv or dπ(i) ≤ cu ∨ dv.
Assume first that ci ≤ cu ∨ dv. We may also assume u < i, since otherwise

ci ≤ cu would imply ai ∈ ϕ(cu). So cu ≤ ci−1 < ci ≤ cu ∨ dv. Taking the joins
of these elements with dv, we obtain ci−1 ∨ dv = ci ∨ dv. Hence v ∈ I(i) implies
π(i) ≤ v. Thus, dπ(i) ≤ dv yields ai ∈ ϕ(dv) ⊆ ϕ(cu) ∪ ϕ(dv).

Second, assume dπ(i) ≤ cu ∨ dv. Using the notation j = π(i), we have dj ≤
cu ∨ dv. If dj ≤ dv, then ai = aσ(j) ∈ ϕ(dv). Hence we may assume v < j. Using
dv ≤ dj−1 < dj ≤ cu ∨ dv and taking the joins of these elements with cu, we obtain
cu ∨ dj−1 = cu ∨ dj. So u ∈ J(j), whence σ(j) ≤ u. Therefore, ci = cσ(j) ≤ cu
yields ai ∈ ϕ(cu) ⊆ ϕ(cu) ∪ ϕ(dv). This proves (2.6).

Next, let x, y ∈ L. Since ϕ is clearly order-preserving, it follows that ϕ(x∨ y) ⊇
ϕ(x) ∪ ϕ(y). So it suffices to show that ϕ(x ∨ y) ⊆ ϕ(x) ∪ ϕ(y). This is evident if
x and y are comparable, since ϕ is order-preserving. Hence we may assume that x
and y are incomparable, which we denote by x ‖ y. Since JiL ⊆ C ∪D, we obtain
that x is of the form cr ∨ dv and y is of the form cu ∨ ds. It follows from x ‖ y that
either r < u and s < v, or r > u and s > v; we may assume the former since the
latter is analogous. Using (2.6) and the fact that ϕ is order-preserving, we obtain
ϕ(x ∨ y) = ϕ(cr ∨ dv ∨ cu ∨ ds) = ϕ(cu ∨ dv) ⊆ ϕ(cu) ∪ ϕ(dv) ⊆ ϕ(y) ∪ ϕ(x) =
ϕ(x) ∪ ϕ(y). This proves that ϕ is a join-homomorphism.

Finally, we have to show that ϕ is injective. Suppose to the contrary that there
are x, z ∈ L such that ϕ(x) = ϕ(z) and z 6≤ x. We have x < x ∨ z, and we can
take an element y such that x ≺ y ≤ x ∨ z. From ϕ(x) ⊆ ϕ(y) ⊆ ϕ(x ∨ z) =
ϕ(x) ∪ ϕ(z) = ϕ(x) ∪ ϕ(x) = ϕ(x), we conclude ϕ(x) = ϕ(y). Let s and t be the
largest elements of {0, . . . , h} such that cs ≤ x and dt ≤ y. Since JiL ⊆ C ∪D by
(2.2), x = cs ∨ dt. Since each element of L is of the form cu ∨ dv, it follows from
x ≺ y that t < h and y = cs ∨ dt+1, or s < h and y = cs+1 ∨ dt.

First, assume y = cs ∨ dt+1 = x ∨ dt+1. Let u = max{s, σ(t + 1)}, and observe
that u ∈ J(t+ 1) since σ(t+ 1) ∈ J(t+ 1) and J(t+ 1) is an order-filter. We have
aσ(t+1) ∈ ϕ(x) = ϕ(y) since dt+1 ≤ y. So dt+1 ≤ x or cσ(t+1) ≤ x. The former
violates x 6= y. So does the latter, since u ∈ J(t + 1) yields x = cσ(t+1) ∨ x =
cσ(t+1) ∨ cs ∨ dt = cu ∨ dt = cu ∨ dt+1 = cσ(t+1) ∨ cs ∨ dt+1 = cσ(t+1) ∨ y = y.

Second, assume y = cs+1 ∨ dt = cs+1 ∨x. Let v = max{t, π(s+ 1)}, and observe
that v ∈ I(s + 1). We have as+1 ∈ ϕ(x) = ϕ(y), since cs+1 ≤ y. Hence cs+1 ≤ x
or dπ(s+1) ≤ x. The former violates x 6= y. So does the latter, since v ∈ I(s + 1)
implies x = x∨dπ(s+1) = cs∨dt∨dπ(s+1) = cs∨dv = cs+1∨dv = cs+1∨dt∨dπ(s+1) =
y ∨ dπ(s+1) = y.

Both assumptions lead to a contradiction, whence ϕ is injective. It is also cover-
preserving since lengthL = length

(
PowA

)
. �
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Corollary 2.7. If L is a slim semimodular lattice of length h and A is a set
with |A| = h, then there exists a cover-preserving join-embedding ϕ : L → PowA.
Furthermore, we can choose A = MiL and ϕ : L→ PowA, x 7→ {a ∈ A : a 6≥ x}.

This corollary and its nice short proof below were suggested by a referee. Note
that we shall use Proposition 2.6 rather than Corollary 2.7 in the proof of Propo-
sition 2.3, because ϕ should clearly depend on π(L̈).

