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ON THE 2-DISTRIBUTIVITY
OF SUBLATTICE LATTICES

By
G. CZEDLI (Szeged)

1. Introduction

The concept of n-distributivity was introduced by Hunn (cf. [4] and [6]). A
lattice is said to be as-distributive (n=1) if it satisfies the identity

x/\i\z, = \'} [x/\ l_\20 y,].

i=0
i=J

The n-distributivity of subalgebra lattices of universal algebras proved to be an
important property in several cases (cf., e.g., HUuan [4, 5] and NaTion [9]). Sub-
lattice lattices were investigated by Fiippov [2]. Lattices having modular and (upper)
semi-modular sublattice lattices were characterized by Kon [7] and LAKSER [8],
respectively. In [1] we have given a structure theorem for distributive lattices having
2-distributive sublattice lattices. In this paper lattices having 2-distributive sub-
lattice Iattices will be characterized. A necessary and sufficient condition for distribut-
ive lattices to have n-distributive sublattice lattices will be also given. A structure
theorem for modular lattices having 2-distributive sublattice lattices will be deduced
from the mentioned result of [1]. _

In what follows, for a lattice L and a subset H of L, let Su(L) and [H] denote
the lattice of sublattices of L and the sublattice generated by H, respectively. (Su(L)
contains the empty set.)

II. Distributive lattices having #-distributive sublattice lattices

‘We intend to prove the following

THEOREM 1. For an arbitrary distributive lattice I and integer n=1 the follow-
ing two conditions are equivalent:

(i} Su(L) is n-distributive;

(ify for any (n+1)-element subset H of L we have

[H]= U [HN\{h}]
heH

ReMArk. Since every finitely generated free distributive lattice is finite, this
theorem makes it, at least theoretically, possible to list finitely many finite distribut-
ive lattices for each n so that a distributive lattice L has an n-distributive sublattice
lattice iff none of the listed lattices is a sublattice of L.
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For example, in case n=1 only the four-element lattice which is not a chain
has to be listed. In case n=2, as it follows from Theorem 2 (stated later), S, and S,
(defined in Theorem 2) can be listed.

PrOOF, By Lemma 1 in [1] it is enough to show that for any non-negative in-
teger k, the following implication holds:
I,: for an arbitrary lattice L, if L satisfies (ii) then [H]= [ {G]holds for any
GCH
G|=n
(n+k+ 1)-element subset H of L. So, the proof goes via inducti({)nl on k. I, is evident.
Now suppose Iy, I, ..., I,_; hold for some k=1, bui ] does not hold. Then there
exist a lattice L, H={hy, hg, ..., By4z+1}S L and an (n+k+ 1)-ary lattice polynomial
psuchthat plhy, ..., by 1) §*H, where "H= | [G]. By the distributivity of L,

GCH
1Gl=n
p can be supposed to be of disjunctive normal form

(1) POy, ooy Xk D =P1(Xas oo 3 Xigs ) VP (X0, oy Xpig e )V Vg (g, oy Xiid)

where p,, ..., p; are conjunctions of (some of their) variables, p, is of disjunctive
normal form or is omitted (i.e., p=p,V...Vp,), p, does not depend on all the n+k+1
variables, and all the n+ k-1 variables occur in p,Vp, (or in p,, if p, is omitted).
Suppose both p and its disjunctive normal form (1) are chosen so that d is minimal.
By the induction hypothesis, p; (hy, ..., A1k 1 ) =Do(g1s ---+ £,) forsome {g,, ..., gJC H
and n-ary polynomial p,. At least two elements of H, say A, and A, ;,.,, do not
belong to {g1, ..., ga}- Let o=l Abyyii1, Ho={hg, Py ...y Bypsn1} and observe

that
Pl ooy B e DV PPy oo Bpiis ) =
= Pol&1s - » BV Pah1s ooy Bnsgmns yiis Bngis) = qlhg, By, .oy hpsx-D

for some polynomial ¢. By applying the induction hypothesis (first to H, and
then once more if necessary) we obtain g(hg, ..., Apex—) =7, Aoy ooy Bpirin)
where r is a polynomial depending on at most » variables. It can be assumed that
r is of disjunctive normal form, whence either all the n+k+1 variables occur on
the right hand side of the equation phy, ..., ki) =rPe,s ooy Bysrs )V
Vpa(hy,eoos Bpaxa V...V DBy, ..., Byipyy), which contradicts the minimality of 4,
of p(hy, ..., b4z )€"H is obtained from the induction hypothesis, which is a
contradiction again. Q.E.D.

