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Abstract. Extending former results by G.Grätzer and E. W. Kiss (1986)
and M. Wild (1993) on finite (upper) semimodular lattices, we prove that each

semimodular lattice L of finite length has a cover-preserving embedding into a
geometric lattice G of the same length. The number of atoms of our G equals

the number of join-irreducible elements of L.

1. Introduction

Semimodularity, which is the lattice theoretic counterpart of exchange property,
is one of the most important links between combinatorics and lattice theory. A
particular interest is deserved by geometric lattices, originally called matroids. It
was shown in G.Grätzer and E. W. Kiss [5] that each finite (upper) semimodular
lattice L has a cover-preserving embedding into a finite geometric lattice.

For a lattice K, the set of non-zero join-irreducible elements and the set of atoms
of K will be denoted by J(K) and A(K), respectively. The length of L, that is
sup{n :L has an (n+1)-element chain}, will be denoted by `(L). Our aim is to give
an easy-to-understand construction of a lattice G(L) for each semimodular lattice
L of finite length such that the following statement holds.

Theorem 1. Let L be a semimodular lattice of finite length. Then G = G(L) is a
geometric lattice such that L is a cover-preserving sublattice of G, |J(L)| = |A(G)|,
and `(L) = `(G).

For the sake of emphasis, the above formulation is a bit redundant. Indeed,
`(L) = `(G) implies that the sublattice L is a cover-preserving sublattice and, in
addition, {0G, 1G} ∈ L. Theorem 1 trivially implies the following statement.

Corollary 2. Semimodular lattices of finite length are characterized as cover-
preserving sublattices of geometric lattices of finite length.

Background, notation, and terminology. For general information on semi-
modular lattices the reader is referred to G.Grätzer [3] and M. Stern [8]. We use
the terminology and notation of G.Grätzer [4]. The Glossary of Notation of [4] is
available as a pdf file at

http://mirror.ctan.org/info/examples/Math_into_LaTeX-4/notation.pdf
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2. Construction

For the rest of the paper, let L be a fixed semimodular lattice of finite length
`(L) = h(1). Following the convention of, say, P.Crawley and R.P.Dilworth [1] or
G.Grätzer [3] and [4], we assume that L is non-empty. Let H(L) denote J(L)\A(L),
the set of “high” join-irreducible elements. Insert a new element x′ into L for each
x ∈ H(L) such that x′ 6= y′ for x 6= y. Extend the original order by 0 ≺ x′ ≺ x for
every x ∈ H(L); this way we obtain P = (P ;≤). The construction of P is depicted
in Figure 1; the black-filled elements stand for J(L) while the grey-filled ones are
the new elements.

Figure 1. An example of L and the corresponding P

Although P is a lattice, it is not semimodular in general. Hence we consider
P as a partial join-semilattice P = (P ;∨P ). Loosely speaking, ∨P will be the
largest extension of ∨L to P such that P = (P ;∨P ) is a “semimodular partial
join-semilattice”. The exact definition of ∨P is the following.

• If x, y ∈ P are comparable or {x, y} ⊆ L, then x∨P y is defined, and it has
the usual meaning.

• If x, y ∈ P \ L and x 6= y, then x∨P y is undefined.
• Suppose that x ∈ L, y ∈ P \ L, and x ‖ y. Then y = z′ for a unique

z ∈ H(L) and x∨P y is defined iff x∨L z covers x in L; if x∨P y is defined,
then it equals x∨L z, so it is the supremum of {x, y}.

• Suppose that x ∈ P \ L, y ∈ L, and x ‖ y. Then x∨P y is defined iff
y ∨P x is defined according to the previous case; if x∨P y is defined, then
x∨P y = y ∨P x.

For example, in Figure 1, u∨P d′ = v, c∨P d′ = d, and g∨P f ′ = 1, while b∨P d′

and d′∨P e′ are undefined.
Let us call a non-empty subset I of P an ideal of P iff

• I is an order-ideal, that is, x ∈ I, y ∈ P and y ≤ x imply y ∈ I, and
• I is closed with respect to ∨P , that is, if x, y ∈ I and x∨P y is defined, then

x∨P y ∈ I.