Proof of Corollary 2.7. Obviously, ϕ(0) = ∅, ϕ(1) = MiL = A, and ϕ(x ∨ y) =
ϕ(x) ∪ ϕ(y), for all x, y ∈ L. Since lengthL = |MiL| = length

(
PowA

)
by Corol-

lary 2.2, ϕ is cover-preserving and injective. �

Proof of Proposition 2.3. Obviously, it suffices to consider only the multipointed
version. Clearly, CSL̈(h)∼= ⊆ SSL̈δ(h)∼= follows from (2.1). Hence it suffices to prove
the converse inclusion in part (ii); then both parts (i) and (ii) will follow. Let
G1, . . . , Gh be nontrivial simple subgroups of an Abelian group G such that G is
the (inner) direct product of these subgroups; we have to show that SSL̈δ(h)∼= ⊆
CSL̈(G)∼=. Let I(L̈δ) ∈ SSL̈δ(h)∼=, that is, L̈ ∈ SSL̈(h) with the notation given in
(2.2). Take an h-element set A = {a1, . . . , an}. The lattice SubG of all subgroups
of G is well-known to be modular, see, for example, Stern [28, Section 1.6] or
Burris and Sankappanavar [4, Ex. I.3.5]. By the definition of a direct product,
the subgroups G1, . . . , Gh form an independent set in SubG. The definition of
an independent set is not important for us; what we need is that these subgroups
generate a sublattice isomorphic to the powerset lattice PowA by Grätzer [14, Cor.
IV.1.10 and Thm. IV.1.11] or [15, Cor. 359 and Thm. 360]. Consequently, we
may assume that PowA is a sublattice of SubG. By De Morgan’s laws, the map
ψ : PowA → PowA, defined by X 7→ A \ X, is a dual lattice isomorphism, that
is, a bijection such that ψ(X ∪ Y ) = ψ(X) ∩ ψ(Y ) and ψ(X ∩ Y ) = ψ(X) ∪ ψ(Y ),
for all X,Y ∈ PowA. Take the map ϕ defined in Proposition 2.6. Let η : Lδ → L
denote the identity map, which is a dual isomorphism. Let γ be the composite map
ψ ◦ ϕ ◦ η : Lδ →

(
PowA;∩

)
. It is a meet-embedding since

γ(x ∧Lδ y) = ψ
(
ϕ(η(x ∧Lδ y))

)
= ψ

(
ϕ(η(x) ∨L η(y))

)
= ψ

(
ϕ(x ∨L y)

)

= ψ
(
ϕ(x) ∪ ϕ(y)) = ψ

(
ϕ(x)

)
∩ ψ

(
ϕ(y)

)
= γ(x) ∩ γ(y).

Note that G = G1 . . .Gh .G1 . . .Gh−1 . · · · .G1 . {1} is a composition series, since
the Gi are simple groups. Hence SubG and L have the same length, and thus
the Jordan-Hölder theorem shows that γ is a cover-preserving embedding. The
images of the constants ci and dj are the appropriate constants in γ(Lδ). Therefore,
L̈δ ∼= γ(L̈δ) ∈ CSL̈(h). Hence I(L̈δ) ∈ CSL̈(h)∼=, proving parts (i) and (ii).

Finally, part (iii) follows from (2.3), part (i), and the obvious equalities

|SSLδ(h)∼=| = |SSL(h)∼=|, |SSL̈δ(h)∼= | = |SSL̈(h)∼=|. �

3. Describing the multipointed case by permutations

If I(L̈) ∈ SSL(h)∼= is as in (2.2), then π(L̈) ∈ Sh is given in Definition 2.4; see also
Lemma 2.5. The permutation π(L̈) depends only on I(L̈), since π(K̈) = π(L̈), for
all K̈ ∈ I(L̈). Next, let π ∈ Sn, and denote π−1 by σ. Let A = {a1, . . . , ah} be an
h-element set. For u, v ∈ {0, . . . , h}, let ĉu = {ai : i ≤ u} and d̂v = {aσ(i) : i ≤ v}.
We define L̈(π) such that L(π) is

{
ĉu ∪ d̂v : u, v ∈ {0, . . . , h}

}
, a join-subsemilattice
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of the powerset lattice PowA, and the constants are the ĉu and the d̂v. Although
the following statement could be extracted from Czédli and Schmidt [11], it is easier
to derive it from the previous section.

Proposition 3.1. The maps

γ1 : SSL̈(h)∼= → Sh, I(L̈) 7→ π(L̈) and γ2 : Sh → SSL̈(h)∼=, π 7→ I(L̈(π))

are reciprocal bijections. Thus N̈ (h) = h! .

Proof. Assume π ∈ Sh. Assume also that x, y ∈ L̈(π) such that x ≺ y. We can
write these elements in the form x = ĉu ∪ d̂v and y = ĉs ∪ d̂t such that each of
u, v, s, t ∈ {0, . . . , h} are maximal with respect to these equations. Now u ≤ s,
v ≤ t, and (u, v) < (s, t). If u < s, then x < ĉu+1 ∪ d̂v by the maximality of
u, so x < ĉu+1 ∪ d̂v ≤ y and x ≺ y imply y = ĉu+1 ∪ d̂v. Similarly, if v < t,
then x < ĉu ∪ d̂v+1 by the maximality of v, so x < ĉu ∪ d̂v+1 ≤ y and x ≺ y imply
y = ĉu∪d̂v+1. Hence, in both cases, y\x is a singleton, so y covers x in the powerset
lattice PowA. Thus L(π) is a cover-preserving join-subsemilattice of PowA.

Clearly, PowA is semimodular, since it is distributive. Semimodularity depends
only on the join operation and the covering relation. Therefore L(π), which is a
cover-preserving join-subsemilattice of PowA, is semimodular. Its length is h, the
length of PowA. Furthermore, let Ĉ =

{
ĉi : 0 ≤ i ≤ h

}
and D̂ = {d̂i : 0 ≤ i ≤ h};

they are maximal chains, and we have Ji
(
L(π)

)
⊆ Ĉ ∪ D̂. This proves L̈(π) ∈

SSL̈(h)∼=.
Applying Definition 2.4 to

(
(L̈(π);∪), ĉi, d̂j

)
rather than to

(
(L;∨), ci, dj

)
, we

obtain Î(i), π̂, Ĵ(j) and σ̂. For i, j ∈ {1, . . . , h}, we have

j ∈ Î(i) ⇐⇒ ĉi−1 ∪ d̂j = ĉi ∪ d̂j ⇐⇒ ai ∈ d̂j ⇐⇒ i ∈ {σ(1), . . . , σ(j)}
⇐⇒ π(i) ∈ {1, . . . , j} ⇐⇒ π(i) ≤ j ⇐⇒ j ∈ I(i).

