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Abstract. Our aim is to investigate groups and their weak congruence lattices in the

abstract setting of lattices L with (local) closure operators C in the categorical sense, where
L is regarded as a small category and C is a family of closure maps on the principal ideals

of L. A useful tool for structural investigations of such “lattices with closure” is the so-
called characteristic triangle, a certain substructure of the square L2. For example, a purely

order-theoretical investigation of the characteristic triangle shows that the Dedekind groups

(alias Hamiltonian groups) are precisely those with modular weak congruence lattices, and
similar results are obtained for other classes of algebras.

1. Introduction

Modern mathematics has some powerful tools that allow to eliminate elementwise
calculations. Prominent disciplines in that area are order and lattice theory (as
applied in universal algebra, in pointfree topology, or in the abstract treatment
of geometry) and, of course, category theory - which encompasses, under suitable
identification, the theory of ordered sets. Such a framework often provides the
most transparent reason “why a theorem is true”. In the present note we prove the
following theorem (formulated already in [29], however with an incorrect proof):

Theorem 1.1. A group is a Dedekind group if and only if its weak congruence
lattice is modular.

Here, by a Dedekind group we mean a group in which all subgroups are nor-
mal. Sometimes, such groups are also called Hamiltonian (see e.g. [3]), but often
the latter name is reserved to the non-abelian case (cf. [26], [27]). Theorem 1.1,
which is easily established in the finite case (cf. [33]), is mainly a group-theoretical
statement but involves certain lattices that gave rise to the pointfree, i.e., purely
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lattice-theoretical treatment of the Congruence Intersection Property (CIP) dis-
cussed extensively in [28] (cf. Obraztsov [24] and Traustason [31]). The CIP com-
bined with the classical Congruence Extension Property (CEP) provides a useful
tool in universal algebra (see [28] again).

To accomplish our goal, we study certain closure operators on lattices L, i.e.,
families of closure maps on the principal ideals

Lx = ↓x = { y ∈ L | y ≤ x} (x ∈ L) .

We translate the situation of weak congruence lattices into the abstract model,
establish a much more general analogue in the lattice environment (not dealing
with group elements any longer), and obtain Theorem 1.1 as a special instance.
Our construction mimics abstractly the formation of the weak congruence lattice
Conw(G) of a group G by means of the subgroup lattice Sub(G). Below, we give a
survey over the involved notions.

In a complete lattice L, an element y is way-below x, notated y � x, if for all
directed subsets D of L, x ≤

∨
D implies that y belongs to the downset

↓D =
⋃
{ ↓z | z ∈ D} .

The elements x with x� x are the compact elements. The ideal { y ∈ L | y � x}
is called the way-below ideal of x. A continuous lattice is a complete lattice in
which each element is the join of its way-below ideal (see [17] and, for more general
continuity structures, [11] and [13]). A special class of continuous lattices is that
of algebraic lattices, in which the compact elements are join-dense; that is, each
element is a join of compact elements. For more background concerning algebraic
lattices and their generalizations, see [3], [4], [12] and [17]. Prominent examples of
algebraic lattices are the lattices Sub(A) of all subuniverses (carriers of subalgebras)
of general (finitary) algebras A, and the congruence lattices Con(A). In fact, any
algebraic lattice arises as an isomorphic copy of one in either of these two classes;
the second, harder representation is the classical Grätzer–Schmidt theorem, cf.
[20]. By a much stronger result due to Lampe (see [22]), for any two nontrivial
algebraic lattices L,K and any group G there is an algebra A whose subalgebra and
congruence lattice is isomorphic to L and K, respectively, and whose automorphism
group is isomorphic to G. Moreover, Tuma [32] has shown that every algebraic
lattice is isomorphic to an interval of a subgroup lattice Sub(G).

A weak congruence on an algebra A is a symmetric and transitive subuniverse of
A2. The weak congruences on A form an algebraic lattice under inclusion, denoted
by Conw(A); indeed, as in the congruence case, Conw(A) is closed under arbitrary
intersections and under directed unions. The congruence lattice Con(A) of A is a
principal filter in Conw(A), generated by the diagonal (= identity) relation ∆ of A.
Moreover, the congruence lattice of any subalgebra of A is an interval sublattice of
Conw(A). On the other hand, the subalgebra lattice Sub(A) is isomorphic to the
principal ideal generated by ∆, by sending each weak congruence θ contained in ∆
to its domain

Aθ = { a | a θ a} = {b | ∃ a (a θ b)}.
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Therefore, both the subalgebra lattice and the congruence lattice of an algebra may
be recovered and investigated within a single algebraic lattice. More about weak
congruences and the corresponding lattices can be found in [28] (see also [34]).

In the case of a group G, a particular construction of the weak congruence lattice
Conw(G) is possible inside of the square L(G)2 = L(G) × L(G) of the subgroup
lattice L(G) = Sub(G). Writing N(X) for the lattice of normal subgroups of
X ∈ L(G), we see that the set

L(G)C≥ = { (X,Y ) | X ∈ L(G), Y ∈ N(X)}

is closed under arbitrary meets in L(G)2, hence a complete lattice, and the map
θ 7→ (Gθ, eθ) (where e is the neutral element) turns out to be an isomorphism
between Conw(G) and L(G)C≥. As demonstrated in [8] and [28], weak congruence
lattices of groups are quite useful for various group-theoretical investigations.

Every group G has a modular congruence lattice isomorphic to N(G), whence
every Dedekind group has a modular subgroup lattice; however, there are also many
other groups G with modular L(G) but non-modular L(G)C≥, the simplest example
being the symmetric group G = S3.
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Sub(S3) = L(S3)

Con(S3) ' N(S3)

Conw(S3) ' L(S3)C≥

The point is that, by Theorem 1.1, Dedekind groups are characterized by the
modularity of their weak congruence lattices Conw(G) ⊆ L(G2); compare this with
the result of Lukács and Pálfy [21] that the whole L(G2) is modular if and only ifG is
abelian. For a comprehensive investigation of subgroup lattices and their properties
like modularity, distributivity etc. the reader is referred to the monograph by R.
Schmidt [27] (see also Birkhoff [3, Ch. VII], Ore [25] and Suzuki [30] for earlier
sources).

