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Abstract. For subnormal subgroups A / B and C / D of a given group G, the

factor B/A will be called subnormally down-and-up projective to D/C, if there are
subnormal subgroups X /Y such that AY = B, A∩Y = X , CY = D and C∩Y = X .

Clearly, B/A ∼= D/C in this case. As G. Grätzer and J.B. Nation [6] have just pointed
out, the standard proof of the classical Jordan-Hölder theorem yields somewhat more

than is widely known; namely, the factors of any two given composition series are the
same up to subnormal down-and-up projectivity and a permutation. We prove the

uniqueness of this permutation.
The main result is the analogous statement for semimodular lattices. Most of

the paper belongs to pure lattice theory; the group theoretical part is only a simple
reference to a classical theorem of H. Wielandt [14].

1. Introduction and the main results

The classical Jordan-Hölder theorem for groups goes back to C. Jordan [8]
and O. Hölder [7], see also the historical remark in J. J. Rotman [11, after
Theorem 5.12]. R. Dedekind [2] was certainly aware (at least for the modular
case) that the Jordan-Hölder theorem followed from the corresponding lattice
theoretic statement. Our goal is to strengthen this theorem, both for groups
and lattices, by adding a statement on uniqueness to it. Although we formulate
the Jordan-Hölder theorem in a strong but somewhat technical form, which
is due to G. Grätzer and J. B. Nation [6], this form (see the first part of
Theorem 1.1 below) can easily be extracted from the classical proofs.

As usual, the relation “subnormal subgroup” is the transitive closure of
“normal subgroup”. For subnormal subgroups A / B and C / D of a given
group G, the factor B/A will be called subnormally down-and-up projective
to D/C, if there are subnormal subgroups X / Y of G such that AY = B,
A ∩ Y = X, CY = D and C ∩ Y = X. Clearly, B/A ∼= D/C in this case,
because both are isomorphic with Y/X by the Second Isomorphism Theorem.

Theorem 1.1. Let {1} = N0/N1/· · ·/Nn = G and {1} = M0/M1/· · ·/Mm =
G be two composition series of a group G. Then
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• n = m, and there exists a permutation π of the set {1, . . . , n} such that
Ni/Ni−1 is subnormally down-and-up projective to Mπ(i)/Mπ(i)−1 for all
i;

• moreover, this permutation π is uniquely determined, and it has the fol-
lowing property: if i, j ∈ {1, . . . , n} and Ni/Ni−1 is subnormally down-
and-up projective to Mj/Mj−1, then j ≥ π(i).

A maximal chain of normal subgroups is called a chief series. Stipulating
that X and Y above are normal subgroups rather than subnormal ones, we
obtain the definition of normal down-and-up projectivity.

Theorem 1.2. The same as Theorem 1.1 but “composition series” and “sub-
normally” are replaced by “chief series” and “normally” everywhere.

Both theorems will easily follow from their lattice theoretical counterpart.
Indeed, if G is a group with a finite composition series, then its subnormal
subgroups form a sublattice H(G) of the lattice of all subgroups by a classical
result of H. Wielandt [14]; see also R. Schmidt [12, Theorem 1.1.5] and the
remark after its proof, or see M. Stern [13, p. 302]. It is not hard to see that
H(G) is dually semimodular; see [12, Theorem 2.1.8], or the proof of [13, The-
orem 8.3.3], or the proof of J. B. Nation [10, Theorem 9.8]. Since we are going
to formulate the lattice theoretical Jordan-Hölder theorem for semimodular
lattices, as usual, “down-and-up” and “j ≥ π(i)” from Theorems 1.1 and 1.2
will, of course, be dualized.