Hence Î(i) equals I(i), and their minimal elements, π
(
L̈(π)

)
(i) and π(i), are also

equal. This proves π
(
L̈(π)

)
= π, implying that γ1 ◦γ2 is the identity map Sh → Sh.

Next, assume L̈ ∈ SSL̈(h). Let π = π(L̈). Let ϕ be the join-embedding defined
in Proposition 2.6, and let σ = π−1. We claim that

(3.1) ϕ(cu) = {ai : 1 ≤ i ≤ u} = ĉu and ϕ(dv) = {aσ(j) : 1 ≤ j ≤ v} = d̂v.

Since ai ∈ ϕ(cu) for i ≤ u is evident by the definition of ϕ, assume ai ∈ ϕ(cu). We
have to show that i ≤ u. This is clear if ci ≤ cu, hence we assume dπ(i) ≤ cu. Now
cu ∨ dπ(i)−1 = cu = cu ∨ dπ(i) yields u ∈ J(π(i)). Hence i = σ

(
π(i)

)
≤ u, proving

the first equation in (3.1). To prove the other equation, note that aσ(j) ∈ ϕ(dv)
for j ≤ v is obvious again. Assume ai ∈ ϕ(dv). If j = π(i), then i = σ(j), and we
have to show j ≤ v. This is trivial if dj = dπ(i) ≤ dv. If we assume ci ≤ dv, then
ci−1 ∨ dv = dv = ci ∨ dv yields v ∈ I(i), implying j = π(i) ≤ v. This proves (3.1).

Finally, ϕ(L) ⊆ L̈
(
π(L̈)

)
is trivial. Since L̈

(
π(L̈)

)
is join-generated by the set

{ĉu : 0 ≤ u ≤ h} ∪ {d̂v : 0 ≤ v ≤ h}, which consists of some ϕ-images by (3.1), we
conclude ϕ(L) ⊇ L̈

(
π(L)

)
. So ϕ(L) = L̈

(
π(L̈)

)
. We know from Proposition 2.6 that

ϕ : L → ϕ(L) = L̈
(
π(L̈)

)
is a join-isomorphism, whence it is a lattice isomorphism.

By (3.1), it is an isomorphism L̈ → L̈
(
π(L̈)

)
. Thus γ2 ◦ γ1 : SSL̈(h)∼= → SSL̈(h)∼= is

the identity map. �
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Figure 1. A slim semimodular lattice L of length 15 and its decomposition

4. Description by matrices

If an element x of a lattice L is comparable with all y ∈ L, then x is a narrows or
a universal element of L. This terminology is from Grätzer and Quackenbush [17];
however, as opposed to [17], we also define 0 and 1 as narrows of L. In Figure 1,
the narrows of L,L1, . . . , L5 are the black-filled elements and x. We say that L is
indecomposable if |L| ≥ 3 and 0 and 1 are the only narrows of L. So an indecom-
posable lattice is of length at least 2, and it is not a chain. For finite lattices L1 and
L2, we obtain the glued sum of L1 and L2 by putting L2 atop L1 and identifying
1L1 with 0L2 . Figure 1 indicates that each slim semimodular lattice (like L in the
figure) can uniquely be decomposed into a glued sum of maximal chain intervals
(here L2 and L5) and indecomposable slim semimodular lattice summands (here L1,
L3 and L4). Chains are quite simple objects, and the indecomposable summands
will be characterized by certain matrices. Let C and D be two finite chains with
C = {c0 ≺ c1 ≺ · · · ≺ cm} and D = {d0 ≺ d1 ≺ · · · ≺ dn}, and let G = C ×D be
their direct product. That is, for (ci, dj), (cs, dt) ∈ C ×D, (ci, dj) ≤ (cs, dt) means
that i ≤ s and j ≤ t. Assume

(4.1) F ⊆ {1, . . . ,m} × {1, . . . , n}

such that, for all (i1, j1), (i2, j2) ∈ F , i1 = i2 if and only if j1 = j2. Let α
be a join-congruence of G, that is, a congruence of the join-semilattice (G;∨).
The α-classes are ∨-closed convex subsets. Therefore (x, y) ∈ α if and only if
(x, x ∨ y), (y, x ∨ y) ∈ α, and we easily obtain a well-known fact: α is determined
by the covering pairs it collapses. Hence, to define a join-congruence, it suffices to
tell which covering pairs are collapsed. Following Czédli [5, (13), (14) and Cor. 22],
we define a join-congruence β = β(F ) of G by

(4.2)

(
(ci−1, dj), (ci, dj)

)
∈ β ⇐⇒ there is a v ≤ j such that (i, v) ∈ F , and

(
(ci, dj−1), (ci, dj)

)
∈ β ⇐⇒ there is a u ≤ i such that (u, j) ∈ F .
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It is not very hard to show, and it is proved in [5, Propositions 17 and 20], that
G/β is a slim semimodular lattice. What we have to prove here is the following.

Lemma 4.1. G/β is of length m + n− |F |.

