Acta Mathematica Academiae Scientiarum Hungaricae Tomus 36 (1-2), (1980), pp. 49-55.

ON THE 2-DISTRIBUTIVITY OF SUBLATTICE LATTICES

Ву

G. CZÉDLI (Szeged)

I. Introduction

The concept of *n*-distributivity was introduced by HUHN (cf. [4] and [6]). A lattice is said to be *n*-distributive $(n \ge 1)$ if it satisfies the identity

$$x \wedge \bigvee_{i=0}^{n} y_i \leq \bigvee_{j=0}^{n} \left(x \wedge \bigvee_{\substack{i=0\\i \neq j}}^{n} y_i\right).$$

The *n*-distributivity of subalgebra lattices of universal algebras proved to be an important property in several cases (cf., e.g., HUHN [4, 5] and NATION [9]). Sublattice lattices were investigated by FILIPPOV [2]. Lattices having modular and (upper) semi-modular sublattice lattices were characterized by KOH [7] and LAKSER [8], respectively. In [1] we have given a structure theorem for distributive lattices having 2-distributive sublattice lattices. In this paper lattices having 2-distributive sublattice structure theorem for distributive sublattice lattices will be characterized. A necessary and sufficient condition for distributive lattices to have *n*-distributive sublattice lattices will be also given. A structure theorem for modular lattices having 2-distributive sublattice lattices will be deduced from the mentioned result of [1].

In what follows, for a lattice L and a subset H of L, let Su(L) and [H] denote the lattice of sublattices of L and the sublattice generated by H, respectively. (Su(L) contains the empty set.)

II. Distributive lattices having *n*-distributive sublattice lattices

We intend to prove the following

THEOREM 1. For an arbitrary distributive lattice L and integer $n \ge 1$ the following two conditions are equivalent:

(i) Su(L) is n-distributive;

4

(ii) for any (n+1)-element subset H of L we have

$$[H] = \bigcup_{h \in H} [H \setminus \{h\}].$$

REMARK. Since every finitely generated free distributive lattice is finite, this theorem makes it, at least theoretically, possible to list finitely many finite distributive lattices for each n so that a distributive lattice L has an n-distributive sublattice lattice iff none of the listed lattices is a sublattice of L.

Acta Mathematica Academiae Scientiarum Hungaricae 36, 1980

G. CZÉDLI

For example, in case n=1 only the four-element lattice which is not a chain has to be listed. In case n=2, as it follows from Theorem 2 (stated later), S_1 and S_4 (defined in Theorem 2) can be listed.

PROOF. By Lemma 1 in [1] it is enough to show that for any non-negative integer k, the following implication holds:

 I_k : for an arbitrary lattice L, if L satisfies (ii) then $[H] = \bigcup_{\substack{G \subset H \\ |G|=n}} [G]$ holds for any

(n+k+1)-element subset H of L. So, the proof goes via induction on k. I_0 is evident. Now suppose $I_0, I_1, \ldots, I_{k-1}$ hold for some $k \ge 1$, but I_k does not hold. Then there exist a lattice L, $H = \{h_1, h_2, \ldots, h_{n+k+1}\} \subseteq L$ and an (n+k+1)-ary lattice polynomial p such that $p(h_1, \ldots, h_{n+k+1}) \notin {}^{n}H$, where ${}^{n}H = \bigcup_{\substack{G \subset H \\ |G| = n}} [G]$. By the distributivity of L,

p can be supposed to be of disjunctive normal form

(1)
$$p(x_1, \ldots, x_{n+k+1}) = p_1(x_1, \ldots, x_{n+k+1}) \lor p_2(x_1, \ldots, x_{n+k+1}) \lor \ldots \lor p_d(x_1, \ldots, x_{n+k+1})$$