Since the intersection of ideals is an ideal again, the ideals of P form a complete
lattice I(P ) = (I(P ),⊆).
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Let I be an ideal of P . Then the largest element of I ∩ L, that is
∨

(I ∩ L), is
called the trunk of I. It is denoted by trunk(L). The set

branch(I) := I \ ↓trunk(I) = {x ∈ I : x 6≤ trunk(I)}
is called the branch of I. Clearly, I = ↓trunk(I) ∪ branch(I). Hence the trunk and
the branch determine the ideal. Let

〈a; S〉id
denote the ideal whose trunk and branch are a and S, respectively. For example,
for P in Figure 1, 〈e; {g′}〉id = {0, c, d′, e′, d, e, g′} is an ideal. Notice that the trunk
and the branch cannot be independently chosen. For example, if d is the trunk of
an ideal I, then neither {d′} nor {e′, g′} can be the branch of I. Hence none of the
notations 〈d; {d′}〉id and 〈d; {e′, g′}〉id is allowed in case of Figure 1.

Figure 2. An example of I(P ) and G(L) = R(P )

For an ideal I = 〈a; S〉id of P , we define the rank of I as follows:

r(I) := h(trunk(I)) + |branch(I)| = h(a) + |S|.
In general, r(I) is a cardinal number. If r(I) is finite, then I is said to be of finite
rank. We say that I ∈ I(P ) is a trimmed ideal iff

for all J ∈ I(P ), I < J implies r(I) < r(J).

For example, 〈0; ∅〉id = 0I(P ) and 〈1; ∅〉id = 1I(P ) are always trimmed ideals. Since
1I(P ) is of finite rank, every trimmed ideal is of finite rank. We will show that the
set R(P ) of all trimmed ideals of I(P ) forms a complete meet-subsemilattice of
I(P ).

Hence R(P ) = (R(P ),≤) is a lattice. It is the geometric lattice G = G(L)
we intended to construct. We will prove that A(R(P )) = {〈a; ∅〉id :a ∈ A(L)} ∪
{〈0; {b′}〉id : b ∈ H(L)} and ϕ : x 7→ 〈x; ∅〉id is a cover-preserving L → R(P ) lattice
embedding.
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The construction of G(L) = R(P ) is illustrated in Figure 2. To save space in
the figure, the ideals 〈u; {x′

1, x
′
2, . . . , x

′
n}〉id and 〈u; ∅〉id are denoted by u;x′

1x
′
2 . . .x′

n

and u;∅, respectively. The trimmed ideals of I(P ) are represented by grey-filled
circles, while the cross-filled circles of R(P ) show how L is embedded in R(P ).

3. Proofs and auxiliary statements

Our proof uses a lot of ideas of G.Grätzer and E. W. Kiss [5]; the influence of
[5] will be detailed in the last section.

Let us call an order-ideal J of P a semi-ideal if J ∩ L is closed with respect to
join, that is, if J ∩ L is a lattice ideal of L. Then trunk(J) =

∨
(L ∩ J), which

belongs to J , and branch(J) = J \ ↓trunk(J) are meaningful even for semi-ideals,
and we still have J = ↓trunk(J) ∪ branch(J). Let the notation 〈a; S〉si stand for
the semi-ideal with trunk a and branch S. Every ideal is a semi-ideal. For a ∈ L
and S ⊆ P , the notation 〈a; S〉si is permitted, that is a and S are the trunk and
the branch of the same semi-ideal, iff S ⊆ (P \ L) \ ↓a.

We can extend the definition of r to semi-ideals J in the natural way: r(J) =
h(trunk(J)) + |branch(J)|. The least ideal including J , that is the ideal generated
by J , will be denoted by J∗.

Lemma 3. For any semi-ideal J of P , r(J) ≥ r(J∗).

Proof. The semimodularity of L implies that, for any x ∈ H(L) and u, v ∈ L,

(1) if 0 6= u ≤ v and u∨P x′ is defined, then v ∨P x′ is also defined.

Hence, for a ∈ L and S ⊆ P , 〈a; S〉si is an ideal of P if and only if

(2) S ⊆ (P \ L) \ ↓a, and a = 0 or a∨P x′ is undefined for all x′ ∈ S.

Let J = 〈a; S〉si be a semi-ideal, and let 〈b; T 〉id stand for J∗. Clearly, a ≤ b. We
prove the lemma by induction on n = h(b) − h(a). We will assume that a > 0, for
otherwise J is an ideal and J∗ = J .