Proof. The β-class of an element x will be denoted by x/β. Consider the chains

Ĉ =
{
(c0, d0)/β ≤ (c1, d0)/β ≤ · · · ≤ (cm, d0)/β

}
and

D̂ =
{
(cm, d0)/β ≤ (cm, d1)/β ≤ · · · ≤ (cm, dn)/β

}(4.3)

in G/β. By Czédli [5, Lemma 1], x � y in G implies x/β � y/β in G/β. Therefore,
each inequality in (4.3) is a “covers or equals” relation, and Ĉ ∪ D̂ is a maximal
chain in G/β. Consequently, the length of G/β is m+n minus the number of those
“≤” in (4.3) that are equations. Since (i, j) ∈ F implies 0 /∈ {i, j}, (4.2) yields that
all inequalities in Ĉ are strict. It also yields that (cm, dj−1)/β = (cm, dj)/β if and
only if (i, j) ∈ F for some i. Hence there are exactly |F | equations in (4.3). �

0, 1-matrices are matrices whose entries lie in {0, 1}. The transpose of a matrix
B will be denoted by BT . To describe F in (4.1), we can consider the m-by-n
0, 1-matrix A = (aij)m×n defined by

aij =

{
1, if (i, j) ∈ F ;
0, if (i, j) /∈ F .

Thus, certain 0, 1-matrices determine slim semimodular lattices: A determines F ,
and F determines G/β. It is proved in Czédli [5] (and it follows also from Czédli
and Schmidt [11]) that each slim semimodular lattice L is determined by some 0, 1-
matrix A. Although A for a given L is not unique, {A,AT} becomes unique for
indecomposable slim semimodular lattices if we stipulate additional properties, see
Definition 4.2 below. By a zero matrix we mean a matrix all of whose entries are
zeros; zero rows and zero columns are understood analogously. Given a matrix A,
its k-by-k upper left corner submatrix will be denoted by CornkA. Sometimes we
have to allow the case k = 0; then Corn0A is the empty matrix.

Definition 4.2. Let m,n ∈ N such that m ≤ n. An m-by-n 0, 1-matrix A is a slim
matrix if it has the following five properties:
(1•) Every row contains at most one unit, and the same holds for every column.
(2•) A contains less than m units.
(3•) For k = 1, . . . ,m− 1, CornkA contains less than k units.
(4•) For every i ∈ {1, . . . ,m}, if the last entry, ain, of the i-th row equals 1, then

there is an i′ < i such that the i′-th row is a zero row.
(5•) For every j ∈ {1, . . . , n}, if the last entry, amj , of the j-th column equals 1,

then there is a j′ < j such that the j′-th column is a zero column.

By Czédli [5], (1•), . . . , (5•) are independent conditions; that is, none of them
is implied by the rest. If (1•) and (2•) are assumed, then (3•) means that all the
principal upper left minors equal zero. The set of slim matrices is denoted by SM.

For A ∈ SM, the transpose AT of A belongs to SM if and only if A is a square
matrix. We define an equivalence relation ∼T on SM as follows. For A,B ∈ SM,
let A ∼T B mean that {A,AT} = {B,BT }. That is, A ∼T B if and only if
B ∈ {A,AT}. In what follows, let SM∼ be a full set of representatives of the
∼T -classes. That is, SM∼ is a subset of SM such that |{A,AT} ∩ SM∼| = 1 holds,
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Figure 2. Indecomposable slim semimodular lattices of length 4

for all A ∈ SM. Clearly, all non-square slim matrices and all symmetric slim
matrices belong to SM∼, since they belong to one-element ∼T -classes.

Notation. For 0 ≤ k < m ≤ n, let SM(m,n, k) denote the set of slim m-by-n
matrices containing exactly k units. Let SM∼(m,n, k) = SM(m,n, k)∩ SM∼. Note
that SM∼(m,n, k) = SM(m,n, k) if m < n.

Next, we recall the main result of Czédli [5], and supplement it with the statement
of Lemma 4.1.
Proposition 4.3 (see [5] for (i) and Lemma 4.1 for (ii)).

(i) There is a bijective correspondence between SM∼ and the set
⋃∞

h=2 SSL(h)∼=
of isomorphism classes of indecomposable slim semimodular lattices.

(ii) The restriction of the above-mentioned correspondence yields a bijective cor-
respondence between SM∼(m,n, k) and SSL(m + n− k)∼=.

Based on Proposition 4.3, it will be sufficient to count the slim matrices.

5. Formulating the main result

Notation. The set of symmetric slim m-by-m matrices that contain exactly k
units is denoted by SSM(m, k). If a capital letter, possibly with parameters and
superscripts, is used to denote a finite set of matrices, then the size of this set will
be denoted by the corresponding lowercase letter. For example, sm∼(m,n, k) =
|SM∼(m,n, k)| and ssm(m, k) = |SSM(m, k)|. We always assume

(5.1) 0 ≤ k < m ≤ n.

Clearly,

sm∼(m,n, k) =

{(
sm(m,n, k) + ssm(m, k)

)
/2, if m = n

sm(m,n, k), if m < n
.(5.2)

Let SM0(m,n, k) and SSM0(m, k) denote the set of those members of SM(m,n, k)
and SSM(m, k), respectively, whose first row is zero. Similarly, let SM1(m,n, k)
stand for SM(m,n, k)\SM0(m,n, k), and let SSM1(m, k) = SSM(m, k)\SSM0(m, k).

Keeping the general assumption (5.1) in mind, we clearly have

(5.3) sm0(m,n, 0) = 1, sm1(m,n, 0) = 0, and ssm1(m, 0) = ssm1(m, 1) = 0.

The main step towards the number of slim semimodular lattices is summarized in
the following statement, where (2t− 1)!! denotes 1 · 3 · 5 · · · (2t− 1) = (2t)!/(2t · t!).
As usual in case of empty products, (−1)!! = 1 by definition.
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Figure 3. Decomposable slim semimodular lattices of length 4

Lemma 5.1. sm∼(m,n, k) is determined by induction based on (5.1), (5.2), (5.3),
and the following six formulas:

sm0(m,n, k) =
(
m − 1
k

)
· n!
(n − k)!

−
(
m − 2
k − 1

)
· n!
(n− k + 1)!

