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WHICH DISTRIBUTIVE LATTICES HAVE
2-DISTRIBUTIVE SUBLATTICE LATTICES?

By
G. CZEDLI (Szeged)

L Introduction

The concept of n-distributivity was introduced by HUaN (cf. [4] and [5]). A Iattice
is said to be n-distributive (#=1) if it satisfies the identity

n n L
m <AV iz V(=AY ).
i=0 J=0 i=0
iz j
The n-distributivity of subalgebra Iattices (or congruence lattices) of universal
algebras proved to be an important property in several cases. E.g., as it was proved
by Hunx~ ([3] and [4]), the subgroup lattice of an abelian group 4 is n-distributive
iff every finitely generated subgroup of A4 can be generated by at most » elements.
Sublattice lattices were investigated by FiLterov [1]. He gave necessary and
sufficient conditions for having isomorphism between sublattice lattices of two
given lattices. Lattices having modular and {(upper) semi-modular sublattice lattices
were characterized by Ko# [6] and Lakser [7], respectively.
Qur aim is to characterize distributive lattices having n-distributive sublattice
lattices in case n=2.

II. Preliminaries

For an idempotent algebra A4 let Su(4) denote the lattice of subalgebras
of A. (It contains the empty set as a subalgebra.) Let us recall a non-published
result of A. P. HUHN:

Lemma 1. For an arbitrary idempotent algebra A and nz=1, Su(d) is »-
distributive iff for any subset H of A we have

@ [H]=U{[G]: GE H and |G|= n).

(Here, [H) means the subalgebra generated by H and U stands for the set-theoretical
union.)

Proor. Suppose Su(A) is n-distributive and H={h, 4, ... h,} A for
some m=n. n-distributivity implies m-distributivity for all m=nr (Huan [5]),
so for an arbitrary a€[H], we have

ac {ajA i\:/o {n,} S J‘\:/0 [{ﬂ}/\ 1_\:/(2 {hi}] .
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Hence a€[{hy, -.., B;_1, Bjs1s ..., By}l for some j. This proves (2) for any finite
H whence (2) holds for any subset H. Conversely, suppose that (2) holds. Then

L]
for any Y,£Su(4), we have Y ¥,= U \/ Y: whence the n-distributivity of
i=0 Jm i=0
inj

Su(A4) follows easily. Q.e.d.
Now we define the concept of the special sum of lattices. Let ([, =) be a chain
and for every j<7 let L, be a lattice. Let Z‘L, denote the ordinal sum of lattices

in the usual sense. (I.e., consider the chs_iomt unton of the L-sand let x=yp mean
that x€L;, y€L; and i<j, or x, yeL; and x=y.) For a, bGZ’L,, let adb

denote that “g is the greatest element of L;, # is the least eIement of L; and

i~<j, for some i, jeI”. Let @ be the eguivalence relation on 3 L; generated
iel
by the binary relation 8. Then, as it can be seen easily, @ is a congruence relation.

Now, denoting by 2 L;, the definition of the special sum is the following: 2 L=

=2 Lj@. Let us agree that we write 3" L,= >3 L, iff © is the equality reIatIon
el ier ied
Denoting the lattice

by K we can state our main

THEOREM. For any distributive lattice L the following three conditions are
equivalent:
(i) Su(L) is 2-distributive
(ii) L contains neither a sublattice isomorphic to K nor a three-element antichain
(antichain means a set of pairwise incomparable elements)
(iii) L is isomorphic to a special sum 3" L;, where for each icl, L; is a chain
i€l

or Li=2XC for some chain C. (2 denotes the two-element chain.)

REMARK. As for 1-distributivity, which is the usual distributivity, it is very casy
to show that an arbitrary lattice L has distributive sublattice lattice iff L is a chain.

In what follows lattices isomorphic to 2XC for some chain C will be referred
to as ladders. The following sections deal with the proof of the theorem, namely
the implications (iil) ~(i), (i) —+(ii) and (ii) -(iii) are proved.
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HI. The first part of the proof

In this section the implications (iii)-~(i) and (i)~(ii) will be verified.