Replacing the normal closure of subgroups with a general categorical closure
operator C = (Cx | x ∈ L) on any lattice L (where each Cx is a closure map on the
principal ideal Lx, see Section 2), we shall construct a certain lattice contained in
the square L2, viz. the characteristic triangle

LC≥ = {(x, y) ∈ L2 | x ≥ y = Cx(y)} = {(x, y) ∈ L2 | y∈LCx },

where LCx denotes the range ( = fixpoint set) of the closure map Cx on the principal
ideal generated by x. As we shall see, important and valuable information about
the closure operator is coded in the characteristic triangle. This will enable us to
prove an element-free generalization of Theorem 1.1, saying that L is modular and
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equal to LC1 (where 1 is the top element of L) if and only if LC≥ is modular and the
“discrete” elements, i.e., the elements x with LCx = Lx , are join-dense in L. This
and related results on the “corner element” (1, 0) of LC≥ (the abstract counterpart
of the diagonal element ∆ of the weak congruence lattice Conw(A)) will apply not
only to groups but also to more general group-like algebras.

2. Lattices with closure operators

We shall make use of the fact that the class of algebraic lattices and that of
continuous lattices are closed under the formation of direct products, complete
sublattices (closed under arbitrary joins and meets) and intervals (see, e.g., [17,
Ch. I]). In particular, for any algebraic or continuous lattice L, each principal ideal
Lx = ↓x, the square L2 = L× L , and the triangle

L≥ = {(x, y) ∈ L2 | x ≥ y},

which is closed under arbitrary (coordinatewise) joins and meets in the square, are
again algebraic or continuous lattices, respectively.

Henceforth, let L be a lattice. A closure range in L is a subset M such that for
each x ∈ L there is a least y ∈M with x ≤ y; in case L is complete, the latter means
that M is closed under arbitrary meets in L. A closure map (or closure operation)
on L is an extensive, isotone ( = order preserving) and idempotent self-map of L, or
equivalently, a map c : L → L such that y ≤ c(z) ⇔ c(y) ≤ c(z). Associating with
any such closure map its range c[L], one obtains a dual isomorphism Φ between the
pointwise ordered set of all closure maps (which is complete if L is) and that of all
closure ranges (ordered by inclusion). We avoid here the terms closure operator and
closure system, because on the one hand, they are often reserved to the classical
set-theoretical case where L is a power set lattice, and on the other hand, we wish
to prevent confusion with the categorical notion of closure operator (see, e.g., [9]).

In order to ensure that a subposet M of an algebraic or continuous lattice L is
an algebraic or continuous lattice, too, it suffices to require that M be closed under
arbitrary meets and under directed joins (up-closed); although the compact elements
of M may differ from those of L, they are just the closures of the compact elements
of L (see [17, Ch. I–4]). A map f : L → M between complete lattices is called
(Scott) continuous if it preserves directed joins, i.e., f(

∨
D) =

∨
f [D] whenever

D is directed (see [16], [17]). Notice that every continuous map f is isotone, i.e.,
x ≤ y implies f(x) ≤ f(y). It is straightforward to check that the above dual
isomorphism Φ induces a one-to-one correspondence between continuous closure
maps and up-closed closure ranges in a complete lattice. In particular, the range of
any continuous closure map on an algebraic or continuous lattice is again algebraic
or continuous, respectively (cf. [17, Ch. I–4]).

Observe that for any closure map c : L→ L, joins in the range c[L] are given by∨
c[L]Y = c(

∨
L Y ), and the surjective corestriction of c from L onto c[L] preserves

arbitrary joins, whereas in general, c itself neither preserves finite joins (as in the
topological case) nor directed joins (as in most algebraic situations).
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Now, before introducing a new and central notion, we briefly outline its cate-
gorical background. As it is well known, any lattice or ordered set (L,≤) may be
regarded as a small category L, with L as the set of objects and all pairs in the
order relation as morphisms. Under that categorical perspective, a closure operator
on L or, more precisely, on the isomorphic category of all principal ideals of L, is a
family C = (Cx | x ∈ L) of maps Cx : Lx → Lx such that for all x, y, z ∈ L,

y ≤ z ≤ x implies y ≤ Cz(y) ≤ Cx(y) ≤ Cx(z).

In order to avoid confusion with closure maps, one could speak of local closure
operators, but we follow the general convention of category theorists and omit the
word “local”. The reader may refer to [9] for the theory of categorical closure
operators and to [2] for more categorical background.

Deviating from [9], we shall assume throughout that each Cx is a closure map
in the previous sense. In other words, for us, a closure operator on a lattice L is a
family C = (Cx | x ∈ L) of isotone maps Cx : Lx → Lx such that

C1 y ≤ Cx(y) = Cx(Cx(y)) for all y ≤ x in L,
C2 Cz(y) ≤ Cx(y) for all y ≤ z ≤ x in L.

Under that hypothesis, we call (L,C) a lattice with closure and put

LCx = Cx[Lx] = {y ∈ Lx | Cx(y) = y} .
If the lattice L is bounded by a least element 0 and a greatest element 1, a

closure operator C on L is said to be grounded (see [9]) if
C0 Cx(0) = 0 for all x ∈ L.