,(5.4)

sm1(m,n, k) =
k−1∑

j=0

j! · sm(m − j − 1, n− j − 1, k− j − 1) · (n− j − 2) ,(5.5)

sm(m,n, k) = sm0(m,n, k) + sm1(m,n, k) ,(5.6)

ssm0(m, k) =
(
m − 1
k

)
·
bk/2c∑

j=0

(
k

k − 2j

)
· (2j − 1)!! ,(5.7)

ssm1(m, k) =
k−2∑

i=0

(m − 3 − i) · ssm(m − 2 − i, k − 2 − i) ×(5.8)

×
bi/2c∑

r=0

(
i

i − 2r

)
· (2r − 1)!! , and

ssm(m, k) = ssm0(m, k) + ssm1(m, k) ,(5.9)

where, in addition to (5.1), we assume k ≥ 1 in (5.4) and (5.5), and k ≥ 2 in (5.8).

For 2 ≤ h ∈ N, let ISSL(h) denote the class of indecomposable slim semimodular
lattices of length h. The corresponding set of isomorphism classes is ISSL(h)∼= =
{I(L) : L ∈ ISSL(h)}, and its size is denoted by Nissl(h) = |ISSL(h)∼= |.

Proposition 5.2. The number of indecomposable slim semimodular lattices of
length h is

(5.10) Nissl(h) =
h−2∑

k=0

h−1∑

n=
⌈

h+k
2

⌉ sm∼(h+ k − n, n, k).

Now, we are ready to formulate our main result.

Theorem 5.3. N (0) = 1 and, for h ∈ N,

N (h) = N (h − 1) +
h∑

j=2

Nissl(j) ·N (h− j).
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Based on Lemma 5.1 and Proposition 5.2, Theorem 5.3 offers an effective way
to compute N (h). For comparison, note that there are several papers on counting
other particular lattices; for example, see Erné, Heitzig and Reinhold [13] and Pawar
and Waphare [24]. There are also papers on enumerating all finite lattices of a given
size s, see Heitzig and Reinhold [19] for s ≤ 18, and see the references listed in [19].
The calculation for s = 18 took several days on a parallel supercomputer in 2001.

If we store the previously computed values, then the calculation of N (h) by com-
puter algebra is sufficiently fast. Appropriate programs (Maple 5 and Mathematica
6) are available from the authors’ web sites, where

{(
h,Nissl(h)

)
: h ≤ 100

}
and{(

h,N (h)
)

: h ≤ 100
}

are also available. Using a personal computer with Intel
Duo CPU 3.00 GHz, 1.98 GHz, and 3.25 GB RAM, it took only four seconds and
two minutes, respectively, to obtain the following two values:

N (50) = 15206749438920313735718988921891666957488791414690\
892747031888674≈ 0.1520674944 · 1065, and

N (100) = 4666300514485158296402274322204901463839367594\
229481848806020032670884439457210266367922\
3692209862830282250013360549818627829410391\
422578476758494039360841845≈ 0.4666300514 · 10158.

The following table was computed in less than 0.1 seconds:

h 0 1 2 3 4 5 6 7 8 9 10 11 12
Nissl(h) 0 0 1 2 8 39 242 1 759 14 674 137 127 1 416 430 16 006 403 196 400 810
N (h) 1 1 2 5 17 73 397 2 623 20 414 181 607 1 809 104 19 886 032 238 723 606

6. Combinatorial lemmas and proofs

By a permutation matrix we mean a k-by-k square 0, 1-matrix satisfying (1•)
and containing k units. The following lemma belongs to folklore.

Lemma 6.1. The number of symmetric k-by-k permutation matrices is

(6.1)
bk/2c∑

j=0

(
k

k − 2j

)
· (2j − 1)!! .

This number is also the size of the set {σ ∈ Sk : σ = σ−1}.

Proof. Symmetric permutation matrices correspond to those permutations π on
the set {1, . . . , k} that are products of pairwise disjoint transpositions. These are
exactly those π ∈ Sk that satisfy π = π−1. Express a self-inverse permutation π
as π = (u1 v1) · · · (uj vj) where j ∈ N0 and {us, vs} ∩ {ut, vt} = ∅ for s 6= t. The
order of these transpositions is irrelevant. For a given j, the first factor in (6.1)
says how many ways the fixed points of π can be chosen. Let u1 denote one of the
2j non-fixed points. We can choose v1 in 2j − 1 ways. Denoting by u2 one of the
remaining 2j − 2 points, we can choose v2 in 2j − 3 ways. Continuing the process,
we obtain (2j − 1)!!, the second factor in (6.1). �

For i ∈ {1, . . . ,m}, let ei denote the m-dimensional column vector with 1 in the
i-th entry and zeros elsewhere.

Lemma 6.2. (5.4) holds.
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A =




0 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




A′ =




0 0 1 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0




, A=‖ =




0 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0




Figure 4. T-operation and B-operation

Proof. Since
(
m−1

k

)
=

(
m−2

k

)
+

(
m−2
k−1

)
and n!

(n−k)!
− n!

(n−k+1)!
= n!

(n−k)!
· n−k

n−k+1
, (5.4)

is equivalent to

(6.2) sm0(m,n, k) =
(
m − 2
k

)
· n!
(n− k)!

+
(
m− 2
k − 1

)
· n!
(n− k)!

· n− k

n− k + 1
.

Let A ∈ SM0(m,n, k). It consists of k column vectors from {e2, . . . , em} and
n − k zero columns. If em is excluded, then no matter how we choose k vectors
from {e2, . . . , em−1}, we can do this

(
m−2

k

)
ways, and no matter how we order these

k distinct vectors and n − k copies of the zero vector, n!
(n−k)! ways, we obviously

obtain a matrix in SM0(m,n, k). These possibilities give the first summand in (6.2).
We are left with the more complex case when em occurs in A. In this case, we

select only k−1 vectors from {e2, . . . , em−1}, and the product of the first two factors
of the second summand of (6.2) tells us how many ways we can select and arrange
our vectors. However, not all of these arrangements yield a matrix satisfying (5•).
The satisfaction of (5•) depends only on the ordering of em and the n − k zero
vectors. For a moment, fix the set of the positions of these n − k + 1 vectors.
On this set of positions, only one of the possible n − k + 1 arrangements violates
(5•); namely, where em comes first. Hence the ratio of good arrangements to all
arrangements is just the third factor in the second summand of (6.2), as desired. �

Lemma 6.3. (5.7) holds.