where p_2, \ldots, p_d are conjunctions of (some of their) variables, p_1 is of disjunctive normal form or is omitted (i.e., $p = p_2 \lor \ldots \lor p_d$), p_1 does not depend on all the n+k+1variables, and all the n+k+1 variables occur in $p_1 \lor p_2$ (or in p_2 , if p_1 is omitted). Suppose both p and its disjunctive normal form (1) are chosen so that d is minimal. By the induction hypothesis, $p_1(h_1, \ldots, h_{n+k+1}) = p_0(g_1, \ldots, g_n)$ for some $\{g_1, \ldots, g_n\} \subset H$ and n-ary polynomial p_0 . At least two elements of H, say h_{n+k} and h_{n+k+1} , do not belong to $\{g_1, \ldots, g_n\}$. Let $h_0 = h_{n+k} \land h_{n+k+1}$, $H_0 = \{h_0, h_1, \ldots, h_{n+k-1}\}$ and observe that

$$p_1(h_1, \dots, h_{n+k+1}) \lor p_2(h_1, \dots, h_{n+k+1}) =$$

= $p_0(g_1, \dots, g_n) \lor p_2(h_1, \dots, h_{n+k-1}, h_{n+k}, h_{n+k+1}) = q(h_0, h_1, \dots, h_{n+k-1})$

for some polynomial q. By applying the induction hypothesis (first to H_0 and then once more if necessary) we obtain $q(h_0, \ldots, h_{n+k-1}) = r(h_1, h_2, \ldots, h_{n+k+1})$ where r is a polynomial depending on at most n variables. It can be assumed that r is of disjunctive normal form, whence either all the n+k+1 variables occur on the right hand side of the equation $p(h_1, \ldots, h_{n+k+1}) = r(h_1, \ldots, h_{n+k+1}) \vee$ $\vee p_3(h_1, \ldots, h_{n+k+1}) \vee \ldots \vee p_d(h_1, \ldots, h_{n+k+1})$, which contradicts the minimality of d, or $p(h_1, \ldots, h_{n+k+1}) \in H$ is obtained from the induction hypothesis, which is a contradiction again. Q.E.D.

III. Lattices having 2-distributive sublattice lattices

We intend to prove the following

THEOREM 2. For an arbitrary lattice L the following three conditions are equivalent:

(i) Su(L) is 2-distributive;

(ii) None of the lattices $S_1, S_2, ..., S_8$ (see below) is a sublattice of L;

Acta Mathematica Academiae Scientiarum Hungaricae 36, 198)

(iii) For any three elements a, b, c in L, if a || b, a || c and b || c then [a, b, c] is isomorphic to one of the lattices P_1, P_2, \ldots, P_7 , while if a || b, a || c and b < c then [a, b, c] is isomorphic to R_1 or R_2 .

We define the lattices occurring in Theorem 2 by their diagrams as follows $(S^d \text{ stands for the dual of } S)$:

In order to prove Theorem 2 we need the following

LEMMA 1. For an arbitrary idempotent algebra A with at most binary fundamental operations, Su(A) is 2-distributive if and only if $[H] = \bigcup_{a \in H} [H \setminus \{a\}]$ for any three-element subset H of A.

PROOF. Let us write ²H instead of $\bigcup_{a,b \in H} [a, b]$. Consider an idempotent algebra A with at most binary fundamental operations and suppose $[H] = {}^{2}H$ for any threeelement subset H of A. By Lemma 1 of [1] it is enough to show that $[H] = {}^{2}H$ holds for any subset H of A. In other words, it is enough to show that any k-ary polynomial p (in the similarity type of A) has the following property:

For any k-element subset $G = \{a_1, ..., a_k\}$ of A, there exist a binary polynomial q and elements b_1, b_2 in G such that $p(a_1, ..., a_k) = q(b_1, b_2)$.

Let us assume that this is not true and p is a polynomial of minimal length |p| not having the above property. Then, for any k-element subset $H = \{a_1, \ldots, a_k\}$ of A we have either $p(a_1, \ldots, a_k) = f_0(q_0(a_1, \ldots, a_k))$ or $p(a_1, \ldots, a_k) = f_0(a_1, \ldots, a_k)$

