
FINITE CONVEX GEOMETRIES OF CIRCLES

GÁBOR CZÉDLI

Abstract. Let F be a finite set of circles in the plane. The usual convex
closure restricted to F yields a convex geometry, which is a combinatorial

structure introduced by P. H. Edelman in 1980 under the name “anti-exchange
closure system”. We prove that if the circles are collinearand they are arranged

in a “concave way”, then they determine a convex geometry of convex dimen-
sion at most 2, and each finite convex geometry of convex dimension at most

2 can be represented this way. The proof uses some recent results from lattice
theory, and some of the auxiliary statements on lattices or convex geometries

could be of separate interest. The paper concludes with some open problems.

1. Introduction

The concept of convex geometries was introduced by Edelman [25, 26]; see also
Edelman and Jamison [27], Adaricheva, Gorbunov, and Tumanov [6], and Arm-
strong [7]. Convex geometries are combinatorial structures: finite sets with anti-
exchange closures such that the empty set is closed. They are equivalent to an-
timatroids, which are particular greedoids, and also to meet-distributive lattices.
Actually, the concept of convex geometries has many equivalent variants. The first
of these variants is due to Dilworth [23], and the early ones were surveyed in Mon-
jardet [37]. Since it would wander too far if we described the rest (more than a
dozen approaches), we only mention Adaricheva [3], Abels [1], Caspard and Mon-
jardet [11], Avann [8], Jamison-Waldner [30], and Ward [42] for additional sources,
and Stern [41], Adaricheva and Czédli [4], and Czédli [13] for some recent surveys.
In fact, we need only a small part of the theory of convex geometries, and the
present paper is intended to be self-contained for those who know the rudiments of
lattice theory up to, say, the concept of semimodularity.

From a combinatorial point of view, the finite convex geometries are the interest-
ing ones. The tools we use are elaborated only for the finite case. Hence, except for
〈S,Hull(n)

S 〉 in the next paragraph, the present paper is restricted to finite convex
geometries. Postponing the exact definition of convex geometries to Section 2, we
present an important finite example as follows. Let n ∈ N = {1, 2, 3, . . .}, and let
E be a finite subset of the n-dimensional space Rn. The set of all subsets of E is
denoted by P(E). For Y ⊆ E, we define Hull(n)

E (Y ) = E∩Conv(Y ), where Conv(Y )
denotes the usual convex hull of Y in Rn. The map Hull(n)

E : P(E) → P(E) is a
closure operator, and 〈E,Hull(n)

E 〉 is a finite convex geometry. Convex geometries
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of this form are called geometries of relatively convex sets, and they (not only the
finite ones) were studied by Adaricheva [2] and [3], Bergman [9], and Huhn [29].

For a convex geometry G, let LatG denote the lattice of closed sets of G. Based
on Bergman [9] and Pudlák and Tůma [39], the introduction of Adaricheva [3]
points out that LatG can be embedded into Lat〈S,Hull(n)

S 〉 for some n and S ⊆
Rn. However, even if a finite convex geometry is of convex dimension 2, it is not
necessarily isomorphic to some 〈E,Hull(n)

E 〉.
Besides geometries of relatively convex sets, there exists a more complicated

way to define a convex geometry on a subset B ⊆ Rn by means of the usual convex
hull operator Conv. For definition, let B and A be finite subsets, acting as a base
set and an auxiliary set, of Rn such that Conv(A) ∩ B = ∅. For X ⊆ B, let
Hull(n,A)

B (X) = B ∩Conv(X ∪A). By Kashiwabara, Nakamura, and Okamoto [34],
〈B,Hull(n,A)

B 〉 is a convex geometry, and each finite convex geometry is isomorphic
to an appropriate 〈B,Hull(n,A)

B 〉. Note that Lat〈B,Hull(n,A)
B 〉 is isomorphic to an

interval of Lat〈A ∪B,Hull(n)
A∪B〉.

Motivated by the results of [9] and [34] mentioned above, the present paper
introduces another kind of “concrete” finite convex geometry that is still based on
the usual concept Conv of convexity. However, our primary purpose is to represent
finite convex geometries in a visual, conceptually simple way. In particular, we
look for a representation theorem that leads to readable figures, at least in case of
small size, because figures are generally useful in understanding a subject. (This
is well exemplified by the role that Hasse diagrams play, even if the present paper
cannot compete with their importance.) The space Rn for n ≥ 3 can hardly offer
comprehendible figures. The real line R1 = R is too “narrow” to hold overlapping
objects in a readable way. Therefore, with the exception of Subsection 4.2, we will
only work in the plane R2. We will see that the plane is general enough to represent
all finite convex geometries of convex dimension 2, and also some additional ones.
Although Adaricheva [5] observed that our result has a counterpart based on 1-
dimensional circles, see Corollary 4.6 later, an additional advantage of our approach
with planar circles is that it raises interesting problems, see (4.5) and (4.6).

To accomplish our goal, we start from a finite set F of circles in the plane R2, and
we define a convex geometry 〈F,HulloF 〉 with the help of forming usual convex hulls
in the plane, analogously to the geometries of relative convex sets. The structures
〈F,HulloF 〉, called convex geometries of circles, are very close to the usual closure
Conv: R2 → R2. As opposed to geometries of relatively convex sets, we can prove
that each finite convex geometry of convex dimension at most 2 is isomorphic to
some convex geometry 〈F,HulloF 〉 of circles. Actually, our representation theorem,
the main result of the paper, will assert more by imposing some conditions on F ; see
Figure 1 (without C′

3, D, the grey-colored plane shape H, and the dotted curves)
for a first impression.

This paper uses some lattices as auxiliary tools in proving the main result. In
fact, the theory of slim semimodular lattices has recently developed rapidly, as
witnessed by Czédli [12, 14, 15], Czédli, Dékány, Ozsvárt, Szakács, and Udvari [16],
Czédli and Grätzer [17], Czédli, L. Ozsvárt, and Udvari [18], Czédli and Schmidt
[19, 20, 21, 22], Grätzer and Knapp [31, 32, 33], and Schmidt [40]. Even if only a
part of the results in these papers are eventually needed here, this progress provides
the background of the present work. On the other hand, some auxiliary statements
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Figure 1. A concave set of collinear circles (disregard the grey-
colored shape H until the proof of Lemma 3.1)

we prove here, namely some of the propositions, seem to be of some interest in
the theory of slim semimodular lattices, while some other propositions could be
interesting in the theory of convex geometries.

The paper is structured as follows. Section 2 gives the basic concepts and formu-
lates two results. Proposition 2.1 asserts that, for every finite set F of circles in the
plane, 〈F,HulloF 〉 is a convex geometry, while our main result, Theorem 2.2, is the
converse statement for the case of convex dimension ≤ 2. The results of Section 2
are proved in Section 3, where several auxiliary statements are cited or proved, and
some more concepts are recalled. Section 4 contains examples, statements, and
open problems to indicate that although Theorem 2.2 gives a satisfactory represen-
tation of finite convex geometries of convex dimension at most 2, we are far both
from settling the case of higher convex dimensions and from understanding what
the abstract class of our convex geometries of circles is.

As mentioned already, we only assume a little knowledge of lattices. Besides the
first few pages of any book on lattices or particular lattices, including Grätzer [28],
Nation [38], and Stern [41], even the first chapter of Burris and Sankappanavar [10],
which does not even focus on lattice theory, is sufficient. Note that [10] and [38]
are freely downloadable.

2. Convex geometries and our results

Assume that we are given a set U and a map Φ: P(U ) → P(U ). If X ⊆ Φ(X) =
Φ(Φ(X)) ⊆ Φ(Y ) holds for all X ⊆ Y ⊆ U , then Φ is a closure operator on U . The
pair 〈U,Φ〉 is a convex geometry if Φ is a closure operator on U , Φ(∅) = ∅, and Φ
satisfies the so-called anti-exchange property

(2.1)
if Φ(X) = X ∈ P(U ), x, y ∈ U \X, x 6= y,

and x ∈ Φ(X ∪ {y}), then y /∈ Φ(X ∪ {x}).

Given a convex geometry 〈U,Φ〉, we use the notation

Lat〈U,Φ〉 = {X ∈ P(U ) : X = Φ(X)}

to denote the set of closed sets of 〈U,Φ〉. Actually, the structure Lat〈U,Φ〉 =〈
Lat〈U,Φ〉,⊆

〉
is a lattice, and it is a complete meet-subsemilattice of the powerset

lattice P(U ) = 〈P(U ),∪,∩〉. It is well-known that Lat〈U,Φ〉 determines 〈U,Φ〉,
since we have Φ(X) =

⋂
{Y ∈ Lat〈U,Φ〉 : X ⊆ Y }. Hence, it is natural to say
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that 〈U,Φ〉 can be embedded into or isomorphic to a convex geometry 〈V,Ψ〉, if the
lattice Lat〈U,Φ〉 can be embedded into or is isomorphic to Lat〈V,Ψ〉, respectively.