ProrosiTiON 1. If q lattice L is a chain or a ladder then Su(L) is 2-distributive.
If L, is a homomorphic image of a lattice L, and Su(L,) is 2-distributive then
so is Su(Ly).

The proof is straightforward by making use of Lemma 1, so it will be omitted.
It can be easily shown that

3) Su (%'T L)= :‘g Su (L,

for an arbitrary ordinal sum 2 L; (cf. also FiLiprov [I, Lemma 1.2]). Now Pro-

i1
position 1 and (3) yield the proof of (iii) - (i).

To prove (i) -~ (ii) suppose L is a distributive lattice and Su(Z) is 2-distributive.
Since neither Su(X) nor Su(2®) are 2-distributive by Lemma 1, L does not
contain any sublattice isomorphic to K or 2°. Suppose {a, b, ¢} is a three-element
antichain in L. Then {aVh,aVec, bVe} cannot be a three-element antichain since
otherwise it would generate a sublattice isomorphic to 2* (cf. GRATZER [2, p. 45]).
Hence aVbVec{aVb, aVe, bV} and, by the lattice theoretical Duality Principle,
alhbAcc{aAb, ahc, bAc}. If we had aVbVe=aVh and aAbAc=bAc then
c=(@VbVohe=(aVbh)Ac=(@Vbh)A(@aVc)=aV{bAc)=aV (aAbAc)=a would contra-
dict aflc. So aVe=aVbVe and aAc=aAbAc can be assumed. Now [g, b, c]=
=[{a, b, ¢}] is a homomorphic image of FD(3)/@ where FD(3) denotes the free
distributive lattice freely generated by {x, y,z} and @ denotes the smallest con-
gruence for which aAc@aAbAc and aVe@aVbVe. Since the structure of FD(3)
is well-known {c.f. GRATZER [2, p. 46]), it Is easy to check that FD(3)/@ is the
following lattice:

#h

An arbitrary homomorphism ¢: FD(3)/@ —[a, b, ¢], X—~a, j—b, Z—~c must be
injective because a,b,c are pairwise incomparable. Hence FD(3)/@ can be
embedded into L. So can K, which is a contradiction. Thus the proof of (i) — (ii)
is complete.
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IV. A decomposition of lattices
The (decomposability) lemma given below will be an important tool to prove
(ii}— (iii). First, for a partially ordered set L, we set

CL) = {x€L: x4y for all yeL}
and

C'(L) = {x€C(L): x # 0, and x = 1.}.
(Note that I is not necessarily bounded and the above two sets may coincide.)
LeMMA 2. An arbitrary lattice L is isomorphic to a special sum >'L; where,
Jor all icl, L; is a chain or C'(L)=. o

Before proving this lemma we need some preliminaries. Define the binary
relation p=p; on L in the following way: set agh iff one of the conditions

— allb
— akb and [a,b]NC(L)= @&
— akb and [a,b] S C{L)
holds, where [a, bj={xcL:a=x=b or b=x=a)}
PROPOSITION 2. For an arbitrary lattice L, p=p; is an equivalence relation.

Proor. Suppose we have agb and bpc for some g, b, c€ L and let us show
that agc. Evidently ¢ is reflexive and symmetric so, by the Duality Principle,
we have to deal only with the following four cases.

Case 1. allb and blc. If akc, say a=<c, then [a,c]NC(L}= because
xllb for all x€[a, cl.

Case 2. a|b and b<c. Suppose ake, then a=c. Now [a, c]NC(L)=
=(laVh, ]NCLY)U(([a, aVEIN{aVb) N C(L)). But, for all x¢la, aVB]\{aVb}, x[b
and [aVh, c]S[b, c] so we have [a, c]NCL)=2.

Case 3. a<b and b<c. If [a,B)SC(L) and [b,c]S C(L) then [a,c]=
=[a, b]Ub, ]S C(L). If [a,5)NC(L)=@ then [a, c]NC(LY=([a, BINCL)U
U(d, cINCL))=g .

Cased. a<b and b>¢. If akc, say a<c, then [a, c]S[a, 5] and either
la, elSla, BIS C(L) or [a, ]JNCL)Ea, BN C(L)= . This completes the proof
of Proposition 2.