In categorical contexts, Axiom C2 is often referred to as the continuity axiom, but
in order to make the machinery work in the desired area, we have to consider here
the stronger notion of Scott continuity. Namely, by a continuous closure operator
on a complete lattice L we mean a family of closure maps Cx on the principal ideals
Lx such that, instead of C2, the following two conditions are fulfilled:

C3 Each Cx is continuous, i.e., Cx preserves directed joins.
C4 C∨

D(y) =
∨
{Cx(y) | x ∈ D, x ≥ z}, for any directed subset D of L, any

z ∈ D and each element y ∈ Lz.
A pair (L,C) satisfying C1, C3 and C4 will be referred to as a complete lattice
with continuous closure. In order to see that C4 entails C2, consider D = {x, z}.
Notice that for any closure operator C on a complete lattice L and each x ∈ L,

Cx(y) =
∧
{ z ∈ LCx | y ≤ z}.

The structure of (L,C) may be recovered from the characteristic triangle

LC≥ = { (x, y) | x ∈ L, y ∈ LCx } = { (x, y) ∈ L≥ | Cx(y) = y} .

By definition, a closure operator is grounded if and only if (1, 0) ∈ LC≥. In that
case, the principal ideal generated by (1, 0) in LC≥ is isomorphic to L via projection
onto the first coordinate. On the other hand, the principal filter generated by
(1, 0) is isomorphic to LC1 , and more generally, the interval [(x, 0), (x, x)] in LC≥ is
isomorphic to LCx via projection onto the second coordinate. Hence, any lattice
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identity carries over from LC≥ to each of the lattices LCx , whereas the converse fails
(see Example 2.3).

Theorem 2.1. If (L,C) is a lattice with closure then LC≥ is a closure range in L≥
(and so in L2). The corresponding closure map on L≥ is determined by

C∗(x, y) = (x,Cx(y)) for (x, y) ∈ L≥.

If L is complete then LC≥ is closed under arbitrary meets, and if C is continuous then
LC≥ is also closed under directed joins in L≥ (and in L2). The assignment C 7→ C∗

yields a one-to-one correspondence between the (continuous) closure operators on
L and the (continuous) closure maps on L≥ keeping the first coordinate fixed.

Proof. For (x, y) ∈ L≥ and (u, v) ∈ LC≥, we have (x, y)≤(u, v)⇔ (x,Cx(y))≤(u, v)
(indeed, y ≤ x ≤ u and y ≤ v ≤ u imply Cx(y) ≤ Cu(y) ≤ Cu(v) = v if v ∈ LCu ),
showing that (x,Cx(y)) is the closure of (x, y) with respect to the closure range
LC≥. In particular, LC≥ is closed under arbitrary meets in L≥ if L is complete.

Now consider a directed family of elements (xi, yi) in LC≥ (i ∈ I). The index
set I may be directed by i ≤ j ⇔ (xi, yi) ≤ (xj , yj). Forming the directed joins
x∨ =

∨
i∈I xi, y∨ =

∨
i∈I yi and using first C3 and then C4, we obtain

Cx∨(y∨) =
∨
j∈I

Cx∨(yj) =
∨
j∈I

∨
xi≥xj

Cxi
(yj)

≤
∨
k∈I

Cxk
(yk) =

∨
k∈I

yk = y∨

(since Cxi(yj) ≤ Cxk
(yk) for i, j ≤ k by C2), and therefore y∨∈ LCx∨ , (x∨, y∨) ∈ LC≥.

Thus, if C is a continuous closure operator then LC≥ is up-closed in L≥ and hence
C∗ is a continuous closure map.

Let p1 and p2 denote the first and second projection from L≥ onto L, respectively.
By definition, p1 ◦ C∗(x, y) = x = p1(x, y), and the original closure operator C is
obtained by Cx(y) = p2 ◦ C∗(x, y). Conversely, let c be a closure map on L≥ with
p1 ◦ c = p1, and define Cx : Lx → Lx by Cx(y) = p2 ◦ c(x, y). Then

y ≤ Cx(z)⇔ (x, y) ≤ (x,Cx(z)) = c(x, z)

⇔ c(x, y) ≤ c(x, z)
⇔ Cx(y) ≤ Cx(z),

showing that each Cx is a closure map with c(x, y) = (x,Cx(y)), since p1 ◦ c = p1.
If c is continuous then for directed D ⊆ Lx, resp. D ⊆ L and y ≤ z ∈ D, we get

Cx(
∨
D)= p2(c(x,

∨
D)) = p2(

∨
c[{x}×D]) =

∨
p2[ c[{x}×D]] =

∨
Cx[D],

C∨
D(y) = p2 ◦ c(

∨
D, y) = p2 ◦ c(

∨
{(x, y) | x ∈ D, x ≥ z})

= p2(
∨
{c(x, y) | x ∈ D, x ≥ z}) =

∨
{Cx(y) | x ∈ D, x ≥ z}.

Thus, C = (Cx | x ∈ L) is a continuous closure operator on L. �
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The first projection from LC≥ onto L preserves arbitrary joins and meets. Hence,
it transfers any finite or infinite lattice identity from LC≥ to L and to each of the
principal ideals Lx. For example, if LC≥ is modular then so is L – but not conversely
(see the introduction and Example 2.3 below). However, there are important lattice
properties that are transferred from L to LC≥ and vice versa:

Corollary 2.2. Let (L,C) be any complete lattice with continuous closure. Then
LC≥ is continuous or algebraic, respectively, if and only if so is L.

In general, a complete homomorphism need not preserve compactness, nor al-
gebraicity: for example, the real unit interval is the image of the algebraic Can-
tor discontinuum under the complete homomorphism identifying any two adjacent
endpoints—but [ 0, 1 ] has no compact elements except 0. However, it can be shown
that the first projection from LC≥ onto L always preserves compactness and the
way-below relation.

We conclude this section with a few (large classes of) instructive examples.

Example 2.3. The primary situation we are concerned with in the present note is
that of a group G and its subgroup lattice L=L(G). For Y ≤ X in L, let CX(Y )
denote the normal subgroup of X generated by Y . Then LCX is the lattice of normal
subgroups of X, (L,C) is an algebraic lattice with continuous closure, and

LC≥ = {(X,Y ) | X ∈ L, Y ∈ LCX}

is an algebraic lattice isomorphic to the weak congruence lattice Conw(G) (see the
introduction and Proposition 5.3). Moreover, C is clearly grounded. Whereas for
each X ∈ L the normal subgroup lattice LCX is modular, Theorem 1.1 states that
the characteristic triangle LC≥ is modular if and only if G is a Dedekind group.