As usual, a circle is a set {〈x, y〉 ∈ R2 : (x−u)2+(y−v)2 = r}, where u, v, r ∈ R
and r ≥ 0. A circle of radius 0 consists of a single point. Since Conv, the operator
of forming convex hulls, is defined for subsets of R2 rather than for sets of circles,
we introduce a shorthand notation for “points of” (or “point set of”) as follows.
For a set X of circles in R2, the set of points belonging to some member of X is
denoted by Xps. In other words,

(2.2) Xps =
⋃

C∈X

C.

For a set F of circles in R2 and X ⊆ F , we define

(2.3) HulloF (X) =
{
C ∈ F : C ⊆ Conv

(
Xps

)}
.

(The superscript circle in the notation will remind us that HulloF is defined on a
set of circles.) The structure 〈F,HulloF 〉 will be called the convex geometry of F ,
and we call it a convex geometry of circles if F is not specified. (We shall soon
prove that it is a convex geometry.) Note that if all circles of F are of radius 0
and E ⊆ R2 is the set of their centers, then 〈F,HulloF 〉 is obviously isomorphic to
〈E,Hull(2)

E 〉.
We are now in the position to state our first observation; the statements of this

section will be proved in Section 3.

Proposition 2.1. For every finite set F of circles in R2, 〈F,HulloF 〉 is a convex
geometry.

If there is a line containing the centers of all members of a finite set F of circles
in R2, then F is a set of collinear circles. By symmetry, we will always assume that
the line in question is the x axis. That is, in case of a set of collinear circles, all
the centers are of the form 〈u, 0〉. For example, F in Figure 1 is a set of collinear
circles; note that the dotted curves and the x-axis do not belong to F . Note that
a set of collinear circles can always be given by a set of intervals of the real line
R; this comment will be expanded in Subsection 4.2. However, circles lead to a
stronger result and more readable figures than intervals. The label of a circle in
our figures is either below the center (inside or outside but close to the circle), or
we use an arrow. The radius of a circle C is denoted by rad(C). If the center of C
is 〈u, 0〉, then

LPt(C) = u− rad(C) and RPt(C) = u+ rad(C)

will denote the leftmost point and the rightmost point of C, respectively. Since we
allow that two distinct circles have the same leftmost point or the same rightmost
point, we also need the following concept. Although circles are usually treated as
endless figures, in case the center of a circle C lies on the x axis, we define the left
end and the right end of C as follows:

LEnd(C) = 〈LPt(C),−rad(C)〉 and REnd
(
C

)
= 〈RPt(C), rad(C)〉.

Left and right ends are ordered lexicographically; this order is denoted by <. Thus

LEnd(C) < LEnd(D) ⇐⇒ LPt(C) < LPt(D), or

LPt(C) = LPt(D) and rad(C) > rad(D),
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REnd
(
C

)
< REnd

(
D

)
⇐⇒ RPt(C) < RPt(D), or

RPt(C) = RPt(D) and rad(C) < rad(D).

For later reference, note the obvious rules:

(2.4)
LPt(C) < LPt(D) ⇒ LEnd(C) < LEnd(D) and

RPt(C) < RPt(D) ⇒ REnd
(
C

)
< REnd

(
D

)
.

Let F be a set of collinear circles. We say that F is a concave set of collinear circles
if for all C1, C2, C3 ∈ F ,

(2.5)
whenever LEnd(C1) < LEnd(C2) and REnd

(
C2

)
< REnd

(
C3

)
,

then C2 ⊆ Conv
(
C1 ∪C3

)
.

For illustration, see C1, C2, and C3, or C′
1, C′

2, and C′
3, in Figure 1. Note that

since each C ∈ F is uniquely determined by LEnd(C) and also by REnd
(
C

)
, “<”

in (2.5) can be replaced by “v”. If |{LPt(C1),LPt(C2),RPt(C1),RPt(C2)}| = 4
for any two distinct C1 and C2 in a set F of collinear circles, then F is separated.
For example, F \{C′

3, D} in Figure 1 is a separated, concave set of collinear circles.
Clearly, if F is a separated set of collinear circles, then F is concave if and only if

(2.6)
whenever LPt(C1) < LPt(C2) and RPt(C2) < RPt(C3),

then C2 ⊆ Conv
(
C1 ∪C3

)
.

For a finite lattice L, the set of elements with exactly one lower cover (the set of
non-zero join-irreducible elements) is denoted by JiL. Dually, MiL stands for the
set of elements with exactly one cover. The convex dimension of a finite convex
geometry 〈U,Φ〉 is the maximum size of an antichain in Mi

(
Lat〈U,Φ〉

)
. In other

words, the convex dimension is the width of the poset Mi
(
Lat〈U,Φ〉

)
.

We can now formulate our main result, which characterizes finite convex geome-
tries of convex dimension at most 2 as the convex geometries of finite (separated
or not necessarily separated) concave sets of collinear circles.

Theorem 2.2.
(A) If F is a finite, concave set of collinear circles in the plane, then 〈F,HulloF 〉

is a convex geometry of convex dimension at most 2.
(B) For each finite convex geometry 〈U,Φ〉 of convex dimension at most 2, there

exists a finite, separated, concave set F of collinear circles in the plane such
that 〈U,Φ〉 is isomorphic to 〈F,HulloF 〉.

3. Proofs and auxiliary statements

3.1. Not necessarily collinear circles.

Proof of Proposition 2.1. For every X ⊆ F , we have

(3.1) Conv(Xps) = Conv
(
(HulloF (X))ps

)
,

since the “⊆” inclusion follows from X ⊆ HulloF (X) while the converse inclusion
comes from the obvious Conv(Xps) ⊇ (psHulloF (X)).

Assume that X ⊆ F , and let Y = HulloF (X). Since C ⊆ Conv(Xps) holds for all
C ∈ Y , that is Y ps ⊆ Conv(Xps), we obtain

Conv(Y ps) ⊆ Conv(Xps).
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Figure 2. Illustrating the proof of Proposition 2.1

We have equality here, since Y ⊇ X. This implies HulloF (Y ) = HulloF (X), and it
follows that HulloF is a closure operator with the property HulloF (∅) = ∅. Observe
that a closure operator Φ on U satisfies the anti-exchange property (2.1) if and
only if

(3.2)
if Φ(X) = X ∈ P(U ), x0, x1 ∈ U \X,

and Φ(X ∪ {x0}) = Φ(X ∪ {x1}), then x0 = x1.

Therefore, tailoring (3.2) to our situation, we assume X = HulloF (X) ∈ P(F ),
{C0, C1 ⊆ F \ X}, and HulloF (X ∪ {C0}) = HulloF (X ∪ {C1}). We have to show
C0 = C1. Combining our assumption with (3.1), we obtain

(3.3) Conv
(
C0 ∪Xps

)
= Conv

(
C1 ∪Xps

)
.

Let Γ and ∆ be the boundary of Conv(Xps) and the boundary of the set given
in (3.3), respectively; see the thick closed curves in Figure 2. In the figure, X is
depicted twice: in itself on the left and with Ci on the right. We can imagine Γ
and ∆ as tight resilient rubber nooses around the members of X and X ∪ {Ci},
respectively. Pick an i ∈ {0, 1}. Observe that Ci /∈ X = HulloF (X) implies Ci 6⊆
Conv(Xps) = Conv(Γ). Clearly, ∆ can be decomposed into finitely many segments
K0,K1, . . . ,Km−1, listed anti-clockwise, such that these segments are of positive
length and the following properties hold for all j ∈ {0, . . . ,m − 1} and i ∈ {0, 1}:

(i) The endpoint of Kj is the first point of Kj+1, where j + 1 is understood
modulo m.

(ii) Either Kj ⊆ Γ, or no inner point of Kj belongs to Conv(Γ).
(iii) If no inner point of Kj belongs to Conv(Γ), then either Kj is a straight line

segment, or Kj is an arc of Ci.
(iv) There exists a t ∈ {0, . . . ,m− 1} such that either

(a) Kt is not a straight line segment and none of its inner points belongs to
Conv(Γ); or

(b) both Kt and Kt+1 are straight line segments and their common point is
outside Conv(Γ).