Proof. Let A ∈ SSM0(m, k). Its first row and, by symmetry, its first column con-
tains no unit. Hence (1•) in itself guarantees that A is a slim matrix. The question
is how many ways we can ensure (1•) together with symmetry. The first factor of
(5.7) says how many ways we can choose (the indices of) the nonzero columns. By
symmetry, the same set of indices is obtained if we consider the nonzero rows. Re-
stricting the matrix to these (symmetrically positioned) k rows and k columns, we
obtain a symmetric k-by-k permutation matrix B. The number of these B equals
the sum in (5.7) by Lemma 6.1. �

Next, we define two matrix operations; see Figure 4. Given an m-by-n matrix
A and i ∈ {2, . . . , n}, we define the T-operation between i − 1 and i, abbreviated
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to the T-operation at i, as follows. First, we insert a new column with zero entries
between the (i − 1)-th and the i-th column. In the next step, we insert a new
row right before the first row such the i-th entry of the new row is 1 and the rest
of its entries are 0. For example, if A is the matrix given in Figure 4, then the
T-operation at 3 yields A′ in Figure 4. (The new elements are the boxed boldface
ones.)

By a dual T-operation we mean the composite of a transposition, a T-operation,
and a transposition again. Given an m-by-n matrix A and j ∈ {2, . . . ,m}, we
define the B-operation between j − 1 and j, or in short the B-operation at j, as
follows. First, we apply a T-operation at j. Then, in the next step, we apply a dual
T-operation at j+1. For example, if A is the previous matrix, then the B-operation
at 3 yields A=‖ in Figure 4. Note that A is a symmetric matrix if and only if A=‖

also is a symmetric matrix . Note also that the set of the new elements looks like a
bird (flying to the northwest); this explains the terminology. Let us always assume
automatically that

(6.3) 2 ≤ i ≤ n for any T-operation, and 2 ≤ j ≤ m for any B-operation.

Definition 6.4. A 0, 1-matrix A is quasi-slim if it satisfies (1•), (2•), (4•) and
(5•). For an m-by-n quasi-slim matrix A, let defA, the defect of A, stand for the
largest j ∈ N0 such that Cornj A contains j units. Observe that defA = 0 if and
only if A is slim.

Lemma 6.5. Let A be an m-by-n matrix. Assume that i ∈ {2, . . . , n} and j ∈
{2, . . . ,m}. Let A′ and A=‖ denote the matrices we obtain from A by performing
a T-operation at i and a B-operation at j, respectively. The following assertions
hold.

(i) A′ determines A and i. Similarly, A=‖ determines A and j.
(ii) A is quasi-slim if and only if A′ is quasi-slim if and only if A=‖ is quasi-slim.
(iii) If A is quasi-slim, then A′ is slim if and only if 2 + defA ≤ i ≤ n, and A=‖ is

slim if and only if 2 + defA ≤ j ≤ m.
(iv) If A is slim, then both A′ and A=‖ are slim.

Proof. (i) and (ii) are evident. We prove (iii) only for B-operations; the argument
for T-operations is almost the same and easier.

Assume first that 2 + defA ≤ j ≤ m. Let s ∈ {1, . . . ,m}, let D=‖ = CornsA
=‖,

and denote D the system of those entries of D=‖ that belong to A. If s ≤ j, then D=‖

has less than s units since its first row is zero. Hence we may assume s > j. Now
D = Corns−2A has less than s− 2 units since s− 2 > j − 2 ≥ defA. Therefore D=‖

has less than s units, and A=‖ is slim.
Next, to show the converse, assume j < 2 + defA. Let s = 2 + defA. Since the

previously defined D = Corns−2A = Corndef AA has s − 2 units, D=‖ = CornsA
=‖

has s units. Hence A=‖ is not slim, proving (iii).
Finally, (iii) together with (6.3) imply (iv). �

The next two proofs show the importance of the T- and B-operations.

Lemma 6.6. (5.5) holds.

Proof. Assume A′ ∈ SM1(m,n, k). By Lemma 6.5, there are a unique (m − 1)-
by-(n − 1) quasi-slim matrix A and a unique i ∈ {2, . . . , n − 1} such that A′ is
obtained from A by performing a T-operation at i. It suffices to count these A. Let
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j = defA. Since A contains exactly k − 1 units, defA ∈ {0, . . . , k− 1}. Hence it is
sufficient to show that the j-th summand in (5.5) is the number of those A whose
defect equals j.

Let B = Cornj A. The bottom right (m− 1 − j)-by-(n− 1 − j) corner of A will
be denoted by D. Since j = defA, B is a permutation matrix or the empty matrix.
There are j! possibilities to choose B. This yields j! in (5.5). Evidently, D inherits
(1•), (2•), (4•) and (5•) from A. Also, since j = defA, (3•) holds for D. Hence
D ∈ SM(m−1− j, n− 1− j, k −1− j), and all members of this set can occur. This
gives the next factor in (5.5). Finally, Lemma 6.5 says that i can be chosen from
{j + 2, . . . , n− 1}. This explains the last factor in (5.5). �

Lemma 6.7. (5.8) holds.

Proof. Assume A=‖ ∈ SSM1(m, k). By Lemma 6.5, there are a unique (m − 2)-by-
(m− 2) quasi-slim symmetric matrix A and a unique j ∈ {2, . . . ,m− 2} such that
A=‖ is obtained from A by performing a B-operation at j. Let i = defA. Since A
contains exactly k− 2 units, i = defA ∈ {0, . . . , k− 2}. Like in the previous proof,
it is sufficient to show that the i-th summand in (5.8) is the number of those A
whose defect is i.