Let n = 0, that is, a = b. If J is not ∨P -closed, then (1) yields an element
x′ ∈ S such that e = a∨P x′ is defined. Since e ∈ J∗, we obtain a < e ≤ b, which
contradicts a = b. Hence J is ∨P -closed, so the lemma follows from J = J∗.

Assume that n > 0. Since J is not ∨P -closed, (1) implies the existence of an
element x′ ∈ S such that e = a∨P x′ is defined. The definition of ∨P yields that
h(e) = h(a) + 1, whence h(b) − h(e) = n − 1. Let W = S \ ↓e, and consider the
semi-ideal K = 〈e; W 〉si. Since x′ ∈ S \ W implies |S| ≥ 1 + |W |, we conclude
r(J) = h(a)+ |S| ≥ h(a)+1+ |W | = h(e)+ |W | = r(K). The induction hypothesis
gives r(K) ≥ r(K∗), so r(J) ≥ r(K∗). Finally, we conclude from J ⊂ K ⊆ J∗ that
J∗ = K∗. �

Lemma 4. For any I, J ∈ I(P ), we have

(3) r(I) + r(J) ≥ r(I ∨ J) + r(I ∧ J).

Proof. For a semi-ideal Y and x ∈ H(L), let wY (x′) = 1 if x′ ∈ branch(Y ), and let
wY (x′) = 0 otherwise. Notice that wY (x′) = 1 iff x′ ∈ Y and x 6≤ trunk(Y ). The
following formula, in which

∑
denotes the sum of cardinal numbers, is obvious:

(4) r(Y ) = h(trunk(Y )) +
∑

x∈H(L)

wY (x′).
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Let I = 〈a; S〉id and J = 〈b; T 〉id be ideals of P . Then trunk(I ∧ J) = a ∧ b.
Consider W =

(
(I ∪ J) \ L

)
\ ↓(a ∨ b) and the semi-ideal K = 〈a ∨ b; W 〉si. Since

I ∪ J ⊆ K ⊆ I ∨ J , we conclude that K∗ = I ∨ J . Therefore, by Lemma 3, formula
(3) will clearly follow from

(5) r(I) + r(J) ≥ r(K) + r(I ∧ J).

The semimodularity of L yields that h(a) + h(b) ≥ h(a ∨ b) + h(a ∧ b). So, by
(4), formula (5) will follow from

(6) wI(x′) + wJ (x′) ≥ wK(x′) + wI∧J (x′), for any x ∈ H(L).

Denoting
(
wI(x′), wJ (x′), wK(x′), wI∧J (x′)

)
by ~w, we prove (6) by excluding the

following four “wrong” cases.
Case ~w = (1, 0, 1, 1): then x′ ∈ I ∧ J ⊆ J and wJ (x′) = 0 imply x ≤ b ≤ a ∨ b,

which contradicts wK(x′) = 1.
Case ~w = (0, 1, 1, 1): excluded by symmetry.
Case ~w ∈ {(0, 0, 0, 1), (0, 0, 1, 1)}: then x′ ∈ I ∧J and x 6≤ a∧ b yields that x 6≤ a

or x 6≤ b, and x′ ∈ I and x′ ∈ J . This means that wI(x′) = 1 or wJ (x′) = 1, a
contradiction.

Case ~w ∈ {(0, 0, 1, 0), (0, 0, 1,1)}: then x 6≤ a ∨ b and x′ ∈ W ⊆ I ∪ J . Hence
we have either x′ ∈ I and x 6≤ a, contradicting wI(x′) = 0, or x′ ∈ J and x 6≤ b,
contradicting wI(x′) = 0. �

Lemma 5. Any chain of R(P ) is of length at most `(L).

Proof. Since 1R(P ) = 〈1; ∅〉id is of rank `(L), the statement is evident. �

Lemma 6. R(P ) = (R(P ),⊆) is a complete lattice, a complete meet-subsemilattice
of I(P ). Moreover, `(R(P )) = `(L).

Proof. Assume that I1 = 〈a1; S1〉id and I2 = 〈a2; S2〉id belong R(P ). We have to
show that I := I1 ∧ I2 = I1 ∩ I2 = 〈a; S〉id is a trimmed ideal of I(P ).