As opposed to Figure 2, note that t in (iv) need not be unique. Clearly, (iv)(b)
holds if and only if the radius of Ci is zero; in this case Ci consists of the common
point of Kt and Kt+1, which is the only angle point of ∆ outside Conv(Γ), and
we conclude C0 = C1. Otherwise, if (iv)(a) holds, then (iii) implies that Kt is a
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common arc of C0 and C1, whence we conclude C0 = C1 again. Therefore, HulloF
is an anti-exchange closure operator, and 〈F,HulloF 〉 is a convex geometry. �

3.2. Collinear circles. For a set F of collinear circles and A,B ∈ F , we define
the horizontal interval

HIntF (A,B) = {C ∈ F : LEnd(A) v LEnd(C), REnd
(
C

)
v REnd

(
B

)
}.

Note that HIntF (A,B) can be empty. If A 6= B and A is inside the circle B, then
A ∈ HIntF (A,B) ∩ HIntF (B,A) but B /∈ HIntF (A,B) ∪ HIntF (B,A). Note also
that, for A ∈ F , the horizontal interval HIntF (A,A) is the set of circles of F that
are inside A, including A itself.

Lemma 3.1. If F is a finite set of collinear circles in the plane, then the following
three statements hold.

(i) {∅} ∪ {HIntF (A,B) : A,B ∈ F} ⊆ Lat〈F,HulloF 〉. If F is concave, then also
the equality {∅} ∪ {HIntF (A,B) : A,B ∈ F} = Lat〈F,HulloF 〉 holds.

(ii) For ∅ 6= X ∈ Lat〈F,HulloF 〉, let A and B denote the circles in X with least
left end and greatest right end, respectively. If F is concave, then the equality
X = HIntF (A,B) = HIntF (A,A) ∨ HIntF (B,B) holds in Lat〈F,HulloF 〉.

(iii) If X ∈ Lat〈F,HulloF 〉, then X =
∨
{HIntF (C,C) : C ∈ X}.

Proof. We may assume F 6= ∅, since otherwise the lemma is trivial. Assume
HIntF (A,B) 6= ∅. As indicated in Figure 1 by the grey area, there exists a
convex subset H of R2 such that

(
HIntF (A,B)

)
ps ⊆ H but H includes no C ∈

F \ HIntF (A,B) as a subset. (As in the figure, it is always possible to find
an appropriate H whose boundary is the union of an arc of A, that of B, and
four line segments. Note that if rad(A) = 0, then the only arc of A is itself.)
This implies that HIntF (A,B) = HulloF (HIntF (A,B)) ∈ Lat〈F,HulloF 〉. Thus
{∅} ∪ {HIntF (A,B) : A,B ∈ F} ⊆ Lat〈F,HulloF 〉.

To prove the converse inclusion under the additional assumption that F is con-
cave, let ∅ 6= X ∈ Lat〈F,HulloF 〉. Since F is finite, there are a unique A ∈ X
with least left end LEnd(A) and a unique B ∈ X with largest right end REnd

(
B

)
.

Using that F is concave, we obtain for C ∈ HIntF (A,B) that C ⊆ Conv(A ∪B) ⊆
Conv(Xps), that is, C ∈ HulloF (X). This implies HIntF (A,B) ⊆ HulloF (X) = X.
On the other hand, if C ∈ X, then the choice of A and B gives LEnd(A) v LEnd(C)
and REnd

(
C

)
v REnd

(
B

)
, that is, C ∈ HIntF (A,B). Hence, X = HIntF (A,B),

and we obtain Lat〈F,HulloF 〉 ⊆ {∅} ∪ {HIntF (A,B) : A,B ∈ F}. This proves (i)
and the first equality in (ii).

Next, we do not assume that F is concave. If C ∈ X ∈ Lat〈F,HulloF 〉, then D ⊆
Conv(C) ⊆ Conv(Xps) holds for all D ∈ HIntF (C,C). That is, D ∈ HulloF (X) = X
for all D ∈ HIntF (C,C). Thus, for all C ∈ X, we have {C} ⊆ HIntF (C,C) ⊆ X,
which clearly implies (iii).

Finally, assume again that F is concave. From (iii) and the first equality in (ii),
we obtain X = HIntF (A,B) ⊇ HIntF (A,A) ∨ HIntF (B,B). The reverse inclusion
follows from the assumption that F is concave. Hence, (ii) holds. �

Lemma 3.2. If F is a finite set of collinear circles in the plane, then

Ji
(
Lat〈F,HulloF 〉

)
= {HIntF (A,A) : A ∈ F}.

Proof. Although the statement is intuitively more or less clear, we give an exact
proof. First, we show for A ∈ F that HIntF (A,A) ∈ Ji

(
Lat〈F,HulloF 〉

)
. This is
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obvious if |HIntF (A,A)| = 1, that is, if HIntF (A,A) is an atom in Lat〈F,HulloF 〉.
Assume |HIntF (A,A)| ≥ 2. Let B and C be the circles with least left end and
greatest right end in HIntF (A,A) \ {A}, respectively. (They need not be distinct.)
Since the circles of F are determined by their left ends, LEnd(A) 6= LEnd(B),
and we obtain LEnd(A) < LEnd(B) by the definition of HIntF (A,A). Similarly,
REnd

(
C

)
< REnd

(
A

)
. Now if D ∈ HIntF (A,A) \ A, then the choice of B and C

gives D ∈ HIntF (B,C). On the other hand, if D ∈ HIntF (B,C), then

LEnd(A) < LEnd(B) v LEnd(D) and REnd
(
D

)
v REnd

(
C

)
< REnd

(
A

)

yield D ∈ HIntF (A,A) \A. Thus HIntF (A,A) \A = HIntF (B,C) ∈ Lat〈F,HulloF 〉
is a unique lower cover of HIntF (A,A), because A ∈ X implies HIntF (A,A) ⊆ X
for all X ∈ Lat〈F,HulloF 〉. Hence, HIntF (A,A) ∈ Ji

(
Lat〈F,HulloF 〉

)
. This proves

Ji
(
Lat〈F,HulloF 〉

)
⊇ {HIntF (A,A) : A ∈ F}.

To prove the converse inclusion, let X ∈ Ji
(
Lat〈F,HulloF 〉

)
. We obtain from

Lemma 3.1(iii) that X = HIntF (A,A) for some A ∈ F . Thus Ji
(
Lat〈F,HulloF 〉

)
⊆

{HIntF (A,A) : A ∈ F}. �

Lemma 3.3. Assume that F is a finite, concave set of collinear circles in the plane,
and |F | ≥ 1. If the circle in F with least left end and that with largest right end
are denoted by Kl and Kr, respectively, then

{∅} ∪ {HIntF (Kl , B) : B ∈ F} and {∅} ∪ {HIntF (A,Kr) : A ∈ F}
are chains in Lat〈F,HulloF 〉, and each nonempty X ∈ Lat〈F,HulloF 〉 is of the form

X = HIntF (Kl, B) ∧ HIntF (A,Kr), that is, HIntF (Kl , B) ∩ HIntF (A,Kr),

where A,B ∈ X are defined in Lemma 3.1(ii).

Proof. Let B1, B2 ∈ F . We can assume REnd
(
B1

)
v REnd

(
B2

)
, since “v” is a

linear order. By transitivity, HIntF (Kl , B1) ⊆ HIntF (Kl, B2). Therefore, the first
set in the lemma is a chain. By left-right duality, so is the second one.

Next, let ∅ 6= X ∈ Lat〈F,HulloF 〉. We have X = HIntF (A,B) by Lemma 3.1(ii),
and the obvious equality HIntF (A,B) = HIntF (Kl , B) ∩ HIntF (A,Kr) completes
the proof. �

3.3. Lattices associated with convex geometries. One of the many equiva-
lent ways, actually the first way, of defining convex geometries was to use meet-
distributive lattices; see Dilworth [23]. Now we recall some concepts from lattice
theory. Let ≺ denote the “is covered by” relation. A finite lattice L is lower semi-
modular if a ≺ a ∨ b implies a ∧ b ≺ b for all a, b ∈ L. An equivalent condition is
that a ≺ b implies a ∧ c � b ∧ c for all a, b, c ∈ L. We will often use the trivial fact
that this property is inherited by intervals and, more generally, by cover-preserving
sublattices. For u 6= 0 in a finite lattice L, let u∗ denote the meet of all lower covers
of u. A finite lattice L is meet-distributive if the interval [u∗, u] is a distributive
lattice for all u ∈ L \ {0}. For other definitions, see Adaricheva [3], Adaricheva,
Gorbunov and Tumanov [6], and Caspard and Monjardet [11]; see also Czédli [13,
Proposition 2.1 and Remark 2.2] and Adaricheva and Czédli [4] for recent surveys
and developments.