Acta Mathematica Academiae Scientiarum Hungaricae 36, 1980

G. CZÉDLI

 $=f_1(q_1(a_1, \ldots, a_k), q_2(a_1, \ldots, a_k)), \text{ where } q_0, q_1 \text{ and } q_2 \text{ are } k\text{-ary polynomials, } f_0$ and f_1 are fundamental operations, f_1 is binary and f_0 is at most unary. In both cases $|q_i| < |p|$ implies $q_i(a_1, \ldots, a_k) = r_i(b_{2i}, b_{2i+1})$ (i=0, 1, 2) for some binary polynomial r_i and elements b_{2i}, b_{2i+1} in H. Thus in the first case $p(a_1, \ldots, a_k) =$ $=f_0(q_0(a_1, \ldots, a_k)) = f_0(r_0(b_0, b_1)) \in^2 H$, a contradiction. If $|\{b_2, b_3, b_4, b_5\}| \leq 3$ in the second case, then our assumption on A applies and we have $p(a_1, \ldots, a_k) =$ $=f_1(q_1(a_1, \ldots, a_k), q_2(a_1, \ldots, a_k)) = f_1(r_1(b_2, b_3), r_2(b_4, b_5)) \in^2 H$, which is a contradiction again. If $|\{b_2, b_3, b_4, b_5\}| = 4$, then by applying our assumption on A(first to the set $\{r_1(b_2, b_3), b_4, b_5\}$ and then once more if necessary) we obtain the contradiction $p(a_1, \ldots, a_k) = f_1(r_1(b_2, b_3), r_2(b_4, b_5)) \in^2 H$ again. Q.E.D.

PROOF OF THEOREM 2. It can be checked by Lemma 1 that Su (S_i) (i=1, 2, ..., 8) is not 2-distributive, whence the implication $(i) \rightarrow (ii)$ follows. An easy calculation by Lemma 1 shows that Su (P_i) (i=1, 2, ..., 7), Su (R_1) and Su (R_2) are 2-distributive. Similarly, for any lattice M = [a, b, c] with at most one of $a \parallel b, a \parallel c$ and $b \parallel c$, Su(M) is 2-distributive. Thus the implication $(iii) \rightarrow (i)$ follows from Lemma 1.

Now only the implication (ii) \rightarrow (iii) has to be proved, so suppose L satisfies (ii) and $\{a, b, c\}$ is a three-element subset of L. Several cases have to be dealt with. If a || b, a || c and b < c then [a, b, c] is isomorphic to the factor lattice K/Θ for some congruence relation Θ (cf. GRÄTZER [3, p. 11]) where K denotes the lattice

Now it is not hard to check that $[a, b, c] \cong R_1$ in case $(u, v) \in \Theta$, and $[a, b, c] \cong R_2$ otherwise.

So we have proved that in case $a \parallel b$, $a \parallel c$ and b < c [a, b, c] is isomorphic to R_1 or R_2 . This has an important consequence that will be often used in the proof:

Suppose a || b, a || c and b < c $(a, b, c \in L)$. Then $a \lor b \neq a \lor c$ implies $a \land b = a \land c$

and $(a \lor b) \land c=b$. Similarly, $a \land b \neq a \land c$ implies $a \lor b=a \lor c$ and $(a \land c) \lor b=c$. Having three elements a, b, c in L with $a \parallel b, a \parallel c$ and b < c, we shall refer to this consequence by $R_{a,b,c}$.

In what follows let us assume $a \| b, a \| c$ and $b \| c$. We have

(2)
$$a \lor b \lor c \in \{a \lor b, a \lor c, b \lor c\}$$
 and $a \land b \land c \in \{a \land b, a \land c, b \land c\}$

since otherwise $[a \lor b, a \lor c, b \lor c]$ or $[a \land b, a \land c, b \land c]$ would be isomorphic to S_1 by Lemma 9 in GRÄTZER [3, p. 38]. Let $j = |\{\{x, y\}: \{x, y\} \subseteq \{a, b, c\} \text{ and } x \lor y = a \lor b \lor c\}|$ and $m = |\{\{x, y\}: \{x, y\} \subseteq \{a, b, c\} \text{ and } x \land y = a \land b \land c\}|$. Then (2) states that $j \ge 1$ and $m \ge 1$.

Acta Mathematica Academiae Scientiarum Hungaricae 36, 1980

52

Claim 1. If j=1 then $[a, b, c] \cong P_1$.