Suppose that x′ ∈ S. Then x 6≤ a = a1 ∧ a2, whence x 6≤ aj for some j ∈ {1, 2}.
Since x′ ∈ S ⊆ I ⊆ Ij , we obtain x′ ∈ Sj . Hence S ⊆ S1 ∪ S2, whence n := r(I) is
finite.

By way of contradiction, we suppose that I is not trimmed. Then the set M =
{X ∈ I(P ) :I < X and r(X) ≤ n} is not empty. Observe that M satisfies the
descending chain condition, that is, X0 > X1 > X2 > · · · is impossible, if Xi ∈ M
for all i ∈ N0. Indeed, the branch of X0 has at most r(X0) ≤ n elements. So
we can can keep the trunk and decreasing the branch only in at most n steps.
Hence trunk(X0) > trunk(Xn+1). Similarly, r(Xn+1) ≤ n implies trunk(Xn+1) >
trunk(X2(n+1)), and so on. This way we obtain an infinite decreasing sequence
trunk(X0) > trunk(Xn+1) > trunk(X2(n+1)) > trunk(X3(n+1)) > · · · in L, which
is a contradiction.

Due to the descending chain condition, we can choose a minimal element J in
M . Remember that I < J and r(J) ≤ r(I) = n. Let Kj = Ij ∧ J for j ∈ {1, 2}.
Clearly, I ≤ Kj ≤ J . Notice that r(Kj) ≥ r(J), because otherwise r(Kj) < r(J) ≤
r(I) would imply I < Kj < J , contradicting the minimality of J in M . Using
r(Kj) ≥ r(J) and Lemma 4, we obtain

r(Ij) + r(J) ≥ r(Ij ∨ J) + r(Kj) ≥ r(Ij ∨ J) + r(J),
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whence r(Ij) ≥ r(Ij ∨ J). This excludes Ij < Ij ∨ J , since Ij is trimmed. Hence
Ij = Ij ∨ J , that is, J ≤ Ij , for j ∈ {1, 2}. So, J ≤ I1 ∧ I2 = I, which contradicts
J ∈ M .

We have seen that R(P ) is closed with respect to binary meets (intersections),
whence Lemma 5 yields that R(P ) is closed with respect to arbitrary meets. Hence
R(P ) = (R(P ),⊆) is a complete lattice.

Finally, Lemma 5 gives that `(R(P )) ≤ `(L). The reverse inequality follows from
the fact {〈c; ∅〉id : c ∈ C} is a |C|-element chain of R(P ) for any chain C of L. �

Lemma 7. If I, J ∈ I(P ) and I ≺ J , then r(J) ≤ r(I) + 1

Proof. Let I = 〈a; S〉id and J = 〈b; T 〉id. We have to consider two cases.
First, assume that a = b. Then S ⊂ T . Fix an element t in T \S. Let U = S∪{t}

and consider the semi-ideal K = 〈a; U 〉si. Since I ⊂ K ⊆ J and I ≺ J , we have
K∗ = J . (We notice but do not use that K∗ = K.) Hence Lemma 3 yields that

r(J) = r(K∗) ≤ r(K) = h(a) + |U | = h(a) + |S| + 1 = r(I) + 1.

The second case is a < b. Select an element c ∈ L with a ≺ c ≤ b, let U = S \↓c,
and consider the semi-ideal K = 〈c; U 〉si. From I ⊂ K ⊆ J we conclude K∗ = J
again, whence

r(J) = r(K∗) ≤ r(K) = h(c) + |U | = h(a) + 1 + |U |
≤ h(a) + 1 + |S| = r(I) + 1.

�

If there is a danger of confusion, the covering relation of I(P ) and that of R(P )
will be denoted by ≺I(P) and ≺R(P), respectively.

Lemma 8. If I ≺R(P) J for I, J ∈ R(P ), then r(J) = r(I) + 1.

Proof. Let I ≺R(P) J , and let a = trunk(I). Fix an element X of

M = {Z ∈ I(P ) : I < Z ≤ J}

in the following way. If trunk(Z) = a for some Z ∈ M , then let X = I ∪{x′} where
x′ ∈ branch(Z) \ branch(I). If trunk(Z) > a for all Z ∈ M , then take a minimal
element c in {trunk(Z) : Z ∈ M}, and let X =

⋂
{Z ∈ M : trunk(Z) = c}. Clearly,

I ≺I(P) X ≤ J in both cases.
Since I is trimmed, we have r(X) = r(I) + 1 by Lemma 7.
Consider the set

F = {Z ∈ I(P ) :X ≤ Z ≤ J and r(Z) = r(I) + 1}.