I11. Lattices having 2-distributive sublattice lattices

We intend to prove the following

THEOREM 2. For an arbitrary lattice L the following three conditions are equi-
valent:

() Su(L) is 2-distributive;
(i} None of the luttices S;, S;, ..., S (see below) is a sublattice of L;
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(iti) For any three elements a,b,c in L, if a| b, alic and b| c then [a, b, c] is
isomorphic to one of the lattices P, P,, ..., P,, while if allb, allc and b<c then
[a, b, €] is isomorphic to R, or Ry.

We define the lattices occurring in Theorem 2 by their diagrams as follows
(89 stands for the dual of S):

LR

Sy=S3 Se=52 S;=59
P, =Pg
Ry Ry
Fig. 1

In order to prove Theorem 2 we need the following

LEMMA 1. For an arbitrary idempotent algebra A with at most binary funda-
mental operations, Su(A) is 2-distributive if and only if [H]l= {J [H\{a}] for any
acH

three-element subset H of A.

PrOOF. Let us write 2H instead of | [a, b). Consider an idempotent algebra
a,bEH

A with at most binary fundamental operations and suppose [H1=2H for any three-
element subset H of 4. By Lemma 1 of {1] it is enough to show that [H]=2H holds
for any subset H of A. In other words, it is enough to show that any k-ary polynom-
ial p (in the similarity type of 4) has the following property:

For any k-element subset G={a,, ..., a,} of A, there exist a binary polynomial

g and elements b,, b, in G such that p(ay, ..., &)=4q(by, by).
Let vs assume that this is not true and p is a polynomial of minimal length |p|
not having the above property. Then, for any k-element subset H={a, ..., }
of 4 we have either pia, ..., a,,) fo(@olar, ....a)) or play,..,a)=
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=flalay, ..., a), @@y, ... a)), where q,,q, and g, are k-ary polynomials, f,
and f, are fundamental operations, f; is binary and £, is at most unary. In both
cases |g|=<|p| implies gi(ay, ..., @)=r;(by, byiyy) (i=0,1,2) for some binary
polynomial r; and elements by, &5, in H. Thus in the first case p(ay, ..., @)=
=fo(qol@s, ..., a))=So(ro(bo, b))€2H, a contradiction. If |{b,, by, by, b5}|=3 in the
second case, then our assumption on A applies and we have p(ay, ..., q)=
=f(gla, ..., a), ga(ay, ... a))=f(r1(bs, by), rolby, b))€2H, which is a contra-
diction again. If |{bs, b;, by, b5} =4, then by applymg our assumption on A
(first to the set {r, (s, b3), by, b} and then once more if necessary) we obtain the
contradiction p(ay, -.., @) =/i(ry(bs, by), ra(by, b))€2H again. Q.E.D.

PrOOF oF THEOREM 2, It can be checked by Lemma 1 that Su(S) (i=1,2, ..., 8)
is not 2-distributive, whence the implication (i)—~{ii) follows. An easy calculation
by Lemma 1 shows that Su(P)(i=1,2, ...,7),8u(R,) and Su(R,) are 2-distribut-
ive. Similarly, for any lattice M=[a, b, ¢] with at most one of afl b, afc and &| ¢,
Su(M) is 2-distributive. Thus the implication (iii)—~(i) follows from Lemma 1.

Now only the implication (ii)-~(iii) has to be proved, so suppose L satisfies
(i) and {a, b, c} is a three-element subset of L. Several cases have to be dealt with.
If a||b, allc and b=c then [a, b, ¢] is isomorphic to the factor lattice K/@ for some
congruence relation @ (cf, GRATZER [3, p. 11]) where K denotes the Jattice

Fig. 2

Now it is not hard to check that [a, b, c]=R; in case (u, v})¢@, and [a, b, c]=R,
otherwise,
So we have proved that in case a| b, allc and b=<c [a, b, ¢] is isomorphic to
R, cr R,. This has an important consequence that will be often used in the proof:
Suppose allb, a|c and b=<c (a, b, cEL). Then aVb=aVc implies aAb=alc
and (aVb)Ac=>b. Similarly, aAb=2aAc implies aVb=aVc and (aAe)Vh=c.
Having three elements g, b, ¢ in L with al b, al c and b-=c, we shall refer to this
consequence by R, ..
In what follows let us assume alb,a]lc and b c. We have

2 aVbVe€{aVh,aVe, bVe} and aAbAcefalb, ale, bAc}

since otherwise [aVh, aVe, V] or [al\b, alc, bAc] would be isomorphic to S,
by Lemma 9 in GRATZER [3, p. 38). Let j=H{x, y}: {x,y}S{a, b, ¢} and xVy=
=aVbVe)| and m=|{{x,y}: {x, ¥} S{a. b ¢} and xAy=aAbAc}|. Then (2) states
that j=1 and m=1.
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Claim 1. If j=1 then [a, b, c]=PF;.