To prove this claim suppose j=1 and $a \lor c = a \lor b \lor c$. We obtain $a \land (b \lor c) = a \land b$ and $(a \lor b) \land c = b \land c$ from $R_{a,b,b\lor c}$ and $R_{c,b,a\lor b}$, respectively. If we had $(a \lor b) \land (b \lor c) > b$, then $\{a, b, a \land b, a \lor b, a \lor c, b \lor c, (a \lor b) \land (b \lor c)\}$ could be easily shown to be a sublattice of L isomorphic to S_3 . Thus $(a \lor b) \land (b \lor c) = b$.

Case 1.1: $a \wedge b \parallel c$. We obtain $a \wedge b \wedge c = (a \vee b) \wedge c$ from $R_{c,a \wedge b,a \vee b}$. We have $(a \wedge b) \vee c < b \vee c$ since otherwise $\{a \wedge b, b, a \vee b, a \vee c, b \vee c, c, a \wedge b \wedge c\}$ would be a sublattice of L isomorphic to S_3 . From $a \wedge b = a \wedge (a \wedge b) \leq a \wedge ((a \wedge b) \vee c) \leq a \wedge (b \vee c) = a \wedge b$ we obtain $a \wedge ((a \wedge b) \vee c) = a \wedge b$. Hence $\{a, c, b \vee c, a \wedge b, (a \wedge b) \vee c, a \wedge c, a \vee c\} \leq S_2$, which is a contradiction. Therefore Case 1.1 is impossible.

Case 1.2: $a \land b \not\equiv c$. We obtain $a \land b \land c = a \land b = a \land c$ from $a \land b < c$ and $a \land (b \lor c) = a \land b$.

Case 1.2.1: $b \land c \neq a \land b \land c$. If we had $a \lor b \neq a \lor (b \land c)$ then $\{a, b \land c, a \lor (b \land c), a \lor b, a \land b, c, a \lor c\}$ would be isomorphic to S_2 . Therefore $a \lor b = a \lor (b \land c)$ and so $\{a, b, a \lor b, b \land c, a \land b, b \lor c, a \lor c\}$ is isomorphic to S_3 . This contradiction shows that Case 1.2.1 is impossible.

Case 1.2.2: $b \land c = a \land b \land c$. Then the earlier equalities yield $[a, b, c] \cong P_1$. This completes the proof of Claim 1.

Claim 2. If j=2 and m=3 then $[a, b, c] \cong P_4$. To prove this claim suppose $b \lor c \neq a \lor b \lor c$.

Case 2.1: $a \wedge (b \vee c) \neq a \wedge b \wedge c$. Since $[a, b, c] \not\cong S_5$, we have either $(a \wedge (b \vee c)) \vee b \neq b \vee c$ or $(a \wedge (b \vee c)) \vee c \neq b \vee c$. Thus, e.g., $(a \wedge (b \vee c)) \vee b \neq b \vee c$ can be assumed. But then $\{a, b, b \vee c, a \vee b, a \wedge b, a \wedge (b \vee c), (a \wedge (b \vee c)) \vee b\} \cong S_2$, a contradiction, showing that Case 2.1 is impossible.

Case 2.2: $a \wedge (b \vee c) = a \wedge b \wedge c$. Then [a, b, c] is isomorphic to P_4 , which completes the proof of Claim 2.

For j=m=2 the only essentially different cases are

 $a \wedge b \neq a \wedge b \wedge c$ and $b \vee c \neq a \vee b \vee c$; $b \wedge c \neq a \wedge b \wedge c$ and $b \vee c \neq a \vee b \vee c$.

Claim 3. If j=m=2, $a \land b \neq a \land b \land c$ and $b \lor c \neq a \lor b \lor c$ then $[a, b, c] \cong P_3$.