It is not empty, for X ∈ F . By way of contradiction, suppose 〈c0; U0〉id <
〈c1; U1〉id < 〈c2; U2〉id < · · · is an infinite ascending chain in F . Since c0 ≤ c1 ≤
c2 ≤ · · · and `(L) is finite, there is a k such that ck = ck+1 = ck+2 = · · · . Then
Uk ⊂ Uk+1 ⊂ Uk+2 ⊂ · · · . This is a contradiction, for |Ui| ≤ r(〈ci; Ui〉id) = r(I)+1
for all i.

Since F satisfies the ascending chain condition, we can choose a maximal element
K in F . Since I < X ≤ K ≤ J and I ≺R(P) J , it suffices to show that K is a
trimmed ideal. Indeed, this would imply K = J and r(J) = r(K) = r(I) + 1.

Consider an arbitrary ideal Y ∈ I(P ) with K < Y ; we have to show that r(K) <
r(Y ). From I < K ≤ J ∧ Y and I ∈ R(P ) we infer r(J ∧ Y ) ≥ r(I) + 1 = r(K),
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while J ∈ R(P ) gives r(J ∨ Y ) ≥ r(J). Using these two inequalities and Lemma 4,
we obtain

(7) r(J) + r(Y ) ≥ r(J ∨ Y ) + r(J ∧ Y ) ≥ r(J ∨ Y ) + r(K) ≥ r(J) + r(K).

Hence r(K) ≤ r(Y ), and it suffices to exclude r(K) = r(Y ). Assume that r(K) =
r(Y ). Then all the inequalities in (7) are equalities, and the last of them gives
r(J ∨ Y ) = r(J). Hence J ∈ R(P ) implies J 6< J ∨ Y , whence we obtain Y ≤ J .
Therefore, K < Y ≤ J , and the maximality of K gives r(Y ) 6= r(I) + 1 = r(K), a
contradiction. �

Lemma 9. R(P ) is a semimodular lattice.

Proof. Let I, J, K ∈ R(P ) with I ≺R(P) J , I ≤ K, and J 6≤ K. Then I = J ∧ K.
Lemmas 8 and 4 imply

r(I) + 1 + r(K) = r(J) + r(K) ≥ r(J ∨ K) + r(I).

Hence 1 + r(K) ≥ r(J ∨K). If there was an X ∈ R(P ) with K < X < J ∨K, then
the definition of trimmed ideals would give r(J ∨K) ≥ r(X) + 1 ≥ r(K) + 1 + 1, a
contradiction. Hence K ≺R(P) J ∨ K, proving the semimodularity of R(P ). �

Proof of Theorem 1. We know from Lemma 9 that G(L) = R(P ) is a semimodular
lattice. Lemma 5 implies that, for each X ⊆ R(P ), there is a finite subset Y of
X such that

∨
X =

∨
Y . Hence all the elements of R(P ) are compact, and each

element of R(P ) is the join of finitely many elements of J(R(P )).
It follows from Lemma 8 that, for any I ∈ R(P ), r(I) is the usual height of I in

R(P ). Applying this observation to 1R(P ) = 〈1; ∅〉id and using Lemma 6, we infer
that `(R(P )) = `(L). Since 〈x; ∅〉id is always a trimmed ideal, ϕ : L → R(P ), x 7→
〈x; ∅〉id is clearly a lattice embedding. It is cover-preserving, since `(R(P )) = `(L).

Clearly,
B = {〈a; ∅〉id :a ∈ A(L)} ∪ {〈0; {b′}〉id : b ∈ H(L)}

is a subset of A(R(P )) with |B| = |J(L)|.
Next, we will show that J(R(P )) ⊆ B. Let I = 〈a; S〉id ∈ J(R(P )). Since

(8) I = 〈a; ∅〉id ∨
∨

x′∈S

〈0; {x′}〉id

holds in R(P ), we conclude that either |S| = 1 and a = 0, or a 6= 0 and |S| = 0.
We have I ∈ B in the first case, so assume that a 6= 0 and |S| = 0. We can
also assume that h(a) > 1, for otherwise I is again in B. If a belonged to H(L),
then it would have a unique lower cover b ∈ L and I = 〈b; ∅〉id ∨ 〈0; {a′}〉id would
contradict I ∈ J(R(P )). Hence a is a non-zero join-reducible element in L, but
this is a contradiction again, for this property is preserved by ϕ and I = ϕ(a).