The study of meet-distributive lattices (and their duals) goes back to Dilworth
[23], 1940. There were a lot of discoveries and rediscoveries of these lattices and
equivalent combinatorial structures (including convex geometries); see [6], [13],
Monjardet [37], and Stern [41] for surveys. We recall the following statement;
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its origin is the combination of Ward [42] (see also Dilworth [23, page 771], where
[42] is cited) and Avann [8] (see also Edelman [26, Theorem 1.1(E,H)], where [8] is
recalled).

Claim 3.4. Every finite meet-distributive lattice is lower semimodular.

The width of a partially ordered set P , denoted by width(P ), is the smallest k
such that P is the union of some k chains of L. By the famous theorem of Dilworth
[24], width(P ) equals the maximum size of an antichain in P . For a finite lattice
L, we are interested in the width of MiL. Note that, clearly, width(MiL) is the
smallest k such that the union of k maximal chains of L includes MiL. Following
Grätzer and Knapp [31] and, in the present form, Czédli and Schmidt [19], finite
lattices L with width(MiL) ≤ 2 are called dually slim. Finite lattices L with
width(JiL) ≤ 2 are, of course, called slim.

If L is a lattice and x ∈ L, then the principal ideal {y ∈ L : y ≤ x} is denoted
by ↓x. We have already mentioned that a finite convex geometry G = 〈U,Φ〉
determines a lattice, the lattice Lat(G) = Lat〈U,Φ〉 of its closed sets. Conversely,
if L is a finite meet-distributive lattice, then we can take the combinatorial structure
Geom(L) = 〈JiL, {JiL ∩ ↓x : x ∈ L}〉. Part of the following lemma, which asserts
that finite convex geometries and finite meet-distributive lattices are essentially the
same, was proved by Edelman [25, Theorem 3.3], see also Armstrong [7, Theorem
2.8]. The rest can be extracted from Adaricheva, Gorbunov, and Tumanov[6, proof
of Theorem 1.9]; see also Czédli [13, Lemma 7.4] for more details.

Lemma 3.5. If L is a finite meet-distributive lattice and G = 〈U,Φ〉 is a finite
convex geometry, then the following three statements hold.

(i) Lat(G) is a finite meet-distributive lattice.
(ii) Geom(L) is a finite convex geometry.
(iii) Lat(Geom(L)) ∼= L and Geom(Lat(G)) ∼= G.

3.4. Dually slim, lower semimodular lattices. Finite, slim, semimodular lat-
tices are more or less understood. Therefore, so are their duals, the dually slim,
lower semimodular, finite lattices. The following lemma is practically known, but
we will explain how to extract it from the literature. The notation introduced
before Lemma 3.5 is still in effect.

Lemma 3.6. If Φ is a closure operator on U , then G = 〈U,Φ〉 is a finite convex
geometry of convex dimension at most 2 if and only if Lat(G) is a finite, dually
slim, lower semimodular lattice.

Proof. In view of Lemma 3.5, all we have to show is that, for a finite lattice L, the
following two conditions are equivalent:

(i) L is meet-distributive and width(MiL) ≤ 2;
(ii) L is lower semimodular and dually slim.

With reference to Ward [42] and Avann [8], we have already mentioned that
meet-distributivity implies lower semimodularity. Thus (i) implies (ii). Conversely,
assume (ii). We conclude that L is meet-distributive by the dual1 of Czédli, Ozsvárt,
and Udvari [18, Corollary 2.2], and width(MiL) ≤ 2 by the definition of dual
slimness. Thus (ii) implies (i). �

1In what follows, dual statements are often cited without pointing out that they are the duals

of the original ones.
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Next, motivated by Lemma 3.6, we will have a closer look at finite, dually slim,
lower semimodular lattices. A finite lattice is planar if it has a planar diagram in
the obvious sense; for more details see the next subsection. Planarity is a great
help for us due to (B) of the following lemma. A cover-preserving M3 sublattice is
a 5-element sublattice {u, a0, a1, a2, v} such that u ≺ ai ≺ v for i ∈ {0, 1, 2}.

Lemma 3.7 (Czédli and Schmidt [19, Lemmas 2.2 and 2.3]). If L is a finite, lower
semimodular lattice, then the following two statements hold.

(A) L is dually slim if and only if it has no cover-preserving M3 sublattice.
(B) If L is dually slim, then it L is planar, and each of its elements has at most

two lower covers.

3.5. Dual slimness and Carathéodory’s condition. Following Libkin [36],
a finite lattice K is said to satisfy Carathéodory’s condition (CCn) if for any
a, b1, . . . , bk ∈ JiK such that a ≤ b1 ∨· · ·∨ bk, there are i1, . . . , in ∈ {1, . . . , k} such
that a ≤ bi1 ∨· · ·∨ bin . Carathéodory’s classical theorem asserts that whenever p is
a point and X is a subset of Rn−1 such that p belongs to the convex hull Conv(X)
of X, there exists an at most n-element subset Y of X such that p ∈ Conv(Y ).
This theorem implies that the lattices Lat〈E,Hull(n−1)

E 〉 satisfy (CCn), since their
join-irreducible elements are exactly the atoms. We say that a finite convex geom-
etry 〈U,Φ〉 satisfies (CCn) if the corresponding lattice Lat〈U,Φ〉 satisfies (CCn).
Lower semimodularity is not assumed in the following statement.

Proposition 3.8. Every finite, dually slim lattice satisfies (CC2). Also, every
finite convex geometry of convex dimension at most 2 satisfies (CC2).

Proof. The lattices in question are planar by Czédli and Schmidt [19, Lemma 2.2],
and planar lattices satisfy (CC2) by Libkin [36, Corollary 4.7 and Theorem 3]. The
rest follows from Lemma 3.6. �

Proposition 3.9. Let n ∈ N, and let L1 and L2 be finite lattices satisfying (CCn).
If there exists a bijection ϕ : JiL1 → JiL2 such that

(3.4) for all a, b1, . . . bn ∈ JiL1, a ≤
n∨

i=1

bi ⇐⇒ ϕ(a) ≤
n∨

i=1

ϕ(bi),

then ϕ can be extended to an isomorphism from L1 onto L2.

Proof. First, we show that n is not relevant in (3.4), that is, (3.4) implies the
following property of ϕ:

(3.5) for all a ∈ JiL1 and B ⊆ JiL1, a ≤
∨
B ⇐⇒ ϕ(a) ≤

∨
ϕ(B),

where ϕ(B) = {ϕ(b) : b ∈ B}. Assume that a ≤
∨
B. By (CCn), there exists a

subset C ⊆ B such that |C| ≤ n and a ≤
∨
C. Hence ϕ(a) ≤

∨
ϕ(C) by (3.4), and

ϕ(a) ≤
∨
ϕ(B). The converse implication in (3.5) is obtained by using ϕ−1. For

the sake of Remark 3.10 coming soon, we note that the rest of the proof relies only
on (3.5) and does not use any specific property of L1 and L2.

Next, let ψ : JiL2 → JiL1 denote the inverse of ϕ. We define a map ϕ̂ : L1 → L2

by ϕ̂(x) =
∨
{ϕ(a) : a ∈ ↓x ∩ JiL1}. Similarly, let ψ̂ : L2 → L1 be defined by

ψ̂(y) =
∨
{ψ(b) : b ∈ ↓y ∩ JiL2}. The choice b1 = · · · = bn in (3.4) shows that ϕ

and ψ are order isomorphisms. This implies that ϕ̂ and ψ̂ are extensions of ϕ and
ψ, respectively. Using the formula x =

∨
(↓x ∩ JiLi) for x ∈ Li, it is routine to
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check that ψ̂ and ψ are reciprocal bijections. Hence, they are lattice isomorphisms,
since they are obviously order-preserving. �

Remark 3.10. If L1 and L2 are finite lattices and ϕ : JiL1 → JiL2 is a bijection
satisfying (3.5), then L1

∼= L2 and ϕ extends to an isomorphism L1 → L2.