Except for a short proof at the very end, the rest of the paper is purely
lattice theoretical. Basic familiarity with lattices is assumed; however, only a
very small part of, say, G. Grätzer [4] or J.B Nation [10] will be needed. For
intervals [a1, b1] and [a2, b2] of a lattice, we say that [a1, b1] is up-perspective to
[a2, b2], in notation [a1, b1] ↗ [a2, b2], if a2 ∨ b1 = b2 and a2 ∧ b1 = a1. Dually,
[a2, b2] ↘ [a1, b1] means [a1, b1] ↗ [a2, b2]. We say that [a1, b1] is up-and-down
projective to [a2, b2], in notation [a1, b1] /↘ [a2, b2], if there is an interval [x, y]
such that [a1, b1] ↗ [x, y] and [x, y] ↘ [a2, b2]. A lattice L is called (upper)
semimodular, if b∨ c covers or equals a∨ c for all for all a, b, c ∈ L with a ≺ b.

Theorem 1.3 (Main theorem). Assume that C = {0 = c0 ≺ c1 ≺ · · · ≺
cn = 1} and D = {0 = d0 ≺ d1 ≺ · · · ≺ dm = 1} are maximal chains of a
semimodular lattice L. Then

• n = m, and there is a permutation π of the set {1, . . . , n} such that the
interval [ci−1, ci] is up-and-down projective to the interval [dπ(i)−1, dπ(i)],
for all i;

• moreover, this permutation π is uniquely determined, and it has the fol-
lowing property: if i, j ∈ {1, . . . , n} and [ci−1, ci] /↘ [dj−1, dj], then
j ≤ π(i).

The first part of Theorem 1.3 is due to G. Grätzer and J. B. Nation [6]; our
contribution is the second part. In view of [6], one can say that semimodular
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lattices provide the foundational reason of the Jordan-Hölder theorem. Sur-
prisingly, it will appear that the main role is played by planar semimodular
lattices. Since these easy-to-visualize lattices and their properties are anyhow
needed, we devote two lines, the proof of Corollary 2.12, to an entirely new
approach to the first part of Theorem 1.3.

One may ask if j < π(i) can happen, or if we have uniqueness for projec-
tivities. (By projectivity we mean the transitive closure of the up-and-down
projectivity.) The answer is given by the following example.

Remark 1.4. Consider M3, the five-element modular non-distributive lattice,
which is the lattice of (normal) subgroups of the Klein four-group Z2×Z2. Let
C and D be maximal chains in M3 such that C ∩ D = {0, 1}. Then π(1) = 2
but [c0, c1] /↘ [dj−1, dj] for j = 1, 2. Moreover, for both permutations τ of
{1, 2}, [ci−1, ci] is projective to [cτ(i)−1, cτ(i)], for all i.

2. Lemmas, proofs, and auxiliary lattices

A finite lattice M is called planar, if it has a planar diagram, that is a
diagram in which the edges are non-horizontal straight lines that may intersect
only at their endpoints. A planar lattice is finite by definition. Although
always a fixed planar diagram is kept in mind, our statements will be valid no
matter which planar diagram is considered. The edges of the (fixed) planar
diagram divide the plane into regions; the minimal regions are called cells. The
notion of cells are exemplified by the five-element non-distributive lattices: N5

has only one cell while M3 has two. Note that M has no cell iff it is a chain. M

is said to be a 4-cell lattice, if it is planar and each cell is surrounded by exactly
four edges. Then for each cell there are a, b ∈ M , called the left corner and the
right corner of the cell, such that the cell is surrounded by the edges a∧b ≺ a,
a ∧ b ≺ b, a ≺ a ∨ b and b ≺ a ∨ b, and a is on the left of b. The elements
a ∧ b and a ∨ b are called the bottom and the top of the cell, respectively.
The left boundary and the right boundary of M are denoted by Bleft(M ) and
Bright(M ), respectively. Although their meaning should be clear, we mention
that a rigorous technical definition is given by D. Kelly and I. Rival [9]. Note
that Bleft(M ) and Bright(M ) are maximal chains in M . By a covering square
we mean a subset {a ∧ b, a, b, a∨ b} such that a ∧ b ≺ a, a ∧ b ≺ b, a ≺ a ∨ b

and b ≺ a∨ b. For a ∈ M , the principal ideal [0, a] = {x ∈ M : x ≤ a} and the
principal filter [a, 1] will be denoted by ↓a and ↑a, respectively.