Let B = CorniA = Corndef AA. It is a symmetric permutation matrix, so the
second sum in (5.8) counts these B by Lemma 6.1. Let D denote the bottom right
(m − 2 − i)-by-(m − 2 − i) corner of A. From i = defA we conclude, like in the
previous proof, that D is a slim matrix. Hence D ∈ SSM(m− 2− i, k− 2− i), and
all members of this set can occur. So, the number of these D is the second factor in
(5.8). The first factor equals |{i+2, . . . ,m−2}|, which is the number of all possible
j. �

Proof of Lemma 5.1. (5.6) and (5.9) are obvious. The rest are covered by Lem-
mas 6.2, 6.3, 6.6 and 6.7. �

Proof of Proposition 5.2. By Proposition 4.3(ii), h = m + n − k, that is, m =
h+k−n. The question is how to choose k and n such that 0 ≤ k < m = h+k−n ≤ n.

So, assume m = h + k − n and 0 ≤ k < m = h + k − n ≤ n. Clearly, n <
n+(m−k) = h, that is, n ≤ h−1. This, together with k < m ≤ n, gives k ≤ h−2.
From h+ k = m+ n ≤ n+n = 2n we infer n ≥ (h+ k)/2, that is, n ≥ d(h+ k)/2e.
We have obtained

(6.4) 0 ≤ k ≤ h− 2 and
⌈h+ k

2

⌉
≤ n ≤ h− 1.

On the other hand, if (6.4) holds, then k = n + k − n < h + k − n = m and
m = h + k − n = 2(h + k)/2 − n ≤ 2d(h + k)/2e − n ≤ 2n − n = n. Hence
Proposition 5.2 follows from (6.4). �

Let u denote the (non-commutative) operation of forming glued sums. Clearly,

Claim 6.8. Each L ∈ SSL(h) uniquely decomposes as a glued sum L1 u · · ·uLt(L)

of maximal chain intervals and indecomposable slim semimodular lattices.

The definition of this decomposition is explained by Figure 1.

Proof of Theorem 5.3. For each L ∈ SSL(h), we consider the unique decomposition
from Claim 6.8. Let j denote the length of the “bottom summand” L1, and let
L′ = L2 u · · · u Lt(L). Note that t(L), I(L1), . . . , I(Lt(L)), j, and I(L′) depend
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only on I(L). Let DC(h)∼= = {I(L) ∈ SSL(h)∼= : L1 is a chain}. (The notation
comes from “Decomposable and the bottom summand is a Chain”.) Similarly, let
DI(h)∼= = {I(L) ∈ SSL(h)∼= : L1 is an indecomposable slim semimodular lattice}.
We denote |DC(h)∼=| and |DI(h)∼=| by Ndc(h) and Ndi(h), respectively. Since N (h) =
|SSL(h)∼=| and DC(h)∼= ∩ DI(h)∼= = ∅, we obtain N (h) = Ndc(h) + Ndi(h), for all
h ∈ N0. We claim that, for all h ∈ N0,

(6.5) Ndc(h) = 1 +
h−2∑

j=1

Ndi(h− j) and Ndi(h) =
h∑

j=2

Nissl(j) ·N (h− j).

Assume first that I(L) ∈ DC(h)∼=. The simplest possibility is L1 = L; this gives
the summand 1 in (6.5). Assume L 6= L1. Now t(L) > 1 and L2 cannot be a chain.
Hence j ∈ {1, . . . , h − 2}, and I(L′) ∈ DI(h − j)∼= . Since I(L′) ∈ DI(h − j)∼= is
arbitrary, we obtain the equation for Ndc(h) in (6.5).

Next, if I(L) ∈ DI(h)∼=, then j ∈ {2, . . . , h}. For each of these j, I(L1) can
be chosen in Nissl(j) ways. If j < h, then I(L′) ∈ SSL(h − j)∼= can be chosen in
N (h− j) ways. If j = h, then N (0) = 1 causes no trouble. Hence we conclude the
Ndi(h)-part of (6.5). Thus, (6.5) holds.

Since N (0) = N (1) = 1, we may assume 2 ≤ h. Then, by (6.5),

N (h) − Ndi(h) = Ndc(h) = 1 +
h−2∑

j=1

Ndi(h− j)

= Ndi(h− 1) + 1 +
h−2∑

j=2

Ndi(h− j)

= Ndi(h− 1) + 1 +
h−1−2∑

i=1

Ndi(h− 1 − i)

= Ndi(h− 1) +Ndc(h− 1) = N (h− 1).

This yields

N (h) = N (h− 1) + Ndi(h) = N (h− 1) +
h∑

j=2

Nissl(j) ·N (h− j). �

7. The asymptotic value of N (h)

The aim of this section is to prove the following asymptotic statement.

Proposition 7.1. lim
h→∞

N (h)
h!

=
1
2
.

Analogously to Proposition 3.1, Czédli and Schmidt [11] described the set SSL(h)∼=
by permutations as detailed below. Let σ ∈ Sh, and let I = [u, v] = {u, . . . , v} be
a (non-empty) interval of the chain {1 < · · · < h}. If the sets {1, . . . , u − 1}, I,
and {v + 1, . . . , h} are closed with respect to σ, then I is a section of σ. (Here I is
non-empty but any of {1, . . . , u− 1} and {v+ 1, . . . , h} may be empty.) Sections of
σ that are minimal with respect to set inclusion are σ-segments. Let Seg(σ) denote
the set of all σ-segments. A σ-segment I is said to be large if |I| ≥ 3; otherwise I
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is small. For example, if

(7.1) σ =
(

1 2 3 4 5 6 7 8 9
1 7 4 5 3 6 2 9 8

)
= (27)(345)(89),

then Seg(σ) =
{
{1}, {2, 3,4, 5, 6,7},{8,9}

}
. Here [2, 7] = {2, . . . , 7} is a large

σ-segment, and the other two σ-segments are small. The restriction of σ to a
subset I of {1, . . . , h} will be denoted by σeI . Let σ, µ ∈ Sh. We say that σ and
µ are sectionally inverse or equal1 if Seg(σ) = Seg(µ) and, for all I ∈ Seg(σ),
µeI ∈ {σeI , (σeI)−1}. The corresponding relation is denoted by %i

e; that is, (σ, µ) ∈
%i

e means that σ and µ are sectionally inverse or equal. We recall the following
statement from Czédli and Schmidt [11] without proof; parts (i) and (ii) are quite
easy.