3.6. More about dually slim, lower semimodular lattices. Even if ϕ in
Proposition 3.9 is an order-isomorphism, (3.4) with n = 2 may fail; its satisfac-
tion depends mainly on the case where {a, b1, b2} is an antichain. This is one of the
reasons why we are going to look more closely at dually slim, lower semimodular
lattices. Since dually slim lattices are planar by Lemma 3.7(B), the propositions of
this subsection may look intuitively clear. However, their exact proofs need some
preparation. Fortunately, the theory of planar lattices is satisfactorily developed in
Kelly and Rival [35] at a rigorous level, so we can often rely on results from [35]
instead of going into painful rigor. Whenever we deal with a planar lattice, always
a fixed planar diagram is assumed. Actually, most of the concepts, like left and
right, depend on the planar diagram chosen (sometimes implicitly) at the beginning
rather than on the lattice. This will not cause any trouble, since our arguments do
not depend on the choice of planar diagrams.

Now, we recall some necessary concepts and statements for planar lattices; the
reader may (but need not) look into [35] for more exact details. Let C be a maximal
chain in a finite planar lattice L (with a fixed planar diagram). This chain cuts
L into a left side and a right side, see Kelly and Rival [35, Lemma 1.2]. The
intersection of these sides is C. If x ∈ L is on the left side of C but not in C,
then x is strictly on the left of C. Let D be another maximal chain of L. If all
elements of D are on the left of C, then D is on the left of C. In this sense, we
can speak of the leftmost maximal chain of L, called the left boundary chain, and
the rightmost maximal chain, called the right boundary chain. The union of these
two chains is the boundary of L. Also, if E is a (not necessarily maximal) chain of
L, then the leftmost maximal chain through E (or extending E) and the rightmost
one make sense. If E = {e1, . . . , en} with e1 < · · · < en, then the leftmost maximal
chain of L through E is the union of the left boundary chains of the intervals
[0, e1], [e1, e2], . . . , [en−1, en], and [en, 1]. (The diagrams of these intervals are the
respective subdiagrams of the fixed diagram of L.) The most frequently used result
of Kelly and Rival [35] is probably the following one.

Lemma 3.11 (Kelly and Rival [35, Lemma 1.2]). Let L be a finite planar lattice,
and let x ≤ y ∈ L. If x and y are on different sides of a maximal chain C in L,
then there exists an element z ∈ C such that x ≤ z ≤ y.

Next, let x and y be elements of a finite planar lattice L, and assume that they
are incomparable, written as x ‖ y. If x ∨ y has lower covers x1 and y1 such that
x ≤ x1 ≺ x ∨ y, y ≤ y1 ≺ x ∨ y, and x1 is on the left of y1, then the element x is
on the left of the element y. If x is on the left of y, then we say that y is on the
right of x. Let us emphasize that whenever left or right is used for two elements,
the elements in question are incomparable.

Lemma 3.12 (Kelly and Rival [35, Propositions 1.6 and 1.7]). Let L be finite
planar lattice. If x, y ∈ L are incomparable elements, then the following hold.

(A) x is on the left of y if and only if x is on the left of some maximal chain
through y if and only if x is on the left of all maximal chains through y.
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(B) Either x is on the left of y, or x is on the right of y.
(C) If z ∈ L, x ‖ y, y ‖ z, x is on the left of y, and y is on the left of z, then x

is on the left of z.

If {x0, x1, y} is a 3-element antichain such that xi is on the left of y and y is
on the left of x1−i for some (necessarily unique) i ∈ {0, 1}, then y is horizontally
between the elements x0 and x1.

Proposition 3.13. Let L be a finite lattice. If {x0, x1, y} is a 3-element antichain
in L, then the following two statements hold.

(A) If L is planar and y is horizontally between x0 and x1, then y ≤ x0 ∨ x1.
(B) If L is a dually slim, lower semimodular lattice and y ≤ x0 ∨ x1, then y is

horizontally between x0 and x1.

Proof. To prove (A), pick a maximal chain C through y. Without loss of generality,
we may assume that x0 and x0 ∨ x1 are on the left and x1 is on the right of C.
Applying Lemma 3.11, there exists an element z ∈ C such that x1 ≤ z ≤ x0 ∨ x1.
Belonging to the same chain, y and z are comparable. Since z ≤ y contradicts
x1 6≤ y, we have y < z ≤ x0 ∨ x1, proving (A).

Next, to prove (B) by contradiction, suppose that L is a dually slim, lower
semimodular lattice, y ≤ x0 ∨ x1, but y is not between x0 and x1. Let, say, x0 be
on the left of x1 and x1 be on the left of y. Let I = [x0 ∧ y, x0 ∨ x1]. This interval
contains x0, x1, and y, since y ≤ x0 ∨ x1 and, by the dual of part (A), x0 ∧ y ≤ x1.
As an interval of L, it is lower semimodular, and it follows from Lemma 3.7(A) that
this interval is dually slim. There are two cases.

First, suppose y ∨ x1 = x0 ∨ x1. Let E be a maximal chain of I through
{x1, x0 ∨ x1}. By Lemma 3.12(A), x0 is on the left of E and y is on the right of
E. Note that the left side of E (including E itself) is a cover-preserving sublattice
by Kelly and Rival [35, Proposition 1.4]; this can also be derived from Lemma 3.11
easily. Hence, we can pick lower covers x′0, x′1 of x0 ∨ x1 on the left of E such that
x0 ≤ x′0 and x1 ≤ x′1. Similarly, let y′ ∈ I be a lower cover of x0 ∨ x1 such that
y ≤ y′ and y′ is on the right of E. If x′0 = y′, then E contains an element z by
Lemma 3.11, necessarily strictly above x1 since y 6≤ x1, such that y ≤ z ≤ x′0; this
yields the following contradiction:

y ∨ x1 ≤ z ≤ x′0 ≺ x0 ∨ x1 = y ∨ x1.

Hence, x′0 6= y′. If x′0 = x′1 or x′1 = y′, then x0 ∨ x1 ≤ x′1 ≺ x0 ∨ x1 or y ∨ x1 ≤
x′1 ≺ x0 ∨x1 = y ∨x1, respectively, again a contradiction. Hence x′0, x′1, and y′ are
three distinct lower covers of x0 ∨ x1, which contradicts Lemma 3.7(B).

Second, suppose y ∨ x1 6= x0 ∨ x1. Since these elements are in I, we have
y < y ∨ x1 < x0 ∨ x1. Take a maximal chain G of I through {y, y ∨ x1}, and let
J be the left side of G. By Lemma 3.12(A), x0, x1 ∈ J . In J , take a maximal
chain F through x0, and let K be the right side of F in J . By Lemma 3.12(A)
again, x1 ∈ K. Clearly, K is a cover-preserving sublattice of I, again by Kelly
and Rival [35, Propositions 1.4]. Now F and G are the left and right boundary
chains of K, respectively. Like we obtained it for I, we conclude that K, which is a
cover-preserving sublattice of I (and also of L), is a dually slim, lower semimodular
lattice. By Czédli and Schmidt [20, Lemma 6], MiK ⊆ F ∪ G. Therefore, there
exist f ∈ F and g ∈ G such that x1 = f ∧ g. Since f ≤ x0 is excluded by x1 6≤ x0

and F is a chain, x0 < f . Similarly, using that G is a chain and y ‖ x1, we obtain
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y < g. Thus y ∨ x1 ≤ g, and we conclude x1 = f ∧ (y ∨ x1). Clearly, f 6= x0 ∨ x1,
since otherwise x1 = (x0 ∨ x1) ∧ (y ∨ x1) = y ∨ x1 ≥ y contradicts x1 ‖ y. Hence
f < x0 ∨ x1, which leads to the contradiction x0 ∨ x1 ≤ f < x0 ∨ x1. �

Note that it would be unreasonable to have the same condition on L in parts
(A) and (B) of Proposition 3.13. The 5-element, modular, non-distributive lattice
M3 indicates that planarity in itself would not be sufficient in part (B). On the
other hand, although dual slimness (with or without lower semimodularity) would
be sufficient in part (A) by Lemma 3.7, in this case the statement would be weaker
and we could not have used the dual of (A) in the proof of (B).

We also need the following statement.

Proposition 3.14. If L is a finite lower semimodular lattice, a ∈ JiL, b, c ∈ L,
c < a, and a ≤ b ∨ c, then a ≤ b.

Proof. To prove the statement by contradiction, suppose that in spite of the as-
sumptions, a 6≤ b. If b < a, then a ≥ b ∨ c together with a ≤ b ∨ c contradicts
a ∈ JiL. Hence b ‖ a. Let d = b∨ c; we know that a ≤ d. Since b 6 ‖ c together with
b ∨ c ≥ a contradicts {b, c} ∩ ↑a = ∅, we have b ‖ c. Hence b < d, and we can pick
an element e ∈ [b, d] such that e ≺ d. Denoting the unique lower cover of a by a∗,
we conclude

d = e ∨ a = e ∨ a∗, e ‖ a, and e ‖ a∗,
because of the following reasons: c ≤ a∗ yields d = b ∨ c ≤ e ∨ a∗ ≤ e ∨ a ≤ d,
e ≤ a∗ or e ≤ a contradicts b ‖ a, and e ≥ a∗ or e ≥ a leads to the contradiction
e ≺ d = e ∨ a∗ = e or e ≺ d = e ∨ a = e.