ProOPOSITION 3. Let L bealatticeand M a g;-classin L. Then either M S C(L)
or MNCLy=¢. If MSC(L) then M isachain. If MNC{L)=C then M has
neither greatest element nor least element, and exactly one of the following four
possibilities

[M]=M, [M]l=MU{l,}, [M]l=MU{0y}, [M]=MU{Ok, 1\}
holds where Oy, 1), C(L)\M and they are the zera and unit of [M], respectively.
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Proor, It is sufficient to prove the last statement. Let MNC(L)=&. Then
C(M)= whence M has neither greatest nor least element. Suppose M is not
a join sub-semilattice of L, say g, b6éM but aVb¢M, and let us show that
aVbeC(L) and MU {aVb} is a join-semilattice. Since agaVbd (i.e., agaVh
does not hold), there is an x€{a, aVB]NC(L). Now allb implies x£b and bcM
implies x¥b and so aVb=x€[a,aVbh] implies aVb=x£C(L). Now x is the
unit of MU {x} because otherwise x<c for some ¢c€M and x€fa, cJNC(L)=,
a contradiction. If, for d, ec M, y=dVe¢ M, then y=x. But the role of x and
»y can be interchanged so x=y as well. Le, MU{aVh} is a join-semilattice
indeed and the proof is complete by the Duality Principle.

Proor oF LEMMA 2. Let g=g; and for D,,D,cL/p we define D;=D, by
the formula (3 X;€ D)3 X6 D) (X, =X,). An easy calculation shows that (L/p, =)
is a chain. We assert L= 2‘ [D]. Let ¢: Z [D]—+L be the map for which |y,

is the natural embedding of D into L. It fo]lows easily that ¢ is a homomorphism
onto L. It is also seen that if D, F€L/p, D<FE and x¢ [E]ﬂ[D] then x=1;=0;,
and D~<E or D<{x}<E. Therefore L= 2’ [D]/Ker o= 2" [D], indeed.

Delje

If DeLfg is not a chain then C'([D])=& fol]ows from Proposition 3. Q.e.d.

V. The second part of the proof

Having Lemma 2, the proof of (ii)—(iii) will be complete if we prove the following

LemMa 3. Let L be a distributive lattice which satisfies (i), C'(L)y=& and
IL|=3. Then L is of the form 2 L,=2" L, where (I, =) is a chain and for all
fe1 fer
icl, L; is a ladder or consists of a single element.

The proof of this lemma requires several preliminary statements.

ProrosimioN 4. Let a, b, ¢ be elements of a distributive lattice satisfying (ii).
If alb,a|c and b<c then [a. b, c] is isomorphic to one of the following two lattices

Proor. It is an immediate consequence of the well-known fact (cf. GRATZER
[2, p. 14]) that the free distributive lattice generated by the partially ordered set
{{a, b, c}, b=¢)} is isomorphic to K.

Let us agree that any use of Proposition 4 in case of [x, y, z] will also mean
x|y, x|z and p==z.
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An element x in L is called join-reducible if x=aVbdg {a, b} for some
a, be L. An element x is said to be reducible { doubly reducible) if it is either (both)
join-reducible or (and) meet-reducible.

PROPOSITION 5. The lattice L from Lemma 3 (ie., L distributive, (i) and
C'(L)y=) does not contain any doubly reducible element.

ProoF. Suppose x€L is doubly reducible. Then x=eVb=fAc, €], flc
and a|lx for some a, b, ¢, e, fEL. Now {a,b,e} and {a, ¢, f} are not antichains
so dlc, a<f, allb, a=e can be assumed. Consider [a, b, c]. Then we have aVb=/,
aVexk f,ale=e and aAbze, which contradicts Proposition 4. Q.e.d.

For a lattice L define the binary relation y; on L as follows:

Set ay b iff for any e, fe[aAb, aVb], where e is join-reducible (in L} and
f is meet-reducible (in L), e% f holds.

LEmMMA 4. Let L be a distributive lattice satisfving (it) and C’(L)=¢. Then
W=, is a congruence, Ly is a chain and a|b implies ayb for any a, beL.