By a slim lattice we mean a finite lattice M such that J(M ), the poset
of non-zero join-irreducible elements, contains no three-element antichain. In
virtue of Dilworth [3], a finite lattice M is slim iff J(M ) is the union of two
chains. Lemma 2.2 will guarantee that slim lattices are planar but we now
have to assume planarity in the second part of the following lemma.
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Figure 1. A planar extension of S to M

Lemma 2.1. Let M be a slim lattice. If e is a maximal element of J(M ),
then ↑e is a chain. If, in addition, M is a planar lattice (with a fixed planar
diagram) and e is on the left boundary of M , then ↑e ⊆ Bleft(M ).

Proof. Assume that e is a maximal element of J(L). Let J(M ) = U ∪V where
U and V are chains. Then, say, e ∈ U . Each x ∈ ↑e is of the form x = u ∨ v

for some u ∈ U and v ∈ V . However, then x = e ∨ x = e ∨ u ∨ v = e ∨ v,
because e is the largest element of the chain U . So x = e ∨ v, and any other
x′ ∈ ↑e is e∨ v′ for some v′ ∈ V . Since V is a chain, v and v′ are comparable,
whence so are x and x′. This shows that ↑e is a chain.

Assume that, in addition, e ∈ Bleft(M ). For every b ∈ Bleft(M ) and c ∈ ↑e,
either e ≤ b or b ≤ e, since Bleft(M ) is a chain. The first possibility implies
that b and c are comparable since ↑e is a chain, while the second possibility
implies the same trivially. Therefore Bleft(M )∪ {c} is a chain. Since Bleft(M )
is a maximal chain, we get that c ∈ Bleft(M ), proving ↑e ⊆ Bleft(M ). �

Lemma 2.2. Let E = {0 = e0 ≺ e1 ≺ · · · ≺ en} and F = {0 = f0 ≺ f1 ≺
· · · ≺ fm} be non-empty chains of a finite lattice M such that J(M ) ⊆ E ∪F .
Then M has a planar diagram such that Bleft(M ) = E ∪ ↑en and Bright(M ) =
F ∪ ↑fm.

Proof. We prove the lemma by induction on |M |. We assume that |M | ≥ 3,
n ≥ 1 and m ≥ 1, since otherwise the statement is trivial. Let max

(
J(L)

)
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denote the set of maximal join-irreducible elements, note that |max(J(M ))| ≤
2. Since at least one of E and F contains a maximal element of J(M ), we
can assume that ep ∈ max

(
J(M )

)
for some 0 < p ≤ n. Let eq and fr be the

largest element of {e1, . . . , ep−1}∩ J(M ) and
(
F \ {ep}

)
∩ J(M ), respectively,

and define E′ := {0 = e0 ≺ e1 ≺ · · · ≺ eq} and F ′ := {0 = f0 ≺ f1 ≺ · · · ≺ fr}.
Denote by S the join-subsemilattice generated by E′∪F ′, and let H = M \S.
Since ep is join-irreducible, ep ∈ H. Clearly, M \ ↑ep ⊆ S, that is, H ⊆ ↑ep.
We know from Lemma 2.1 that ↑ep is a chain. Consequently, its elements
are ∧-irreducible in M . Therefore H is also a chain and its elements are ∧-
irreducible. This yields that S is closed with respect to meet, that is, S is a
sublattice of M .

By the induction hypothesis, S has a planar diagram such that

Bleft(S) = E′ ∪ [eq, 1S] and Bright(S) = F ′ ∪ [fr, 1S]. (2.1)

For x ∈ H, if fi is the largest element of ↓x∩F ′, then x = ep∨fi, no matter
if ep is in F or not. So, x′ := eq ∨ fi is the largest element of ↓x∩S. Consider
the mapping ϕ : H → S, x 7→ x′. Since x′ = ϕ(x) ∈ [eq , 1S], ϕ maps H into
Bleft(S). Clearly, ϕ is order-preserving, and it is injective since x = ep ∨ x′.