To prove this claim suppose j=1 and aVe=aVbVe, We obtain aA@Ve)=
=aAb and (aVb)Ac=bAc from R,; sy, and R, ,yp, Tespectively. If we had
(@VBA(BVc)=b, then {a, b, ahb,aVb,aVe,bVe, (aVOA(BV )} could be easily
shown to be a sublattice of L isomorphic to 8. Thus {(@VEA(BVc)=b.

Case 1.1: aAb|c. We obtain aAbAc=(aVbh)Ac from R, ,pp v We have
(aAB)Y c=bV ¢ since otherwise {a/b, b, aVb, aVe, bV e, ¢, aAbAc} would be a sub-
lattice of L isomorphic to S;. From aAb=aA(aAb)=aA((@aA\B)Vc)=aA(BVe)=
=agAb we obtain aA((@aAb)Ve)=aAb. Hence {a, c, bVc, alb, (aAb)Ve, ale,
aVc}=S,, which is a contradiction. Therefore Case 1.1 is impossible.

Case 1.2: alAble. We obtain ahbAc=ahb=alhe from aAb<ec and
af(BVe)y=alb.

Case 1.2.1: bAc=al\bAc. If we had aVb=aV(b/Ac) then {a, bAc, aV(bAc),
aVb, alb, ¢, aVe} would be isomorphic to §,. Therefore aVb=aV{bAc) and so
{a, b, a\'b, bAe, aAb, BV ¢, aV ¢} is isomorphic to S;. This contradiction shows
that Case 1.2.1 is impossible.

Case 1.2.2: bAc=aAbAc. Then the earlier equalities vield [a, b, ¢]==P,.
This completes the proof of Claim 1.

Claim 2. If j=2 and m=3 then [a, b, c]=P,.
To prove this claim suppose bVc=aVbVe.

Case 2.1: aA(BVe)=albAc. Since [a,b,c]=S;, we have either (aABVe))V
Vo=bVe or (aA(BVe)Ve=bVe. Thus, eg., (aA(BVe))Vh=bVe can be assumed.
But then {a, 5, bVc, aVh, ahb, aA(bVe), (aA(BVc))Vb}=S,, a contradiction,
showing that Case 2.1 is impossible.

Case 2.2: aA(bVcy=aAbAc. Then [a, b, c] is isomorphic to Py, which comp-
letes the proof of Claim 2.
For j=m=2 the only essentially different cases are

ahb # aAbAe and bVe = aVbVe;
bAc #afhbAc and BVe = aVbVe.

Claim 3. If j=m=2,arbzalhbAc and DbVcx=aVbVe then [a,b,cleP,.

To prove this claim suppose [a, b, ¢] Py. Then either aA(bVe)<aAb or
(aAB)Vec=bVe. By the lattice theoretical Duality Principle aA(PVe)=ahb can
be assumed. Then we have (aAD)Ves2bVe as well, since otherwise {a,c,bVe,
ahb, aA(bVc), ahc, aVe} would be isomorphic to S;. Similarly, we have aA(bV )%
£(aAb)Ve since otherwise {a, ¢, BVe, (ah\B)Ve, aA(bV ), ahe, aVe} would be
isomorphic to S,. Therefcre {a/A(bV¢), b, (aABYV ¢} is an antichain (le., a set
of pairwise incomparable elements). Clearly, we have aA({(aAb)Ve)=
=(aABVe))M(aAb)Ve). Therefore (aA(BY )V ((aAb)Ve)=bVe since otherwise
{a,bVe, (ahbB)Ve, ah(bV ¢), aVe, ah{{a\b)V ¢), (aA BV )V ((aAb)V )} would be
isomorphic to S,. The dual argument shows (a/A(BVe)JA{(aAb)Vc)=aAb. From
R, pnye and R, ., we get (aA(BVe)Vb=5bVe and ((ahb)Vc)Ab=aAb. On
the other hand, it is clear that (aA(BY W b=aAb and ((@hb)Vc)Vb=bVe. It
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follows from the equations we have obtained that {a, b, a/\b, bV ¢, aVe, aA(bVe),
(aAb)Ve} is isomorphic to S;. This contradiction completes the proof of Claim 3.