Example 2.4. Let L be a meet-continuous [3] or upper continuous [4] lattice, i.e., a
complete lattice enjoying the following identity for all x ∈ L and all directed Y ⊆L:

(d) x ∧
∨
Y =

∨
{x ∧ y | y ∈ Y } .

If c is any continuous closure map on L then the equation Cx(y) = x∧ c(y) defines
a family of continuous closure maps Cx : Lx → Lx such that C = (Cx | x ∈ L)
becomes a continuous closure operator.

Note that any continuous (and so any algebraic) lattice is meet-continuous.
Hence, in case L is algebraic (or continuous), the characteristic triangle

LC≥ = {(x, y) ∈ L2 | y = c(y) ≤ x}

is again algebraic (or continuous), and C∗(x, y) = (x, x∧ c(y)) defines a continuous
closure map on L≥. In particular, this applies to any set-theoretical algebraic clo-
sure operator, like the subalgebra or congruence generator of an arbitrary algebra.

Example 2.5. As we saw, a typical continuous but not algebraic lattice is the unit
interval L = [ 0, 1 ]. Let f : L → L be an isotone contraction (i.e., x≤ y implies
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f(x)≤f(y)≤y). Then Cx(y) = max{ y, f(x)} defines a closure operator on L, and

f preserves arbitrary nonempty joins

⇔ f is continuous from the left (i.e., Scott continuous)
⇔ C is continuous

⇔ the closure map cf on L≥ with cf (x, y) = (x,Cx(y)) is continuous.

But C is grounded only for the zero map f(x) = 0, where cf is the identity map.
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Example 2.6. A nucleus on a lattice is a closure map c with c(x∧y) = c(x)∧c(y);
for closure maps, this equation is equivalent to the formally weaker condition
x ∧ c(y) ≤ c(x ∧ y). In view of Example 2.4, any continuous nucleus c on a meet-
continuous lattice induces a continuous closure operator C by Cx(y) = x ∧ c(y).
Nuclei play an important role in the theory of locales or frames (enjoying the dis-
tributive law (d) for arbitrary Y ⊆ L) and their applications in logic and point-
free topology (see, e.g., Johnstone [21]). As we shall see in Proposition 4.1, a
Boolean frame has only one grounded closure operator – but there are many nuclei
∨a : x 7→ x ∨ a.

Of course, nuclei also occur in other parts of algebra. For example, an algebra A
has the Congruence Intersection Property if and only if the closure map c associated
with Con(A) induces a nucleus on the weak congruence lattice Conw(A) (see, e.g.,
[28]). The corresponding closure operator C given by Cθ(ρ) = θ ∩ c(ρ) is then
continuous.

Or, let A be an algebra in a congruence modular variety, let L be the lattice
of tolerance relations (i.e., reflexive and symmetric relations compatible with the
operations) of A, and as before, let c(ρ) stand for the congruence generated by
ρ ∈ L. Then (L, c) is an algebraic closure lattice, c is a nucleus (cf. [5, 6, 7]), and
putting Cθ(ρ) = θ ∩ c(ρ) again yields a continuous closure operator C on L.

3. Distributive, standard, neutral and modular elements

Recall from [18, Ch. III] the following notions which play a fundamental role in
the structure and decomposition theory of lattices: an element a of a lattice L is

distributive if a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y)
standard if x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y)
neutral if (a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a) = (a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a)

for all x, y ∈ L. It is known that each of the following properties equivalently
characterizes neutral elements a (see Grätzer and Schmidt [19] and [18, Ch. III. 2,
Theorems 3 and 4]):
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– a is a codistributive (i.e., dually distributive) standard element
– a together with any two other elements generates a distributive sublattice
– a is mapped onto (1, 0) by an embedding of L in a product lattice A×B.

In modular lattices, the notions of (co)distributive, standard and neutral elements
coincide (see Birkhoff [3, Ch. II, Theorem 12]). More specifically, call an element a
of an arbitrary lattice L s-modular if

x ∧ (a ∨ y) = (x ∧ a) ∨ y for all x, y ∈ L with x ≥ y ,

or equivalently, if

a ∧ x = a ∧ y , a ∨ x = a ∨ y and x ≥ y imply x = y.

From the cited sources one easily derives that an element is standard if and only if
it is distributive and s-modular. For various aspects of the above kinds of special
elements in the theory of weak congruence lattices, refer to [28].

Now, let C be a grounded closure operator on a lattice L and recall that the
LC≥-closure of elements (x, y) ∈ L≥ is (x,Cx(y)). A “central” role in the structure
theory of (L,C) is played by the element (1, 0) of LC≥, the abstract counterpart of
the diagonal ∆ ∈ Conw(G) in the group case. Let us state some of its properties.

Proposition 3.1. Let L be a bounded lattice with grounded closure C. Then the
“corner element” (1, 0) generates a principal ideal isomorphic to L and a principal
filter isomorphic to LC1 . The element (1, 0) is always a codistributive element of
LC≥; hence, it is neutral if and only if it is a standard element of LC≥. Furthermore,

(1) (1, 0) is a distributive element of LC≥ if and only if C1 is a nucleus, that is,
C1 preserves finite meets,

(2) (1, 0) is an s-modular element of LC≥ if and only if C is hereditary, that is,
Cx(y) = x ∧ C1(y) for y ∈ Lx,

(3) (1, 0) is a standard (neutral) element of LC≥ if and only if for y, z ∈ Lx,

Cx(y ∧ z) = x ∧ C1(y) ∧ C1(z)

or, equivalently,

z ≤ C1(y) implies z = Cz(y ∧ z).