Lemma 7.2 ([11]). For h ∈ N, and let σ ∈ Sh, the following hold.
(i) Seg(σ) is a partition on the set {1, . . . , h}.
(ii) %i

e is an equivalence relation on Sh.
(iii) There is a bijection between SSL(h)∼= and the quotient set Sh/%

i
e.

Proof of Proposition 7.1. From Proposition 2.3(iii) and Lemma 7.2(iii), we obtain
N (h) = |Sh/%

i
e|. For σ ∈ Sh, the %i

e-block (in other words, the %i
e-class) of σ

will be denoted by σ/%i
e. Suppose µ ∈ σ/%i

e. For each I in Seg(σ), there are
two possibilities: either σeI 6= (σeI )−1 and there are two ways to choose µeI , or
σeI = (σeI)−1 and µeI is uniquely determined. (The former possibility implies that
I is a large σ-segment.) Hence |σ/%i

e| is a power of 2. For k ∈ N0, let

Ak(h) = {σ ∈ Sh : |σ/%i
e| = 2k}.

Clearly, A0(h) = {σ ∈ Sh : σ = σ−1}. Hence Lemma 6.1 yields

|A0(h)|
h!

=
1
h!

bh/2c∑

j=0

(
h

h− 2j

)
(2j − 1)!! =

1
h!

bh/2c∑

j=0

h!
(h− 2j)! · (2j)!

· (2j)!
2j · j!

=
bh/4c∑

j=0

1
(h − 2j)! · 2j · j!

+
bh/2c∑

j=bh/4c+1

1
(h− 2j)! · 2j · j!

=
∑′

+
∑′′

.

In
∑′, each denominator is at least (h − 2bh/4c)! ≥ bh/2c!, and there are fewer

than h summands. Hence
∑′ ≤ h · (bh/2c!)−1 → 0. In

∑′′, each denominator is at
least 2h/4, and there are fewer than h summands, so

∑′′ ≤ h · 2−h/4 → 0. Thus,

(7.2) lim
h→∞

|A0(h)|
h!

= 0.

Next, we denote A2(h)∪A3(h)∪A4(h)∪ · · · by B(h), and we assume σ ∈ B(h).
Now there are at least two large σ-segments. We define the pivot element p(σ) of
σ as the greatest element of the leftmost large σ-segment. We have 3 ≤ p(σ) ≤
h − 3 since there are at least two large σ-segments. Both the intervals [1, p(σ)] =
{1, . . . , p(σ)} and [p(σ) + 1, h] are unions of σ-segments, whence both are closed
with respect to σ. Hence if we denote the restrictions of σ to these intervals by
λ = σe[1,p(σ)] and % = σe[p(σ)+1,h] , then σ is determined by λ and %. Since λ ∈ Sp(σ),
there are at most p(σ)! possible λ. Similarly, there are at most

(
h − p(σ))! many

1In the definition of this concept, we use segments rather than sections.



INTERSECTING COMPOSITION SERIES 19

%. Using the unimodality of the binomial coefficients
(
h
i

)
as a function of i and

counting the permutations according to their pivot elements,

|B(h)|
h!

≤ 1
h!

h−3∑

k=3

k! · (h− k)! =
h−3∑

k=3

k! · (h− k)!
h!

=
h−3∑

k=3

(
h

k

)−1

≤∗
h−3∑

k=3

(
h

3

)−1

≤ h · 6
h(h− 1)(h− 2)

→ 0.

(7.3)

For h ≥ 6, B(h) 6= ∅ and {A0(h), A1(h), B(h)} is a partition on Sh. If σ and µ
are taken from different blocks of this partition, then (σ, µ) /∈ %i

e. Hence, using
Lemma 7.2(iii) at =∗, and (7.2) and (7.3) later, we conclude

∣∣∣N (h)
h!

− |{σ/%i
e : σ ∈ A1(h)}|

h!

∣∣∣

=∗
∣∣∣ |{σ/%

i
e : σ ∈ Sh}|
h!

− |{σ/%i
e : σ ∈ A1(h)}|

h!

∣∣∣

=
|{σ/%i

e : σ ∈ A0(h) ∪B(h)}|
h!

≤ |A0(h) ∪B(h)|
h!

=
|A0(h)|
h!

+
|B(h)|
h!

→ 0,

(7.4)

Utilizing first the definition of A1(h) and then (7.2) and (7.3), we derive

|{σ/%i
e : σ ∈ A1(h)}|

h!
− 1

2
=

|A1(h)|
2 · h!

− 1
2

=
|Sh \ (A0(h) ∪B(h))|

2 · h!
− 1

2

=
|Sh|
2 · h! −

|A0(h)|
2 · h! −

|B(h)|
2 · h! −

1
2

= −
|A0(h)|
2 · h! −

|B(h)|
2 · h! → 0.

(7.5)

Finally, (7.4) and (7.5) complete the proof. �
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Algebra Universalis (in press)
[19] J. Heitzig, J. Reinhold, Counting finite lattices, Algebra Universalis 48 (2002) 43–53.
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6720