Claim 4. If j=m=2, bAc=ahbAc and bVce=aVbVe then [a,b, c] is iso-
morphic to P,.

Suppose [a, b, c]2P,. Then we have aA(bVe)=ahc or aV(bhc)=aVe,
so aA(bVe)s#aic can be assumed by the Duality Principle. From R, ,,. ,v.
we obtain aV(bAc)=aVe. We have (aA(BVo)V(bAc)=bVe since otherwise
{a, aN(BVc),alc, aVe, bV e, bAc, (aA(BVe))V(bAc)} would be isomorphic to S,.
Therefore [a, b, ¢] is isomorphic to §,, which is a contradiction, completing the
proof of Claim 4.

Clearly, if j=m=3, then [a,b, c]=P,. Hence (2) together with Claims
1,2, 3,4 and their dual statements complete the proof of Theorem 2.

IV. Structure theorem for modular lattices having
2-distributive sublattice lattices

First we recall the notion of the special sum of lattices from [1]. Let a set of
indices I which is a chain and lattices L; (i€]) be given. Define the following binary

relation § on the ordinal sum > L, of the lattices L;:
icf
(a, )€Y iff there exist i, j¢I such that j covers i, a is the greatest eclement
of L; and b is the lowest element of L;.

Let & be the equivalence relation generated by 9. Then @ is a congruence relation.
The factor lattice 3 L/© will be called the special sum of the lattices L; and will

ier
be denoted by 3 L,.

icl
For cxampfe, if 7={1,3,7} with 1=3<7, then 3’ S;is the following lattice:
il

Fig. 3

Now we can state the following theorem, which generalizes the main result of [1].

THEOREM 3. For an arbitrary modular lattice L the following four conditions
are eguivalent:
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(i) Su(L) is 2-distributive;
(ii) None of Sy, 8,, S; and Sy is a sublattice of L;
(iii) S, is not a sublattice of L and any three-element antichain in L generates
a sublattice isomorphic to Py;
(iv) L is isomorphic to a special sum > L, where I is a chain, and for all i1
icr
one of the following three conditions is satisfied:
(a) L; is a chain;
(b) L, is the direct product of a chain and the two-element lattice;
(c) L, has lowest and greatest elements (in notation 0; and 1;), and
LN{0;, 15} is an antichain.

Proor. The equivalence of (i), (i} and (iii) immediately follows from Theorem 2
and the well-known criterion of modularity (cf. GRATZER [3, page 59]). The implica-
tion (iv) —(iii) is straightforward. 8o, only the implication (jii) -~ (iv) has to be shown.
For a lattice M let us define C"(M)={xeM: x0,, x>1,, and x¥y for any yc M}.
By [1, Lemma 2] and [1, Theorem] it is enough to show that whenever M is a mod-
ular, non-distributive lattic efor which (iii) and C’(M)= hold then M\ {0y, 1,}
is an antichain. Suppose M is a modular, non-distributive lattice for which (iii)
and C'(M)=@ hold. By the well-known criterion of distributivity (cf. GRATzER
[3, page 59]), M contains a three-element antichain. Thus, by Zorn’s Lemma, M
contains an at least three-element maximal antichain 4. Set B=A4U{aVb, aAb}
where a and b are distinct elements in A. By (iii} B is a sublattice of M, so it is enough
to show that B=M. Suppose aV¥ is not the greatest element of M. Then x{aVh
for some x¢M. Choosing two distinct elements y, z from A4 such that y]x and
z||lx, xVyVz=xVaVb=aVb=yVz contradicts (iii). Therefore aVb=1=1, and,
similarly, aAb=0=0,,. Suppose x is an element in M\ B. Since AU {x} is not
an antichain, xyp, say x<y, for some y in 4. Choose two distinct elements d, e
in AN{y}. Since {x,d, e} is an antichain, by (ii) we have xVd=dVe=1,
xANd=dAe=0. Hence {0, 1, x, y, d} is isomorphic to R,, which contradicts the
modularity of M. Therefore M=B. Q.E.D.
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