Since e ‖ a, we have e ∧ a < a. Lower semimodularity yields e ∧ a � d ∧ a = a,
and we obtain e ∧ a ≺ a. Since a∗ ‖ e and e ∧ a ≤ e, the elements a∗ and e ∧ a are
two distinct lower covers of a. This contradicts a ∈ JiL. �

The elements of JiL ∩ MiL are called doubly irreducible elements. A principal
filter ↑b of L is a prime filter if ∅ 6= L \ ↑b is closed with respect to joins or,
equivalently, if L \ ↑b is an ideal of L.

Proposition 3.15. Let L be a finite, dually slim, lower semimodular lattice. If
|L| ≥ 3, then the following three statements hold.

(i) L has a maximal doubly irreducible element b, and this b belongs to the bound-
ary of L.

(ii) If x ∈ L and x > b, then x ∈ MiL but x /∈ JiL. Furthermore, ↑b is a chain.
(iii) ↑b is a prime filter of L.

Proof. By Lemma 3.7 (B), L is planar. We know from Kelly and Rival [35, Theorem
2.5] that each finite planar lattice L with at least three elements has a doubly
irreducible element on its boundary. However, we only use this theorem to conclude
JiL∩MiL 6= ∅. Hence, JiL∩MiL contains a maximal element, b. Since MiL is a
subset of the boundary by the dual of Czédli and Schmidt [20, Lemma 6], b belongs
to the boundary. This proves (i).

We may assume by symmetry that b belongs to the right boundary chain Cr

of L. The dual of Czédli [15, Lemma 2.3] asserts Cr ∩ ↑b ⊆ MiL. We claim
↑b ⊆ Cr. To prove this by contradiction, suppose ↑b 6⊆ Cr. We obtain that ↑b is
not a chain, since ↑b ∩ Cr is a maximal chain in ↑b. Hence, there exist u, v ∈ ↑b
such that u ‖ v, and there exist chains {u0, . . . , ut} and {v0, . . . , vs} such that
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b = u0 ≺ u1 ≺ · · · ≺ ut = u and b = v0 ≺ v1 ≺ · · · ≺ vs = v in ↑b. Clearly, s, t ≥ 1.
Let i be the largest subscript such that i ≤ t, i ≤ s, and ui = vi ∈ Cr . This i
exists, since u0 = v0 = b ∈ Cr. Since u ‖ v, we have i < s and i < t. There are two
cases. First, if ui+1 6= vi+1, then ui = vi has at least two distinct covers. Second, if
ui+1 = vi+1 /∈ Cr, then ui = vi has at least two distinct covers again: ui+1 = vi+1

and a cover belonging to Cr. Hence, in both cases, ui = vi is meet-reducible and
belongs to Cr, which contradicts Cr ∩ ↑b ⊆ MiL. Therefore, ↑b ⊆ Cr and, since
subsets of chains are chains, ↑b is a chain.

Now, assume x > b. Since x ∈ ↑b = Cr ∩↑b ⊆ MiL and b was a maximal doubly
irreducible element, we conclude x /∈ JiL. This proves (ii).

To prove (iii) by contradiction, consider y ∈ ↑b such that there exist elements
u, v ∈ L \ ↑b with y = u ∨ v. We have u = u1 ∨ · · · ∨ us and v = v1 ∨ · · · ∨ vt for
some u1, . . . , us, v1, . . . , vt ∈ JiL \ ↑b. It follows from Proposition 3.8 that there
are two elements in {u1, . . . , us, v1, . . . , vt} whose join belongs to ↑b. Therefore,
there are incomparable elements p, q ∈ JiL \ ↑b such that b ≤ p∨ q. There are two
cases. First, assume that {p, q, b} is an antichain. Clearly, neither p nor q belongs
to Cr, and Lemma 3.12(A) yields that both p and q are on the left of b. This is
a contradiction, since Proposition 3.13(B) implies that b is horizontally between p
and q.

Second, assume that {p, q, b} is not an antichain. Since b is join-irreducible and
p, q /∈ ↑b, we cannot have {p, q} ⊆ ↓b. Hence, apart from symmetry between p and
q, we have p ‖ b and q < b. However, now Proposition 3.14 contradicts b ≤ p∨q. �

3.7. The rest of the proof. Before formulating the last auxiliary statement to-
wards Theorem 2.2, remember that dual slimness implies planarity by Lemma 3.7(B).

Lemma 3.16. Let L be a finite, dually slim, semimodular lattice with a fixed planar
diagram, and let F be a finite concave set of collinear circles in the plane. Assume
a bijective map ψ : JiL→ F such that for any u, v ∈ JiL,

(i) u ≤ v if and only if ψ(u) ⊆ Conv(ψ(v)), and
(ii) u ‖ v and u is on the left of v if and only if LEnd(ψ(u)) < LEnd(ψ(v)) and

REnd
(
ψ(u)

)
< REnd

(
ψ(v)

)
.

These assumptions imply L ∼= Lat〈F,HulloF 〉.

Proof. Lemma 3.2 allows us to define a bijective map ϕ : JiL → Ji
(
Lat〈F,HulloF 〉

)

by ϕ(u) = HIntF (ψ(u), ψ(u)). Clearly,

ψ(u) ⊆ Conv(ψ(v)) ⇐⇒ HIntF (ψ(u), ψ(u)) ⊆ HIntF (ψ(v), ψ(v)).

Therefore, by Assumption (i), ϕ is an order-isomorphism. Since we want to apply
Propositions 3.8 and 3.9, we are going to show that ϕ satisfies Condition (3.4) with
〈2, a, b, c〉 in place of 〈n, a, b1, . . . , bn〉.

If a ≤ b or a ≤ c, then ϕ(a) ≤ ϕ(b) or ϕ(a) ≤ ϕ(c), since ϕ is an order-
isomorphism. The case b 6 ‖ c is even more evident. Thus, if {a, b, c} is not an
antichain, we have

(3.6) a ≤ b ∨ c ⇐⇒ ϕ(a) ≤ ϕ(b) ∨ ϕ(c).

Next, suppose that {a, b, c} is an antichain. So is {ϕ(a), ϕ(b), ϕ(c)}, since ϕ is
an order-isomorphism. There are two cases: either a is horizontally between b and
c, or not.
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In the first case, we may assume that b is on the left of a and a is on the left of
c. Proposition 3.13 gives a ≤ b ∨ c, and (ii) yields

(3.7)
LEnd(ψ(b)) < LEnd(ψ(a)) < LEnd(ψ(c)) and

REnd
(
ψ(b)

)
< REnd

(
ψ(a)

)
< REnd

(
ψ(c)

)
.

Since F is concave, (3.7) implies ψ(a) ⊆ Conv
(
ψ(b) ∪ ψ(c)

)
, which gives ϕ(a) ≤

ϕ(b) ∨ ϕ(c). Hence, (3.6) holds in this case.
In the second case, where a is not horizontally between b and c, we can assume

that a is on the left of b and b is on the left of c. By Proposition 3.13, we have
a 6≤ b ∨ c, and (ii) gives

(3.8)
LEnd(ψ(a)) < LEnd(ψ(b)) < LEnd(ψ(c)) and

REnd
(
ψ(a)

)
< REnd

(
ψ(b)

)
< REnd

(
ψ(c)

)
.

Let X = HIntF (ψ(b), ψ(c)). We have {ψ(b), ψ(c)} ⊆ X ∈ Lat〈F,HulloF 〉 by Lemma
3.1, and ψ(a) /∈ X by the definition of horizontal intervals. Since ϕ(b) ∨ϕ(c) ⊆ X,
we conclude ϕ(a) 6≤ ϕ(b) ∨ ϕ(c), and (3.6) holds in this case.

Next, suppose a > b and a > c, and let a∗ stand for the unique lower cover
of a. Now a∗ ≥ b ∨ c, and we have a 6≤ b ∨ c. Since ψ is an order-isomorphism,
ϕ(a∗) ≥ ϕ(b) ∨ ϕ(c). This gives ϕ(a) 6≤ ϕ(b) ∨ ϕ(c), and (3.6) is fulfilled again.