Proof. Throughout the proof, let e and f stand for join-reducible and meet-
reducible elements of L, respectively. Suppose alb but afb does not hold. So
e, fc[aAb, aVb] and e=f for some e,f. First, exactly one of gjle and b|e holds
because otherwise e=aAb or e=f=aVh would contradict Proposition 5. Suppose
alle and bire. If we had e<b, then e would be doubly reducible by Proposition 4
{considering [a, e, b]). If b=e, then g f {otherwise f=aVb is doubly reducible)
and, considering [a, e, f], ¢ or f is doubly reducible. Thus e=». Similarly,
feia, b). Since f=e, f=b=e which contradicts Proposition 5. Now we have shown:

4) allb implies ayb.

Suppose we have afb and bye. Since i is reflexive by Proposition 5 and
symmetric, to prove transitivity only the following four cases have to be considered.

Case 1. a<b and b<c but afc. Then there are e,fc[a,c], e<f. Both
bjle and bj f do not hold by Propositions 4 and 5. Say bkf, and so, from
{e. f}Ela 8], b<f. Then e<b because otherwise {bVe, f}S[b, c]. Choose an
x¢L such that x|, Both e=x and x=f lead to a contradiction: as=e=xAb=b
or b=xVb=f=c, respectively. Therefore x|e and x| f But regarding [x, e, f]
Probositions 4 and 5 give a contradiction.

Case 2. a|lb and b=<c. If a|c then ajc by (4). Otherwise a<c. Set ¥ =aVh,
then from [g, &’'}S[a/b, aVh] and [¥, c]S[b, ¢] we get ayd’ and b’l,(/c whence,
by Case 1, ajc follows.

Case 3. allb, blle and a<e. Now, by Proposition 4, we have either [a, c]S
SlaAb, aVb] or [a,c]S[bhe, bVc], and so aye.

Case 4. a<b and c<b and a<c. Then ajc follows from [a, c]S]a, b

Now we have that ¥ is an equivalence relation. Let us have a, b, cc L, arb.
If afc then aAcyaybibAe, while in case of afc aMcybAc follows from (4).
Therefore, by the Duality Principle, i is a congruence. Finally, (4) implies that
Ly 1s a chain. Q.e.d.
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CoRrROLLARY 1. Let L be a distributive lattice satisfying (if) and C’(L)= ().

Then L= 3’ D= 2 D, where  denotes ¥y, for all DL}y, C'(D)=3 and
d; D DeLly Delfy
D=

Lemma 5. Let L be a distributive lattice for which =L, C'(Ly=¢, |L|=5
and (ii) hold. Suppose L contains neither a join-irreducible unit nor a meet-irreducible
zero. Then L is q ladder.

Proor. The proof consists of several steps. Let £ and F denote the set of
join-reducible and meet-reducible clements of L, respectively. Then ez f for
any ecE and f¢F and therefore ENF=.

STep 1. F is an ideal and E is a dual ideal of L and both are chains.

Proor. First we show that F is a chain. Suppose a, bEF, alb. Let a=xAy
and b=uAv where x|y and ul». Since {a, u, v} is not an antichain, a<u and
afv can be assumed. Similarly, b~y and b||x can be also assumed. So a=xA(yAu)
and b=vA(yAu). Hence x[fyAu and v|yAu and x|v (from a|b), which is
a contradiction. l.e,, F is a chain and so is E. Now let f€F, x¢ LN\F and x<f.
Then x is not the zero of L and so x|y for some ycL. Here y| f since other-
wise f=xVycE. Considering [y, x, f], Proposition 4 leads to a contradiction
because of f¢ E. Le., F is anideal and E is a dual ideal by the Duality Principle.
Q.ed.

StEP 2. Both E and F have at least two elements.

Proor. Suppose |F|<2 and let @, & be incomparable elements in L. Then,
by Proposition 4, x[la implies x=4 and x| implies x=a for any xcL. Thus
L={a, b} U(aAb]U[aVb), which is a contradiction. The proof is complete by
the Duality Principle.

Step 3. If a4, bcIN(EUF), fEF, a=h and f<a then a=b.

PrOOF. Suppose a<b, then qg|c forsome c€L. Incase c|[b, by Proposition 4,
{a, B}N(EUF)> . Thus c<b, Hence bz=aVc€E, which contradicts Step I.