Proof. (1, 0) is codistributive in LC≥ on account of the equations (formed in LC≥)

(1, 0) ∧ ((x, u) ∨ (y, v))=(x ∨ y, 0)=(x ∨ y, Cx∨y(0))

=((1, 0)∧(x, u)) ∨ ((1, 0)∧(y, v)).

(1) (1, 0) is distributive if and only if

(1, 0) ∨ ((x, u) ∧ (y, v)) = ((1, 0)∨(x, u)) ∧ ((1, 0)∨(y, v)),

i.e., C1(u ∧ v) = C1(u) ∧ C1(v) for all u, v ∈ L (consider the case u = x, v = y in
order to verify the necessity of the latter condition).

(2) (1, 0) is an s-modular element of LC≥ if and only if

((x, u) ∧ (1, 0)) ∨ (y, v) = (x, u) ∧ ((1, 0) ∨ (y, v)) for all (x, u) ≥ (y, v) in LC≥,
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i.e., Cx(v) = u ∧ C1(v) for all (x, u) ≥ (y, v) in LC≥, and that implies Cx(y) =
x ∧ C1(y) for all x ≥ y in L (take again u = x, v = y). For the converse, note that
(x, u) ≥ (y, v) in LC≥ and Cu(v) = u ∧ C1(v) imply Cx(v) ≥ u ∧ C1(v) ≥ Cx(v).

(3) Suppose (1, 0) is standard, i.e., distributive and s-modular. Then, by the
previous equivalences, z ≤ C1(y) entails Cz(y ∧ z) = z ∧ C1(y) ∧ C1(z) = z. Con-
versely, assume the equality z = Cz(y ∧ z) holds for z ≤ C1(y). Given x, y ∈ L,
put z = x ∧ C1(y). Then z = Cz(y ∧ z) ≤ C1(x ∧ y), whence C1 is a nucleus; and
if y ≤ x then z ≤ Cx(y) ≤ x ∧ C1(y), showing that C is hereditary. Thus, (1, 0) is
distributive and s-modular, i.e., a standard element. �

Corollary 3.2. Suppose C is a grounded closure operator on a bounded lattice L
and (1, 0) is a standard element of LC≥. Then z ≤ C1(y) and y ∧ z ∈ LCz imply
z ≤ y. In particular, the only z ≤ C1(y) with y ∧ z = 0 is z = 0.

Recall that a bounded lattice L is disjunctive (Wallman [35]) if
for x 6≤ y in L there is a z ∈ L with x ∧ z 6= 0 but y ∧ z = 0.

This is equivalent to postulating that
for y < x in L there is a z ∈ L with 0<z ≤ x and y ∧ z = 0.

Large classes of disjunctive lattices are formed by
– all sectionally complemented lattices (so by all modular complemented lat-

tices)
– all atomistic lattices (so by all geometric lattices and all dual T1-topologies).

Proposition 3.3. A closure operator C on a disjunctive lattice L is the identity
operator if and only if (1, 0) is a standard (neutral) element of LC≥.

Proof. Clearly, if C1 = idL then (1, 0) is neutral (hence standard) in LC≥ = L≥.
Conversely, if (1, 0) is a standard element of LC≥ = L≥ then C is grounded, and by
Corollary 3.2, z ≤ C1(y) and y∧z = 0 imply z = 0. Hence, y < C1(y) cannot occur
in case L is disjunctive. Thus, C1 is the identity on L (and so Cx = idLx

). �

Next, consider the map

ϕC : LC≥ → L× LC1 , (x, u) 7→ (x,C1(u)) .

Proposition 3.4. For any grounded closure operator C on a bounded lattice L, the
map ϕC is a ∨-homomorphism, and

(1) (1, 0) is a distributive element of LC≥ ⇔ ϕC is a lattice homomorphism,
(2) (1, 0) is an s-modular element of LC≥ ⇔ ϕC is injective (order embedding),
(3) (1, 0) is a standard element of LC≥ ⇔ ϕC is a lattice embedding.

Proof. By the closure properties of C1 it is clear that C1(u∨ v) is the join of C1(u)
and C1(v) in LC1 ; consequently, ϕC is a ∨-homomorphism.

(1) ϕC is a ∧-homomorphism (hence a lattice homomorphism) if and only if C1

is one, which is tantamount to distributivity of (1, 0), by Proposition 3.1.
(2) If ϕC is injective and x ≥ y then for u = Cx(y) and v = Cx(x ∧ C1(y)), the

equation (x,C1(u)) = (x,C1(y)) = (x,C1(x ∧ C1(y))) = (x,C1(v)) entails u = v,
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hence Cx(y) ≥ x∧C1(y), and the reverse inequality is clear. Thus, C is hereditary,
i.e., (1, 0) is s-modular by Proposition 3.1. Conversely, if the latter holds then for
(x, u), (y, v) ∈ LC≥, the equation (x,C1(u)) = (y, C1(v)) entails x = y and then
u = Cx(u) = x ∧ C1(u) = y ∧ C1(v) = Cy(v) = v , proving injectivity of ϕC .

(3) follows from the previous two equivalences. �

We are now ready for the main result of this section, providing a modularity crite-
rion for characteristic triangles (see [28] for a similar result on weak congruences).

Theorem 3.5. Let C be a grounded closure operator on a bounded lattice L, and
let V be a variety of modular lattices. Then LC≥ is modular (resp. a member of V)
if and only if L is modular (resp. a member of V) and (1, 0) is a neutral element
of LC≥ .