Finally, by the symmetry between b and c, we are left with the case where b ‖ a
and c < a. We may assume b ‖ c, since otherwise both sides of (3.6) are obviously
false and (3.6) holds. Take a maximal chain C including {c, a}; it does not contain
b. We may assume that b is on the left of C. Now, by Lemma 3.12, b is on the
left of c and also on the left of a. Since ψ(c) ⊆ Conv(ψ(a)) by Assumption (i), we
conclude REnd

(
ψ(c)

)
v REnd

(
ψ(a)

)
. Thus REnd

(
ψ(c)

)
< REnd

(
ψ(a)

)
, since our

circles are determined by their left ends. This and (ii) yield

(3.9)
LEnd(ψ(b)) < LEnd(ψ(c)) and

REnd
(
ψ(b)

)
< REnd

(
ψ(c)

)
< REnd

(
ψ(a)

)
.

As previously, this gives {ψ(b), ψ(c)} ⊆ HIntF (ψ(b), ψ(c)) ∈ Lat〈F,HulloF 〉 and
ψ(a) /∈ HIntF (ψ(b), ψ(c)), which implies ϕ(a) 6≤ ϕ(b) ∨ ϕ(c). Since a 6≤ b ∨ c by
Proposition 3.14, (3.6) is satisfied again.

Since (3.6) holds in all cases, ϕ satisfies (3.4). Thus Propositions 3.8 and 3.9
apply. �

Proof of Theorem 2.2. Let F be a finite, concave set of collinear circles in the plane.
Proposition 2.1 yields that 〈F,HulloF 〉 is a convex geometry. Hence, by Lemma 3.5,
Lat〈F,HulloF 〉 is a finite meet-distributive lattice, and it is lower semimodular by
Claim 3.4. We obtain from Lemma 3.3 that this lattice is dually slim. Therefore,
Lemma 3.6 implies that 〈F,HulloF 〉 is a convex geometry of convex dimension at
most 2. This proves part (A).

In view of Lemmas 3.5 and 3.6, part (B) is equivalent to the following statement:
(C) If L is a finite, dually slim, lower semimodular lattice, then there exists a

finite, separated, concave set F of collinear circles in the plane such that L is
isomorphic to Lat〈F,HulloF 〉.

We prove (C) by induction. By Lemma 3.16, it suffices to construct a pair 〈F, ψ〉
such that F is a finite, separated, concave set of collinear circles in the plane and
ψ : JiL → F is a bijective map satisfying Conditions (i) and (ii) of Lemma 3.16.
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Figure 3. A dually slim lower semimodular lattice L and the
corresponding separated concave set F of collinear circles

A pair 〈F, ψ〉 with these properties is an appropriate pair. Since we are going to
construct a separated F , (2.4) allows us to satisfy these two conditions with leftmost
and rightmost endpoints rather than left and right ends.

First, assume that L is a chain or, equivalently, JiL is a chain. We can let F
and ψ be a set of concentric circles and the unique map satisfying Condition (i)
of Lemma 3.16, respectively; clearly, 〈F, ψ〉 is an appropriate pair. More generally,
not assuming that L is a chain, we can prove the existence of an appropriate pair
〈F, ψ〉 by induction on the size |L| of L. Since the case of chains has been settled,
the induction starts at size 4.

Assume that |L| ≥ 4 and for each finite, dually slim, lower semimodular lattice of
smaller size, there exists and appropriate pair. Take a maximal doubly irreducible
element c ∈ L (like b in Proposition 3.15). By left-right symmetry, we may assume
that c is on the right boundary chain of L; see Figure 3, on the left, for illustration.
(The figure serves only as an illustration, so the reader need not check the properties
of L. However, we note that L is obviously a dually slim, lower semimodular lattice
by the dual of Czédli and Schmidt [20, Theorem 12].)

Since ↑c is a prime filter by Proposition 3.15, L′ = L \ ↑c is an ideal of L. As
an interval of L, L′ is lower semimodular. It follows from Lemma 3.7(A) that L′

is dually slim. Hence, by the induction hypothesis, there exists an appropriate
pair 〈F ′, ψ′〉 for L′. We want to define 〈F, ψ〉 such that F ′ ⊂ F and ψ is an
extension of ψ′. By Proposition 3.15(ii), JiL = JiL′ ∪ {c}. Therefore, our aim is
to find an appropriate circle C and to let ψ be the map from JiL to F = F ′ ∪ {C}
defined by ψ(c) = C and ψ(x) = ψ′(x) for x ∈ JiL′. In the figure, JiL′ =
{x1, x2, x3, y1, y2, y3}, and JiL = JiL′ ∪ {c} is the set of black-filled elements. On
the right of the figure, we write C, Xi, and Yi instead of ψ(c), ψ′(xi), and ψ′(yi),
respectively; F is the collection of all circles, and F ′ = F \ {C}.

Since c is on the right boundary chain, Lemma 3.12(A) yields that each x ∈ JiL
is either strictly on the left of c or comparable to c. This together with Proposi-
tion 3.15(ii) imply that JiL′ is the disjoint union of the following two sets:

Jbelow = JiL′ ∩ ↓c and Jleft = {y ∈ JiL′ : y is on the left of c}.

Note that one of these two sets can be empty, but their union, JiL′, is nonempty.
In the figure, Jbelow = {x1, x2, x3} and Jleft = {y1, y2, y3}. Condition (i) of
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Figure 4. Modifying C to make F concave

Lemma 3.16 will hold if and only if

(3.10) LPt(C) < LPt(ψ′(x)) and RPt(ψ′(x)) < RPt(C) for all x ∈ Jbelow.

Similarly, Condition (ii) of Lemma 3.16 will hold if and only if

(3.11) LPt(ψ′(y)) < LPt(C) and RPt(ψ′(y)) < RPt(C) for all y ∈ Jleft.

The only stipulation that (3.10) and (3.11) impose on RPt(C) is

(3.12) RPt(C) > max{RPt(ψ′(z)) : z ∈ JiL′};
this can be satisfied easily. Therefore, to see that we can choose LPt(C) such that
(3.10) and (3.11) hold, it suffices to show that

(3.13) for all x ∈ Jbelow and y ∈ Jleft, LPt(ψ′(y)) < LPt(ψ′(x)).

For x ∈ Jbelow and y ∈ Jleft, there are two cases. First, assume x 6 ‖ y. Clearly,
y 6≤ x, thus x < y. Since Condition (i) of Lemma 3.16 holds for 〈F ′, ψ′〉, we
have LEnd(ψ(y)) < LEnd(ψ(x)) and REnd

(
ψ(x)

)
< REnd

(
ψ(y)

)
. This yields

LPt(ψ′(y)) < LPt(ψ′(x)), since F ′ is separated. Second, assume x ‖ y. Let E be
a maximal chain in L that extends {x, c}. Since y is on the left of c, y is on the
left of E by Lemma 3.12(A). Hence, again by Lemma 3.12(A), y is on the left of
x. Therefore, using Condition (ii) of Lemma 3.16 for the appropriate pair 〈F ′, ψ′〉,
we conclude LEnd(ψ′(y)) < LEnd(ψ′(x)). This implies LPt(ψ′(y)) < LPt(ψ′(x)),
since F is separated. Thus (3.13) holds, and so do (3.10) and (3.11).

Since (3.10) and (3.11) are strict inequalities, we can choose both LPt(C) and
RPt(C) infinitely many ways. Therefore, we may choose C so that F is separated.

Finally, we have to show that F is concave. Since F ′ is concave and separated,
the only case we have to consider is

(3.14) LPt(C1) < LPt(C2) and, automatically, RPt(C2) < RPt(C),

where C1, C2 ∈ F ′; we have to show

(3.15) C2 ⊆ Conv(C1 ∪C).

Suppose that after choosing C, (3.15) fails for some C1, C2 ∈ F ′; see Figure 4. The
circle C is in the interior of the region between the two common tangent lines h1

and h2 of C1 and C2. Let t be the tangent line of C through 〈LPt(C), 0〉, and
let Pi be the intersection point of hi and t for i ∈ {1, 2}. If RPt(C) tends to
infinity while LPt(C) is unchanged, then the arc of C between h1 and h2 with
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Figure 5. Here Lat〈F,HulloF 〉 is the 128-element boolean lattice

Figure 6. An 〈F,HulloF 〉 that does not satisfy (CC4)

middle point 〈LPt(C), 0〉 approaches the line segment P1P2. Therefore, replacing
C by C′ such that LPt(C′) = LPt(C) and RPt(C′) is sufficiently large, we have
C2 ⊆ Conv(C1 ∪ C′) and (3.12). We can treat all pairs 〈C1, C2〉 ∈ F ′ × F ′ with
LPt(C1) < LPt(C2), one by one, because RPt(C) can always be enlarged. This
proves that F is concave for some C. �

4. Odds and ends

Remark 4.1. It is not hard to see that Theorem 2.2 remains valid if we consider
closed discs or open discs instead of circles and modify the definitions accordingly.
The advantage of circles is that they are easier to visualize and label in figures. In
particular, open discs are less pleasant than circles, since they cannot be singletons.
Note that we cannot use semicircles or half discs since, by the following example,
the corresponding structure is not a convex geometry in general.