Observe that the chain H is a cover-preserving sublattice of M . Indeed,
otherwise we would have ep ≤ x1 < x2 < x3 with x1, x3 ∈ H but x2 ∈ S.
Then x3 = ep ∨ y3 for some y3 ∈ F ′ would imply x3 = x2 ∨x3 = x2 ∨ ep ∨ y3 =
x2 ∨ y3 ∈ S, a contradiction.

So, we can assume that H = {ep = h0 ≺ h1 ≺ · · · ≺ ht} where t ∈ N0

and the covering is understood in M . For i = 0, . . . , t, let h′
i = ϕ(hi) be the

point (ξi, ηi) of the plane (in the fixed planar diagram of S). The h′
i are the

black-filled elements in Figure 1, where t = 3. Since h′
0 < h′

1 < · · · < h′
t, we

have η0 < h1 < · · · < ηt. We have to distinguish two cases.
First, we assume that ht 6= 1M . Lemma 2.1 and ht ∈ ↑ep yield that ht has a

unique cover z ∈ M . Clearly, z ∈ S and 1M = 1S . The dotted line in Figure 1
represents [h′

t, z]. From (2.1) and h′
t ∈ ↑eq we obtain that [h′

t, z] is a chain in
S, and [h′

t, z] and all the h′
i are on the left boundary of S. In the particular

case when [h′
t, z] is two-element, the dotted line is an edge of S that should be

deleted since h′
t < ht < z in M . Clearly, if ε is a sufficiently small a positive

number and κ is large enough, then positioning hi to the point (−κ, ηi + ε)
keeps the planarity of the diagram, see Figure 1. This way we get a planar
diagram of M .

Next, we assume that ht = 1M . Then h′
t = 1S and z is not present.

However, we get a planar diagram of M in the same way as in the previous
case.

Clearly, {e0, . . . , ep} ⊆ Bleft(M ) and {f0, . . . , fr} ⊆ Bright(M ) in the planar
diagram just obtained. So the statement follows from Lemma 2.1. �

Lemma 2.3. For every finite lattice M , the following four conditions are
equivalent:
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• M is a slim semimodular lattice;
• M is a slim semimodular lattice and it is a planar 4-cell lattice;
• M is a planar semimodular lattice without cover-preserving M3-sublat-

tices;
• M is a planar semimodular lattice in which 4-cells and covering squares

are the same.

The third condition is clearly equivalent with the definition of G. Grätzer
and E. Knapp [5]. This fact justifies a later reference to [5].

Proof. Clearly, the last two conditions are equivalent. The second condition
trivially implies the first one.

Assume the first condition. Then M is planar by Lemma 2.2. If it con-
tained a cover-preserving M3-sublattice, then we could find three distinct cov-
ers v1, v2, v3 of some u ∈ M and pi ∈

(
J(M ) ∩ ↓vi

)
\ ↓u for i ∈ {1, 2, 3}, and

vi = u ∨ pi would yield that {p1, p2, p3} is a three-element antichain in J(L).
Hence the third condition follows.

Assume the third condition. Then semimodularity implies that each cell of
M is a 4-cell, and [1, Corollary 2] (in particular, the first sentence of its proof)
gives that J(L) has no three-element antichain. That is, the second condition
holds. �

In what follows, the notation of Theorem 1.3 will be fixed. In particular, L

is a semimodular lattice. Let K = (K;∨, 0) be the subsemilattice of (L;∨, 0)
generated by C ∪ D. Note that K = (K;≤) is a lattice, but this auxiliary
lattice is not a sublattice of L in general. However, with an appropriate choice
of planar representation, we have

Lemma 2.4. K, considered as a lattice, is a slim semimodular lattice with
left boundary chain C and right boundary chain D. Further, (K;∨, 0) is a
cover-preserving subsemilattice of (L;∨, 0).

Proof. Clearly, J(K) ⊆ C ∪ D. Hence K is slim. Let x ≺ y in K, and let
s = max{i : ci ≤ x} and t = max{j : dj ≤ x}. Then x = cs ∨ dt, and either
y = cs+1 ∨ dt or y = cs ∨ dt+1. In both cases, the semimodularity of L implies
that x ≺ y in L. So, K is a cover-preserving join-subsemilattice of L, whence
K is semimodular. Finally, we apply Lemma 2.2. �

The following lemma is a part of [5, Lemma 7]. It also follows from the fact,
included in the proof of Lemma 2.3, that each x ∈ K has at most two covers.