This shows that J(R(P )) ⊆ B. Finally, J(R(P )) ⊆ B ⊆ A(R(P )) ⊆ J(R(P )),
whence A(R(P )) = J(R(P )) completes the proof. �

4. Historical comments

Our construction is motivated by the Grätzer-Kiss Embedding Theorem stating
that each finite semimodular lattice has a cover-preserving embedding into a finite
geometric lattice. Grätzer and Kiss start from the lattice of certain ideals of an
appropriate P (which is larger and more complicated than our P ). Our semi-
ideals are exactly their ideals. The Grätzer-Kiss lattice Egk(L) given in [5] (see
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M.Stern [8], too) also consists of the trimmed ideals of P . Finally, they derive
that Egk(L) does the job from their very general results on pseudo rank functions
defined on arbitrary finite lattices.

We could not use their general results and the corresponding auxiliary state-
ments, for our L is not assumed to be finite. Developing similar but necessarily
more complicated results for the infinite case would not have been economic. Hence
we have borrowed from [5] only as much as necessary. Our approach gives no direct
references to Theorems 8 and 10 and several lemmas of [5], for this would not help
the reader in the present environment. However, the proofs of these statements are
included in our approach.

When restricted to finite L, our G(L) resembles Egk(L) in the sense that both
are relatively easy to visualize. If D is a finite distributive lattice, then so is
G(D), and G(D) is the smallest distributive geometric (that is, Boolean) lattice
including D as a cover-preserving sublattice; this follows easily from |J(D)| =
`(D). The Grätzer-Kiss lattice does not have this property. Indeed, |A(Egk(L))| =∑

x∈J(L) h(x), which implies that, for the three-element chain C3, Egk(C3) = M3.
Notice at this point that no construction can preserve modularity, for M.Hall and
R.P. Dilworth [6] constructed a finite modular lattice that is not a sublattice of
any modular geometric lattice, see also Cor. IV.5.22 of G.Grätzer [3].

M.Wild [9], using the toolkit of matroid theory, gave a very short proof of the
Grätzer-Kiss Embedding Theorem. The finite geometric lattice Edw(L) of [9] has
the property that |A(Edw(L))| = |J(L)| = |A(G(L))|. The great merit of Wild’s
approach is that his proof is very short; this is due to the fact that he defines
Edw(L) in terms of matroid theory and uses powerful tools from this theory.

Next, we mention two old embedding theorems. Although they were put into
the shade by P. Pudlák and J. Tu̇ma [7], they are quite relevant here.

D.T. Finkbeiner [2] embedded an arbitrary finite lattice into a semimodular
lattice. Even if finally we could not use his method, [2] gave us some ideas how to
develop Grätzer and Kiss’ method further.

The Dilworth Embedding Theorem states that each finite lattice L can be em-
bedded in a finite geometric lattice. It was M. Wild [9] who noticed that the proof
of this theorem, see pages 125–131 in P.Crawley and R.P Dilworth [1], yields a
cover-preserving embedding, provided L is semimodular.

After translating M. Wild’s matroid theoretic proof to the language of lattice
theory, we can see that [1] and [9] produce the same lattice Edw(L). In effect,
Edw(L) consists of the “trimmed” members of the Boolean lattice of all subsets of
J(L) according to an appropriate rank function. Opposed to this Boolean lattice,
our I(P ) is usually not even semimodular but it reflects more properties of L. This
is why our construction and that of Grätzer-Kiss are easier to visualize for lattice
theorists.

Finally, we mention that the best cover-preserving embedding is not known yet.
Indeed, if L2 is the lattice of Figure 2, then G(L2) = Edw(L2) and |Egk(L2)| >
|G(L2)| = 12. However, L2 is clearly a cover-preserving sublattice of the ten-
element geometric lattice C2 × M3.
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