Example 4.2. Let

H1 = {〈x, y〉 : x2 + y2 = 4 and x ≤ 0}, H2 = {〈x, y〉 : x2 + y2 = 1 and x ≥ 0}.

Rotating H2 around 〈0, 0〉 by angle π/100, we obtain a half circle H3. Since H5−i

belongs to Conv(H1 ∪Hi) for i ∈ {2, 3}, the anti-exchange property fails, and we
do not obtain a convex geometry from {H1,H2,H3}.

The following example shows that the convex dimension of 〈F,HulloF 〉 can be
arbitrarily large even if the circles in F are collinear.
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Figure 7. Illustrating the proof of Proposition 4.5

Example 4.3. Let F be an n-element set of collinear circles. Assume that there
is an additional circle K such that every circle C ∈ F is internally tangent to
K; see Figure 5 for n = 7, where the dotted curve is an arc of K. Clearly,
Lat〈F,HulloF 〉 = 〈P(F ),⊆〉 is the 2n-element boolean lattice, and the convex di-
mension of Lat〈F,HulloF 〉 is n.

Proof. The equality Lat〈F,HulloF 〉 = 〈P(F ),⊆〉 is obvious. Since

Mi 〈P(F ),⊆〉 = {F \ {C} : C ∈ F}
is an n-element antichain, the convex dimension is n. �

While 〈E,Hull(2)
E 〉 satisfies Carathéodory’s condition (CC3) for every finite set

E of points of the plane, the following example shows that circles are essentially
different from points.

Example 4.4. For each natural number n, there exists an (n + 2)-element set F
of circles in the plane such that 〈F,HulloF 〉 does not satisfy (CCn). For example,
we can take the inscribed circle of a regular (n+ 1)-gon and n+ 1 additional little
circles whose centers are the vertices of the (n+ 1)-gon; see Figure 6 for n = 4.

By the next proposition, Example 4.4 has no collinear counterpart.

Proposition 4.5. If F is a finite set of collinear circles, then 〈F,HulloF 〉 satisfies
Carathéodory’s condition (CC2).

Proof. In view of Lemma 3.2, we have to show the following: if C,D1, . . . , Dk ∈ F
such that C ⊆ Conv(D1 ∪ · · · ∪ Dk), then there exist i, j ∈ {1, . . . , k} such that
C ⊆ Conv(Di ∪Dj). Let G be the boundary of Conv(D1 ∪ . . .Dk); see the thick
closed curve in Figure 7, where k = 5 and F contains the solid circles and possibly
some other circles not indicated. (The dotted circle need not belong to F .) Clearly,
G can be divided into circular arcs and straight line segments of common tangent
lines of some circles belonging to {D1, . . . , Dk}; these parts are separated by black-
filled points in the figure. Keeping its center fixed, we enlarge C to C′ such that
C′ ⊆ Conv(D1 ∪ . . .Dk) and C′ is internally tangent to G at a point T ∈ G ∩C′.
There are two cases.

In the first case, we assume that T belongs to a circular arc of G. In the figure,
T in this case is not indicated; it can be any point of the closed circular arc V1V2.
This arc is also an arc of some member, Dm, of F . Clearly, C′ = Dm. Thus Dm

and C are concentric circles, and C ⊆ Conv(Dm). Hence, we may let i = m and
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j = m. Observe that circular arcs of length 0 cause no problem, since then the
radius of Dm is zero, the center of Dm belongs to G, and C = Dm.

In the second case, we assume that T belongs to a line segment PQ of G. Now
C′ is the dotted circle in the figure, and its center is U . We may assume that
T /∈ {P,Q}, since otherwise the previous case applies. Clearly, P is a point of
a unique Di with center Ui, and Q is on a unique Dj with center Uj . Since the
radii PUi, TU and QUj are all perpendicular to the common tangent line PQ,
it follows that U is between Ui and Uj , and C′ ⊆ Conv(Di ∪ Dj). Therefore,
C ⊆ Conv(Di ∪Dj). �

For a class U of structures, let IU denote the class of structures that are iso-
morphic to some members of U . We consider the following classes of finite convex
geometries; by circles we mean circles in the plane.

Kconcave
collinear = I {〈F,HulloF 〉 : F is a finite, concave set of collinear circles},

Kcollinear = I {〈F,HulloF 〉 : F is a finite set of collinear circles},
Kplanar = I {〈F,HulloF 〉 : F is a finite set of circles},

Rdim=n

points = I {〈E,Hull(n)
E 〉 : E is a finite subset of Rn},

Gall = the class of all finite convex geometries.

Results by Adaricheva [3] and Bergman [9] show that

(4.1) Rdim=2
points ⊂ Rdim=3

points ⊂ Rdim=4
points ⊂ . . . .

We obtain from Examples 4.3 and 4.4, Theorem 2.2(A), and Proposition 4.5 that

(4.2) Kconcave
collinear ⊂ Kcollinear ⊂ Kplanar and, clearly, Rdim=2

points ⊆ Kplanar.

If E ⊆ R2 consists of three non-collinear points and their barycenter, then the
convex geometry 〈E,Hull(2)

E 〉 does not satisfy (CC2), and we conclude from Propo-
sition 4.5 that

(4.3) Rdim=2
points 6⊆ Kcollinear.

In the lattices associated with members of Rdim=n

points , all join-irreducible elements are
atoms. This implies that

(4.4) for all n ≥ 2, Kconcave
collinear 6⊆ Rdim=n

points .

4.1. Some open problems. In spite of (4.1), (4.2), (4.3), and (4.4), we do not
have a satisfactory description of the partially ordered set

(4.5) 〈{Kconcave
collinear,Kcollinear,Kplanar,Gall,Rdim=1

points ,Rdim=2
points ,Rdim=3

points , . . .},⊆〉.

In particular, we do not know whether

(4.6) Rdim=3
points

?
⊆ Kplanar or Kplanar

?= Gall holds.

If we augment the set (4.5) with convex geometries obtained from n-dimensional
spheres or, say, coplanar three-dimensional spheres, then the problem becomes even
more difficult. Finally, while Theorem 2.2 describes Kconcave

collinear in an abstract way, we
have no similar descriptions for Kcollinear and Kplanar.



FINITE CONVEX GEOMETRIES OF CIRCLES 21

4.2. Representation by 1-dimensional circles. Let F be a finite subset of
{〈a, b〉 : a, b ∈ R and a ≤ b}. Its elements will be called 1-dimensional circles.
If C = 〈a, b〉 ∈ F , then a = LPt(C) and b = RPt(C) are the left and right end-
points of C, respectively. Formulas (2.2) and (2.3) still make sense, and we clearly
obtain that 〈F,HulloF 〉 is a convex geometry. When reading the first version of the
present paper, Adaricheva [5] observed that Theorem 2.2 has the following corollary.

Corollary 4.6 (Adaricheva [5]). Up to isomorphism, finite convex geometries of
convex dimension at most 2 are characterized as the convex geometries 〈F,HulloF 〉,
where F ⊆ {〈a, b〉 : a, b ∈ R and a ≤ b} and F is finite.

Proof. Let 〈U,Φ〉 be a convex geometry of dimension at most 2. Theorem 2.2 yields
a finite, separated, concave set M of collinear circles such that 〈U,Φ〉 ∼= 〈M,HulloM 〉.
For C ∈ M , let ϕ(C) = 〈LPt(C),RPt(C)〉. Let F = {ϕ(C) : C ∈ M}. By (2.5),
ϕ : 〈M,HulloM 〉 → 〈F,HulloF 〉 is an isomorphism. This proves the non-trivial part;
the trivial part has already been mentioned. �

As opposed to the proof above, it is far less easy to derive Theorem 2.2 from
Corollary 4.6, because a finite set F of 1-dimensional circles is rarely of the form
{ϕ(C) : C ∈ M} for a set M of concave, collinear circles.
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