Proof. If LC≥ is modular then so is L, as observed earlier; and (1, 0) is a neutral ele-
ment of LC≥, being codistributive (see Proposition 3.1). Conversely, if L is modular
and (1, 0) is neutral then, by Proposition 3.1 again, LC1 is modular as well, being the
homomorphic image of L under the nucleus C1. By Proposition 3.4, the map ϕC
is a lattice embedding of LC≥ in L×LC1 , whence LC≥ is modular, too. An analogous
reasoning holds for any equational property stronger than modularity. �

4. Discrete elements

As before, let C be a closure operator on a lattice L. With the obvious spatial
interpretation in mind, we call an element x ∈ L (C-)discrete if Cx is the identity
map, i.e., LCx = Lx. Notice that if x is C-discrete then so is each z ≤ x, on account
of the inequality Cz(y) ≤ Cx(y) = y for y ≤ z ≤ x (see C2). Thus, by definition,
the following conditions are equivalent:

(1) The top element of L is C-discrete, i.e., C1 = idL.
(2) Each element of L is C-discrete.
(3) C is the identity operator, i.e., Cx = idLx

for each x ∈ L.
(4) The characteristic triangle LC≥ is the whole triangle L≥.

Seemingly weak assumptions together with the modularity of LC≥ already force C to
be the identity operator. By Proposition 3.3, disjunctivity of L is such a hypothesis.
In particular, we have:

Proposition 4.1. A grounded closure operator C on a complemented lattice L
has a modular characteristic triangle LC≥ if and only if L is modular and C is the
identity operator.

Proof. An alternative argument is the following. If LC≥ is modular then so is L.
But a ∧- and 0-preserving closure map c on a complemented modular lattice (like
C1 on L = L1, by virtue of Proposition 3.1) must be the identity map (cf. [10]),
since for complementary elements x and x′,

0 = c(0) = c(x ∧ x′) = c(x) ∧ c(x′) , 1 = x′ ∨ x = c(x′) ∨ x ,
c(x) = c(x) ∧ (c(x′) ∨ x) = (c(x) ∧ c(x′)) ∨ x = 0 ∨ x = x. �
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A similar result is obtained if the complementation property is replaced by a rich
supply of discrete elements (see Corollary 4.3 below). The key to group-theoretical
and other algebraic applications is

Theorem 4.2. Let C be a closure operator on a bounded lattice L whose elements
are joins of C-discrete elements. Then the following statements are equivalent:

(1) The top element 1 is C-discrete, i.e., C is the identity operator.
(2) LC≥ is a sublattice of L2 containing (1, 0).
(3) (1, 0) is a standard (equivalently, a neutral) element of LC≥.

Proof. Notice first that each of the conditions (1) – (3) entails groundedness of C.
The implications (1)⇒ (2)⇒ (3) are straightforward.For (3)⇒ (1), apply Corollary
3.2: each element C1(y) is a join of C-discrete elements z, and these satisfy z ≤ y,
whence C1(y) = y. �

Now, invoking Theorem 3.5, we arrive at

Corollary 4.3. Let C be a grounded closure operator on a bounded lattice L. Then
L is a modular lattice whose top element (and so each element) is C-discrete if and
only if the characteristic triangle LC≥ is modular and the C-discrete elements of L
are join-dense. In this equivalence, “modular” may be replaced by “distributive”.

Since atoms are certainly discrete for any grounded closure operator, we obtain:

Corollary 4.4. If L is an atomistic lattice then a grounded closure operator C on L
with modular LC≥ must be the identity operator. This applies to any set-theoretical
closure operator on a power set. Thus, the only topological spaces whose closure
operator has a modular characteristic triangle are the discrete ones.

Note that this corollary also immediately follows from Proposition 3.3.

5. Applications to group-like algebras

We deduce now various consequences of the previous lattice-theoretical results
in general algebra; some of them have been stated earlier (cf. [28]), but the original
arguments relied on Theorem 1.1, whose proof in [29] was erroneous; the first
complete proofs are based on Theorems 3.5 and 4.2. Let us recall from [28] a
few facts about the weak congruence lattices Conw(A) of arbitrary algebras A (cf.
Proposition 3.1):

• The diagonal ∆ is always a codistributive element of Conw(A).
• ∆ is a distributive element of Conw(A) if and only if A has the Congru-

ence Intersection Property (CIP), requiring that the congruence generating
closure operator of A preserves finite intersections of weak congruences.
• ∆ is an s-modular element of Conw(A) if and only if A has the Congruence

Extension Property (CEP), requiring that every congruence on a subalgebra
is induced by a congruence on A.
• ∆ is a standard (equivalently, a neutral) element of Conw(A) if and only if
A has the CIP and the CEP, while ∆ is always a neutral element of Con(A).
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• The weak congruence lattice Conw(A) is modular if and only if Sub(A) and
Con(A) are modular and ∆ is a neutral element of Conw(A).

First, we focus on the special case of groups. For each group G, the discrete
elements of L(G) = Sub(G) with respect to the normal closure operator C (see
Example 2.3) are just the Dedekind subgroups. Each group is the union of its cyclic
subgroups, which are, of course, Dedekind subgroups. Since the lattice of all normal
subgroups of G is modular and there is an isomorphism between Conw(G) and
L(G)C≥ sending ∆ to (1, 0) = (G, {e}), Corollary 4.3 applies to establish Theorem
1.1. Moreover, from Theorems 3.5 and 4.2 we derive a stronger result:

Corollary 5.1. The following statements on a group G are equivalent:
(1) G is a Dedekind group.
(2) Conw(G) is modular.
(3) ∆ is a standard (equivalently, a neutral) element of Conw(G).
(4) G has the CIP and the CEP.

A further immediate consequence of Corollary 4.3 and Ore’s Theorem, which
says that the locally cyclic groups are exactly those with a distributive subgroup
lattice (see [25] and [27, Thm 1.2.3]), is the following

Corollary 5.2. A group is locally cyclic if and only if its weak congruence lattice
is distributive.

As the reader might guess, Theorems 3.5, 4.2 and their corollaries also apply to
algebras other than groups. To extract the essential ingredient, we call a general
algebra A group-like if it has a least subuniverse {e} and there is some function
q : A2 → A (not necessarily an algebraic one) such that for all θ ∈ Conw(A),

a θ b ⇔ e θ q(a, b) and a, b ∈ Aθ .
Of course, in groups, q(a, b) = ab−1 is such a function (other examples will be
discussed later on). As in the group case, in any algebra with a least subuniverse
{e}, the congruence classes eθ are precisely the kernels ϕ−1(e′) of homomorphisms
ϕ from A to similar algebras A′ with least subuniverses {e′}.