Lemma 2.5 (G. Grätzer and E. Knapp [5]). No two distinct 4-cells of K have
the same bottom.

By a prime interval we mean a two-element interval [a, b], that is, an interval
[a, b] with a ≺ b. The set of all intervals and that of all prime intervals of
a lattice M are denoted by Int(M ) and Prin(M ), respectively. As usual,
the projectivity relation on Int(M ) is the transitive closure of “↗” ∪ “↘”.
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Figure 2. A slim semimodular lattice

Projectivity should not be confused with the following notion. For [a0, a1]
and [b0, b1] in Prin(M ), we say that [a0, a1] is Prin(M )-projective to [b0, b1],
if there are k ∈ N0 and [xi, yi] ∈ Prin(M ) for i ≤ k such that [a0, a1] =
[x0, y0], [b0, b1] = [xk, yk], and, for all i ∈ {1, . . . , k}, [xi−1, yi−1] ↗ [xi, yi]
or [xi−1, yi−1] ↘ [xi, yi]. One may ask if Prin(M )-projectivity coincides with
projectivity at least in particular cases. The answer is given below.

Remark 2.6. Let M be the principal filter ↑w2 in Figure 2. Then M is a slim
semimodular lattice. The prime intervals [z0, z1] and [w0, w1] are on its left
boundary and right boundary, respectively. These intervals are projective in
M , but they are not Prin(M )-projective. Note also that [z0, z1] and [w0, w1]
are projective via ten perspectivity steps but not in fewer steps.

Lemma 2.7. Let M be a semimodular lattice of finite length, and let [a0, a1],
[b0, b1] ∈ Prin(M ). Then these two prime intervals are Prin(M )-projective iff
there are k ∈ N0 and [xi, yi] ∈ Prin(M ) for i ≤ k such that [a0, a1] = [x0, y0],
[b0, b1] = [xk, yk], and, for all i ∈ {1, . . . , k}, we have that {xi−1, yi−1, xi, yi}
is a covering square.

Proof. Assume that [a, b], [c, d] ∈ Prin(M ) such that [a, b] ↗ [c, d]. Take
a chain a = z0 ≺ z1 ≺ · · · ≺ zt = b, and define z′i = zi ∨ b. Then
{zi−1, zi, z

′
i−1, z

′
i} is a covering square by semimodularity. If [a, b] ↘ [c, d],

then [c, d] ↗ [a, b], and we obtain covering squares similarly. So, each perspec-
tivity step gives rise to some covering squares, and the collection of all these
squares prove the “only if” part. The “if” part is evident. �
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Clearly, Prin(M )-projectivity is an equivalence relation on Prin(M ). In K,
defined right before Lemma 2.4, the blocks (in other word, classes) of Prin(K)-
projectivity will be called trajectories. Let us emphasize that trajectories,
unless otherwise stated, are defined and will be used only for the lattice K.
The terminology is explained by the following lemma (and its proof).

Lemma 2.8. The trajectories of K start at the left boundary chain C. First
they go upwards (possibly in zero step), then they go downwards (possibly in
zero step), and finally they reach the right boundary chain D. Trajectories
never ramify.

Proof. Take a prime interval [x, y] in a trajectory T . By planarity, [x, y] is
the side of at most two adjacent covering squares. Indeed, it is on the left
boundary of at most one square, and it is on the right boundary of at most
one square. The opposite sides of these squares also belong to T . Repeating
the same argument to these opposite sides and continuing to the left and to
the right, we can see by Lemma 2.7 that T is a sequence of prime intervals
such that any two consecutive prime intervals form a covering square. For
example, a trajectory of the slim semimodular lattice depicted in Figure 2 is
indicated by thick lines.