To prove this claim suppose $[a, b, c] \not\cong P_3$. Then either $a \wedge (b \lor c) \neq a \land b$ or $(a \land b) \lor c \neq b \lor c$. By the lattice theoretical Duality Principle $a \wedge (b \lor c) \neq a \land b$ can be assumed. Then we have $(a \land b) \lor c \neq b \lor c$ as well, since otherwise $\{a, c, b \lor c, a \land b, a \land (b \lor c), a \land c, a \lor c\}$ would be isomorphic to S_3 . Similarly, we have $a \land (b \lor c) \not\equiv a \land b \land c, a \lor c\}$ would be isomorphic to S_3 . Similarly, we have $a \land (b \lor c) \not\equiv a \land b \land c, a \lor c\}$ would be isomorphic to S_3 . Therefore $\{a \land (b \lor c), b, (a \land b) \lor c\}$ is an antichain (i.e., a set of pairwise incomparable elements). Clearly, we have $a \land ((a \land b) \lor c) = (a \land (b \lor c)) \land ((a \land b) \lor c)$. Therefore $(a \land (b \lor c)) \lor ((a \land b) \lor c) = b \lor c$ since otherwise $\{a, b \lor c, (a \land b) \lor c, a \land (b \lor c), a \lor c, a \land (b \lor c) \lor ((a \land b) \lor c)\}$ would be isomorphic to S_2 . The dual argument shows $(a \land (b \lor c)) \lor ((a \land b) \lor c) = a \land b$. From $R_{a,b,b\lor c}$ and $R_{c,a\land b,b}$ we get $(a \land (b \lor c)) \lor b = b \lor c$ and $((a \land b) \lor c) \lor b = b \lor c$. It even thand, it is clear that $(a \land (b \lor c)) \land b = a \land b$.

____.

Acta Mathematica Academiae Scientiarum Hungaricae 36, 1980

follows from the equations we have obtained that $\{a, b, a \land b, b \lor c, a \lor c, a \land (b \lor c), (a \land b) \lor c\}$ is isomorphic to S_5 . This contradiction completes the proof of Claim 3.

Claim 4. If j=m=2, $b \wedge c \neq a \wedge b \wedge c$ and $b \vee c \neq a \vee b \vee c$ then [a, b, c] is isomorphic to P_6 .

Suppose $[a, b, c] \not\cong P_6$. Then we have $a \wedge (b \lor c) \not\equiv a \wedge c$ or $a \lor (b \land c) \not\equiv a \lor c$, so $a \wedge (b \lor c) \not\equiv a \wedge c$ can be assumed by the Duality Principle. From $R_{a,b \land c,b \lor c}$ we obtain $a \lor (b \land c) = a \lor c$. We have $(a \wedge (b \lor c)) \lor (b \land c) = b \lor c$ since otherwise $\{a, a \wedge (b \lor c), a \wedge c, a \lor c, b \lor c, b \wedge c, (a \wedge (b \lor c)) \lor (b \wedge c)\}$ would be isomorphic to S_2 . Therefore [a, b, c] is isomorphic to S_7 , which is a contradiction, completing the proof of Claim 4.

Clearly, if j=m=3, then $[a, b, c] \cong P_7$. Hence (2) together with Claims 1, 2, 3, 4 and their dual statements complete the proof of Theorem 2.

IV. Structure theorem for modular lattices having 2-distributive sublattice lattices

First we recall the notion of the special sum of lattices from [1]. Let a set of indices I which is a chain and lattices L_i $(i \in I)$ be given. Define the following binary relation ϑ on the ordinal sum $\sum_{i \in I} L_i$ of the lattices L_i :

 $(a, b) \in \mathfrak{I}$ iff there exist *i*, $j \in I$ such that *j* covers *i*, *a* is the greatest element of L_i and *b* is the lowest element of L_j .

Let Θ be the equivalence relation generated by ϑ . Then Θ is a congruence relation. The factor lattice $\sum_{i \in I} L_i / \Theta$ will be called the special sum of the lattices L_i and will be denoted by $\sum_{i \in I}' L_i$.

For example, if $I = \{1, 3, 7\}$ with 1 < 3 < 7, then $\sum_{i \in I} S_i$ is the following lattice:

Now we can state the following theorem, which generalizes the main result of [1].

THEOREM 3. For an arbitrary modular lattice L the following four conditions are equivalent:

Acta Mathematica Academiae Scientiarum Hungaricae 36, 198)

(i) Su(L) is 2-distributive;

(ii) None of S_1 , S_4 , S_5 and S_6 is a sublattice of L;

(iii) S_4 is not a sublattice of L and any three-element antichain in L generates a sublattice isomorphic to P_7 ;

(iv) L is isomorphic to a special sum $\sum_{i \in I} L_i$ where I is a chain, and for all $i \in I$

one of the following three conditions is satisfied:

(a) L_i is a chain;

- (b) L_i is the direct product of a chain and the two-element lattice;
- (c) L_i has lowest and greatest elements (in notation 0_i and 1_i), and $L_i \setminus \{0_i, 1_i\}$ is an antichain.