Proposition 5.3. Let L = Sub(A) be the algebraic lattice of all subuniverses (sub-
algebras) of a group-like algebra A. For each subalgebra X, the algebraic closure sys-
tem LX = Sub(X) contains the algebraic closure system LCX = {eθ | θ ∈ Con(X)},
which is isomorphic to Con(X). The corresponding closure maps CX define a
grounded closure operator C so that

Ψ : Conw(A)→ LC≥ = {(X,Y ) | X∈ L, Y ∈ LCX}, θ 7→ (Aθ, eθ)

is an isomorphism of algebraic lattices. Hence, the weak congruence lattice of A is
isomorphic to the characteristic triangle of Sub(A). If A has the CEP then C is
hereditary and continuous.

Proof. Since {e} is a subuniverse, so is each congruence class eθ for θ ∈ Con(X),
and the equations

e(
⋂
{θi | i∈I}) =

⋂
{eθi | i∈I} and e(

⋃
{θi | i∈I}) =

⋃
{e θi | i∈I}
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for θi ∈ Con(X) (and unions over directed systems) show that not only Con(X) but
also LCX = {eθ | θ ∈ Con(X)} is an algebraic closure system, hence closed under
arbitrary meets and directed joins in L. Therefore, the corresponding closure map
CX preserves directed joins ( = unions). In order to ensure that C = (Cx | x ∈ L)
is a closure operator, it remains to verify C2. Let Y ≤ Z ≤ X in L. Then
CX(Y ) = eθ for some θ ∈ Con(X), while CZ(Y ) = eρ for some ρ ∈ Con(Z). Since
Y ⊆ Z ∩ eθ = e θ|Z and θ|Z ∈ Con(Z), we conclude CZ(Y ) ⊆ e θ|Z ⊆ eθ = CX(Y ).
The equality CX({e}) = {e} means that the closure operator C is grounded. For
θ, ρ ∈ Conw(A), the implications

θ ⊆ ρ ⇒ Aθ ⊆ Aρ and eθ ⊆ eρ
⇒ θ = {(a, b) ∈(Aθ)2 | e θ q(a, b)} ⊆ {(a, b) ∈(Aρ)2 | e ρ q(a, b)} = ρ

ensure that Ψ is an embedding of Conw(A) in LC≥, and in particular, that Con(X)
is isomorphic to LCX via θ 7→ eθ. Concerning surjectivity of Ψ, simply observe that
for X∈L and Y = eθ ∈LCX with θ ∈Con(X), we have θ ∈Conw(A) and X= Aθ.

For the last statement in Proposition 5.3, see Example 2.4. �

Generalizing the group case, we call a group-like algebra A a Dedekind algebra
if every subalgebra of A is a kernel, i.e., of the form eθ for some θ ∈ Con(A).
By the inclusion {e} ⊆ X for X ∈ Sub(A), this is equivalent to saying that A is
Hamiltonian, i.e., every subalgebra is a congruence class. Now, we are in a position
to derive from Theorems 3.5 and 4.2 the following generalization of Corollary 5.1:

Theorem 5.4. Let A be a group-like algebra that is a join of Dedekind subalgebras.
Then the following statements are equivalent:

(1) A is a Dedekind algebra.
(2) Conw(A) admits an isomorphism onto Sub(A)≥ sending ∆ to (A, {e}).
(3) Conw(A) admits a lattice embedding in Sub(A)2 sending ∆ to (A, {e}).
(4) ∆ is a standard (equivalently, a neutral) element of Conw(A).
(5) A has the CIP and the CEP.

Moreover, the weak congruence lattice Conw(A) is modular (distributive) if and only
if A is a Dedekind algebra with modular (distributive) subalgebra lattice Sub(A).

Proof. By Proposition 5.3, Conw(A) is isomorphic to LC≥ for L = Sub(A) and
the closure operator C with CX(Y ) =

⋂
{eθ | θ ∈ Con(X), Y ⊆ eθ}. Under the

isomorphism θ 7→ (Aθ, eθ), the diagonal ∆ ∈ Conw(A) is mapped onto the pair
(A, {e}) ∈ LC≥. Furthermore, for any subalgebra X, the closure system LCX of all
kernel subalgebras of X is isomorphic to Con(X). By definition, X is a C-discrete
element of L if and only if it is a Dedekind subalgebra of A. Hence, Theorem 4.2
immediately yields the equivalence of (1) – (4). Corollary 4.3 establishes the last
claim in Theorem 5.4. �

Note that by Propositions 3.3 and 5.3, the hypothesis that A is a join of Dedekind
subalgebras may be substituted by disjunctivity of the subalgebra lattice in order
to derive the equivalence (1)⇔ (4). Since the implications (1)⇒ (2)⇒ (3)⇒ (4) are
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obvious and the equivalence (4)⇔ (5) has been shown in [28], Theorem 5.4 remains
valid for group-like algebras with disjunctive subalgebra lattice.

Now, let us have a look at rings. A warning in advance: if a ring has a unit
element 1, this should not be regarded as a constant in the present context. In
any ring A, the zero element 0 constitutes the least subuniverse {0}. Clearly, A is
a group-like algebra, taking q(a, b) = a − b. The kernels are just the (two-sided)
ideals. The ideal closure defines a grounded closure operator C on the algebraic
lattice L of all subrings, and C is hereditary, hence continuous, if A has the CEP.
Let us call a ring Hamiltonian if each subring is an ideal (the name Dedekind ring
is reserved for another class of rings). Then Theorem 5.4 amounts to:

Corollary 5.5. A ring is Hamiltonian if and only if it is generated by Hamiltonian
subrings and has a modular weak congruence lattice or ∆ is a neutral element of it.