We can think of T as a sequence of prime intervals that “goes” from the left
boundary C to the right boundary D. Since no edge is on the left boundary
of two different covering squares, T cannot ramify while going to the right.
However, while going from the left to the right, (segments of) T can go upwards
(that is, to the northeast) or downwards (to the southeast). For example, the
section from [a0, a1] to [x, y] of the trajectory in Figure 2 goes upwards, while
the section from [x, y] to [b0, b1] goes downwards. Notice that a trajectory can
turn down only where two distinct 4-cells have the same top.

A downward going section of T cannot be followed by an upward going
section. Indeed, a down-going section could turn upwards only where two
distinct 4-cells would have the same bottom, but this is impossible in virtue
of Lemma 2.5. �

Lemma 2.9. For any two prime intervals of K, these intervals are up-and-
down projective iff they belong to the same trajectory.

Proof. Suppose that [a0, a1], [b0, b1] ∈ Prin(K) are up-and-down projective.
Then [a0, a1] ↗ [x, y] ↘ [b0, b1] for some [x, y] ∈ Int(K). Since x ≺ y by semi-
modularity, [a0, a1] and [b0, b1] are Prin(K)-projective, whence they belong to
the same trajectory.

Conversely, assume that [a0, a1] and [b0, b1] are prime intervals belonging
to the same trajectory T . By Lemma 2.8, the section of T between [a0, a1]
and [b0, b1] first goes upwards (possibly in zero steps), and then it goes down-
wards (possibly in zero steps). Since the composite of up-perspectivities is an
up-perspectivity, and the same holds for down-perspectivities, it follows that
[a0, a1] /↘ [b0, b1]. �
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Figure 3. K and K∗

Lemma 2.10. If M is lattice, [a0, a1], [b0, b1] ∈ Int(M ) and [a0, a1] /↘ [b0, b1],
then a1 6≤ a0 ∨ b0 and b1 6≤ a0 ∨ b0.

Proof. Choose an [x, y] ∈ Int(M ) with [a0, a1] ↗ [x, y] ↘ [b0, b1]. Then a0 ∨
b0 ≤ x. If, say, a1 ≤ a0 ∨ b0, then y = x∨ a1 = x, a contradiction. �

Lemma 2.11. The correspondence
{
(i, `) : 1 ≤ i ≤ n, 1 ≤ ` ≤ m and

[ci−1, ci] /↘ [d`−1, d`] in K
}

is a bijection π : {1, . . . , n} → {1, . . . , m}.

Proof. We obtain from Lemmas 2.8 and 2.9 that for each i there is exactly one
` with [ci−1, ci] /↘ [d`−1, d`]. Left-right symmetry yields the converse. �

Corollary 2.12. The (previously known) first part of Theorem 1.3 holds.

Proof. By Lemma 2.4, if we have [ci−1, ci] /↘ [d`−1, d`] in K, then we have
[ci−1, ci] /↘ [d`−1, d`] in L. Thus, Lemma 2.11 applies. �

The bijection π defined in Lemma 2.11 will be called the planar matching.
Remember that for all i ∈ {1, . . . , n},

[ci−1, ci] /↘ [dπ(i)−1, dπ(i)] in K and also in L, (2.2)

and these two prime intervals belong to the same trajectory of K. Note that
once K is depicted, the planar matching π is very easy to find; see Figure 2,
where Ii and Jπ(i) denote [ci−1, ci] and [dπ(i)−1, dπ(i], respectively.

For the rest of the paper, let us fix a pair (i, j) ∈ {1, . . . , n}2 such that

[ci−1, ci] /↘ [dj−1, dj] holds in L. (2.3)

Lemma 2.13. Let x := ci−1 ∨ dj−1, y := ci ∨ dj, a := ci ∨ x, and b := dj ∨ x.
If j 6= π(i), then S = {x, a, b, y} is a covering square in K with left corner a

and right corner b.
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Proof. Notice that y = a ∨ b. Since [ci−1, ci] /↘ [dj−1, dj] in L, Lemma 2.10
implies that ci, dj 6≤ x. Hence x ≺ a ≤ y and x ≺ b ≤ y. Suppose that
a = b. Then [ci−1, ci] ↗ [x, a] = [x, b] ↘ [dj−1, dj] and therefore, [ci−1, ci] /↘
[dj−1, dj] in K. Since j 6= π(i), this contradicts (2.2) in virtue of Lemma 2.11.
Hence, a 6= b, and S is a covering square in K by semimodularity. �

Before the rigorously formulated proof of Theorem 1.3, we outline the idea
loosely. If [ci−1, ci] /↘ [dj−1, dj] in L and j 6= π(i), then we insert a new
element v into the 4-cell S of K defined in Lemma 2.13 in order to obtain a
lattice K∗ such that [ci−1, ci] /↘ [dj−1, dj] already in K∗, see Figure 3. There
is a unique trajectory T of K that starts at [ci−1, ci] and ends at [dπ(i)−1, dπ(i)].
The new element ramifies T in K∗. The original part goes upwards after S

within K, it may turn downwards only later, and it stops at [dπ(i)−1, dπ(i)].
The new part turns downwards in K∗ immediately at S, then it keeps going
downwards in K, and stops at [dj−1, dj]. This explains visually why [dj−1, dj]
is lower on the right boundary chain than [dπ(i)−1, dπ(i)], that is, why j ≤ π(i).

Proof of Theorem 1.3. Corollary 2.12 settles the first part of Theorem 1.3. It
suffices to show the stated “[ci−1, ci] /↘ [dj−1, dj] ⇒ j ≤ π(i)” property of the
planar matching π since it clearly implies the desired uniqueness. Hence, by
way of contradiction, we assume (2.3) together with π(i) < j.

By Lemma 2.3, S defined in Lemma 2.13 is a 4-cell in K. We add a doubly
irreducible new element v to the interior of S, see Figure 3. In other words,
we change S into a covering M3 sublattice. This way we obtain a new lattice
K∗.

Clearly, K∗ is a 4-cell planar lattice. Trivially, or using G. Grätzer and E.
Knapp [5, Lemma 2], we get that that K∗ is semimodular. Notice that K is a
sublattice of K∗ but, in general, (K∗;∨, 0) is not a subsemilattice of (L;∨, 0).
Since π(i) < j gives that dπ(i) < dj and we know that dj ≤ x ∨ dj = b, we
obtain dπ(i)−1 < dπ(i) < b. Hence dπ(i) ≤ b = b ∨ dπ(i)−1, and Lemma 2.10
yields that

[b, y] is not up-and-down projective to [dπ(i)−1, dπ(i)] in K. (2.4)

On the other hand, we know that [ci−1, ci] ↗ [x, a] ↗ [b, y]. This gives that
[ci−1, ci] ↗ [b, y], implying [ci−1, ci] /↘ [b, y] in K. Hence Lemma 2.9 yields
that [b, y] belongs to the unique trajectory T (of K) that contains [ci−1, ci].
But [dπ(i)−1, dπ(i)] also belongs to T by (2.2) and Lemma 2.9. Thus, [b, y] and
[dπ(i)−1, dπ(i)] belong to the same trajectory of K, whence Lemma 2.9 implies
[b, y] /↘ [dπ(i)−1, dπ(i)] in K, which contradicts (2.4). �

Proof of Theorems 1.1 and 1.2. Assume that G is a group with a finite compo-
sition series. As mentioned right after Theorem 1.2, the subnormal subgroups
of G form a dually semimodular sublattice H(G) of the lattice of all subgroups.

If A, B ∈ H(G) and A ⊆ B, then A ∈ H(B) by [12, Lemma 1.1.4], see
also the proof of [10, Theorem 9.8]. Therefore the composition series of G are
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exactly the maximal chains of H(G). Hence Theorem 1.1 becomes a corollary
of Theorem 1.3. So does Theorem 1.2, because the lattice of normal subgroups
is well-known to be modular; see, for example, R. Schmidt [12, Theorem 2.1.4].

�

Acknowledgment. The authors thank the referee for calling their attention
to R. Dedekind [2].
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