PROOF. The equivalence of (i), (ii) and (iii) immediately follows from Theorem 2 and the well-known criterion of modularity (cf. GRÄTZER [3, page 59]). The implication (iv) \rightarrow (iii) is straightforward. So, only the implication (iii) \rightarrow (iv) has to be shown. For a lattice M let us define $C'(M) = \{x \in M : x \neq 0_M, x \neq 1_M \text{ and } x \notin y \text{ for any } y \in M\}$. By [1, Lemma 2] and [1, Theorem] it is enough to show that whenever M is a modular, non-distributive lattic efor which (iii) and $C'(M) = \emptyset$ hold then $M \setminus \{0_M, 1_M\}$ is an antichain. Suppose M is a modular, non-distributive lattice for which (iii) and $C'(M) = \emptyset$ hold. By the well-known criterion of distributivity (cf. GRÄTZER [3, page 59]), M contains a three-element antichain. Thus, by Zorn's Lemma, M contains an at least three-element maximal antichain A. Set $B=A \cup \{a \lor b, a \land b\}$ where a and b are distinct elements in A. By (iii) B is a sublattice of M, so it is enough to show that B=M. Suppose $a \lor b$ is not the greatest element of M. Then $x \parallel a \lor b$ for some $x \in M$. Choosing two distinct elements y, z from A such that $y \parallel x$ and $z \parallel x, x \lor y \lor z = x \lor a \lor b \neq a \lor b = y \lor z$ contradicts (iii). Therefore $a \lor b = 1 = 1_M$ and, similarly, $a \wedge b = 0 = 0_M$. Suppose x is an element in $M \setminus B$. Since $A \cup \{x\}$ is not an antichain, $x \not\parallel y$, say x < y, for some y in A. Choose two distinct elements d, e in $A \setminus \{y\}$. Since $\{x, d, e\}$ is an antichain, by (iii) we have $x \vee d = d \vee e = 1$, $x \wedge d = d \wedge e = 0$. Hence $\{0, 1, x, y, d\}$ is isomorphic to R_2 , which contradicts the modularity of M. Therefore M=B. Q.E.D.

References

- [1] G. CZÉDLI, Which distributive lattices have 2-distributive sublattice lattices, Acta Math. Acad. Sci. Hungar., 35 (1980), 455-463.
- [2] N. D. FILIPPOV, Probjectivity of lattices (in Russian), Mat. Sbornik, 70 (1966), 36-54.
- [3] G. GRÄTZER, General lattice theory, Akademie-Verlag (Berlin, 1978).
- [4] A. P. HUHN, Schwach distributive Verbände, Acta F.R.N. Univ. Comen.—Mathematica, Nim. cislo (1971), 51—56. (Summary of the author's lecture at the Summer School in 1970, Czechoslovakia.)
- [5] A. P. HUHN, Schwach distributive Verbände. I, Acta Sci. Math. Szeged, 33 (1972), 297-305,
- [6] A. P. HUHN, n-distributivity and some questions of the equational theory of lattices, Colloquia Math. Soc. János Bolyai, 17. Contributions to Universal Algebra, Szeged (Hungary, 1975).
- [7] K. M. KOH, On sublattices of a lattice, Nanta Math., 6 (1973), 68-79.
- [8] H. LAKSER, A note on the lattice of sublattices of a finite lattice, Nanta Math., 6 (1973), 55-57.
- [9] J. B. NATION, Varieties whose congruences satisfy certain lattice identities, Algebra Univ., 4 (1974), 78-88.

(Received January 22, 1979)

JATE BOLYAI INSTITUTE 6720 SZEGED, ARADI VÉRTANUK TERE 1. HUNGARY

Acta Mathematica Academiae Scientiarum Hungaricae 36, 1980

80-592 - Szegedi Nyomda - F. v.: Dobó József igazgató