Example 5.6. In the ring Z of all integers, the subrings coincide with the additive
subgroups nZ and with the ideals. Thus Z is Hamiltonian. The weak congruence
lattice Conw(Z) is distributive, being isomorphic to D≥, where D is the lattice of
all natural numbers (including 0), ordered by the dual of the divisibility relation.

Example 5.7. For any ring A with 1 6= 0, the ring A2 has the diagonal subring
∆ whose ideal closure c(∆) is the whole A2. Since for the ideal A0 = A×{0}, one
obtains c(∆)∩ c(A0) = A0 6= {(0, 0)} = c(∆∩A0), the CIP fails, and in particular,
Conw(A2) cannot be modular.
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Example 5.8. For any Boolean ring (in which all elements are idempotent), the
subrings generated by single elements a 6= 0 have two elements only, so their sub-
rings are ideals. Thus, Corollary 5.5 tells us that for Boolean rings A, the weak
congruence lattice Conw(A) is never modular unless A has at most two elements.

Example 5.9. An analogous phenomenon occurs with lattices, although they need
not be group-like: the weak congruence lattice of a lattice A is modular only if A
has at most two elements (see [28]). Moreover, if a lattice A contains three elements
a < b < c then ∆ is not distributive in Conw(A), since B = {a, b} and C = {a, c}
are sublattices with ∆ ∨ (B2 ∧ C2) = ∆ 6= ∆ ∨B2 = (∆ ∨B2) ∧ (∆ ∨ C2).

Example 5.10. Let A be a sectionally complemented lattice (that is, all principal
ideals of A are complemented). If we pass to the augmented algebra A+ obtained
by adding all unary operations ∧a : x 7→ a∧x, then the resulting subalgebras of A+

are just the ideals of A, while the kernels are exactly the standard ideals. Moreover,
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the map θ 7→ 0θ is an embedding of the congruence lattice in the ideal lattice of
A and induces an isomorphism between Con(A) = Con(A+) and the lattice of all
standard ideals (see [3, II, Theorem 6] and [18, III. 3, Theorem 10]). Furthermore,
A+ is a group-like algebra: for q(a, b) one may take any relative complement of a∧b
in the interval [ 0, a ∨ b ] = ↓(a ∨ b).

Corollary 5.11. A sectionally complemented lattice A with no infinite chains gives
rise to a modular (equivalently, distributive) weak congruence lattice Conw(A+) if
and only if A is distributive, i.e., a finite Boolean lattice, while Conw(A) is modular
only if |A|≤2.

Proof. For generalized Boolean lattices B (and only for these), the assignment
θ 7→ 0θ is an isomorphism between the congruence lattice Con(B+) = Con(B)
and the ideal lattice Sub(B+) of B, and both are distributive. Now let A be a
chain-finite sectionally complemented lattice. Since the augmented algebra A+ is
a Dedekind algebra if and only if each ideal is a kernel, we infer from Theorem
5.4 that Conw(A+) is modular if and only if A is a (generalized) Boolean lattice;
for join-density of the “discrete” members of Sub(A+) (i.e., those ideals which
are generalized Boolean lattices), use Corollary 4.4 and the fact that sectionally
complemented chain-finite lattices are atomistic and isomorphic to their own ideal
lattices. �

Corollary 5.11 applies, for example, to all finite-dimensional geometric lattices
(see [3, IV] and [18, IV. 3]). On the other hand, we have:

Example 5.12. Every vector space is a Dedekind algebra with a modular geomet-
ric (hence complemented and atomistic) subalgebra lattice. Therefore, the weak
congruence lattice of any vector space is modular, too.

6. Prospect: closure operators as diagrams

This final section contains a few thoughts aiming towards a more general cat-
egorical perspective for the previous considerations. In the language of category
theory, a diagram is merely a functor between two categories. In most cases, the
domain (called the scheme of the diagram) is a poset or lattice L, regarded as a
category L. Directed colimits in L are just directed joins in L.

Consider the following category CCL of complete closure lattices 8cf. [15]): its
objects are pairs (L, c) where L is a complete lattice and c is a closure map on
L; morphisms are the “continuous” maps f : (L, c) → (L′, c′), preserving directed
joins and satisfying f(c(z)) ≤ c′(f(z)). Now, any closure operator C on a complete
lattice L naturally extends to a diagram, i.e., a functor C̃ from L to CCL. On the
object level, C̃ assigns to each x ∈ L the closure lattice (Lx, Cx) ; on the morphism
level, one takes for C̃xy (x ≤ y) simply the inclusion map from Lx into Ly (the
condition Cx(z) ≤ Cy(z) ensures that each C̃xy is a morphism). Now, the following
result justifies our notion of continuous closure operators from a categorical point
of view (a proof and related material is deferred to [14]):
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Theorem 6.1. A closure operator C on an algebraic lattice L is continuous if and
only if it naturally extends to a continuous diagram C̃ of algebraic closure lattices.

The term “algebraic” may be substituted by “continuous” in that theorem, work-
ing with way-below ideals instead of compact elements.

A variant of Theorem 6.1 is obtained by replacing the hypothesis of algebraicity
or continuity with a related (but incomparable) property. Let us call a complete
closure lattice (L, c) meet-continuous if each unary meet operation ∧x is a CCL-
morphism from (L, c) to (L, c); explicitly, this condition means that L is meet-
continuous in the usual sense and c is a nucleus (see Example 2.6). Call a closure
operator C strongly continuous if it is continuous and each of the closure lattices
(Lx, Cx) is meet-continuous. The closure operators mentioned in Example 2.6 are
not only continuous but even strongly continuous. Now, one can show [14]:

Theorem 6.2. A closure operator C on a complete lattice L is strongly continuous
if and only if it naturally extends to a continuous diagram C̃ of meet-continuous
closure lattices.
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