StEP 4. If fCF, a, b6 L\(EUF), a=f, b>fand f is not the zero element of L,
then a=b.

Proor. If a=b then 4fb by Step 3. Choose an element ¢ in L so that
fllg. Now ¢¢ F by Step 1. {a, b, g} is not an antichain, so ¢<¢E confradicts Step 1
and g4 E contradicts Step 3.

Step 5. If fE€F, f is not the zero of L and [)N(L\(EUF))=, then F is
a prime ideal.

Proor. Suppose aAbeF but a¢ F and b4 F. {a, bB}T E by Step 1 so, e.g.,
a¢ E. Consequently, by Step 1 and Proposition 4, we have a| f, f<b and aV f||b.
Hence, by Step 1, b¢ E, which is a contradiction. Q.e.d.

Now F’ is defined as follows: If F is a prime ideal then set F’=F. Other-
wise set F'=FU{f’} where f'¢ L\(EUF) and, for some fcF, Op=f<f’. E' is
defined dually. The previous steps yield the correctness of this definition.
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STEP 6. F° is a prime ideal and a chain, and in case F'=F, f* is the greatest
element of F’. The dual statement is valid for E’.

Proor. It is enough to consider the case F’>#F. First we show that g<f’
for any gcF. If g« f for some g&F, then g| f” by Step 1. Since gAf's<0. by
Step 1, b f'Ag for some bc L\ F. We have b|g by Step 1 and, {f”, g. b} being
not an antichain, b<f". Applying Proposition 4 to [g, b, /] we get f'€¢E which
is a contradiction. Therefore f” is the greatest element of F and, by Step 1, F’ is
a chain. Suppose x¢IL and x-f" but x¢F. For any fcF x|| f by Steps | and
3, however xixAfcF is a contradiction, Therefore F’ is an ideal. Suppose
a, b F’, but aABCF’. Since allb,bdE can be assumed by Step 1. From Step 3
we have f’||b. Since {b,f’,a} is not an antichain, f"<a. Considering [b, ", a],
Proposition 4 yields f'€F or aAb| f’, which is a contradiction. Q.E.D.

Ster 7. E'NF' =5,

ProoF. Suppose E'MNF s @. Since ENF=@, we have e'=f". Consider
the set H={xcL: x| f*}. H> @. Suppose H consists of a single element x. Let
J1, Jh€F, fi<fy. Since f,4 C'(L), follx and, considering [x, f,, f'], Proposition 4
yields a contradiction. Suppose x, y€H, x%y. Then x=y and considering
[f’, ¥, x], Proposition 4 yields a contradiction again. Q.e.d.

StEp 8. E'UF'=L.

Proor. Suppose x€IN(EUPF). Let 0,=fcF and 1 secE. Since x%£f
and efx by Step I, we have f<x or x<e by Step 1 and Proposition 4, Therefore
Step 4 (or its dual statement) implies x=f" or x=¢’. Q.e.d.

Now we define a map 7: E'~F" as follows:

fAe, if flle forsome feF’
=Ny, if f<e forall fEF.

S1EP 9. The definition of t is correct.

Proor. Suppose fi<f:, fille and fijle for some f, f26 F’, e€ E’. Considering
[e, f1, f2), Proposition 4 and Step 6 imply eAf,=eAf,. Suppose we have an ecE’
such that ety forall fc F’. Steps 6,8 and C'(L)=¢ imply e=1=1;.

We have a,bcL such that allb and aVb=1. By Steps 6 and 8 acF’ and
beE’ can be assumed. If acF then, for some c, dcl, a=cAd, c|ld and, from
1=cVb=dVb, {b, c,d} is an antichain. Therefore a=f"¢ F and er=Irt is defined.
Q.e.d.

Step 10. The map 7 is a bijective lattice homomorphism.

Proor. First we show that e,<e, (e, e,6 E’) implies e,7<e,r. As we have
already seen in the proof of Step 9, e;r=f" implies e,=1. Therefore e,=1 can be
assumed. Let er=gAf; (i=1,2, ficF’). Then file,,e;t=f\e; (i=1,2) and
fiVete;,. Considering[f,, e, esl, Proposition 4 implies e;7<e,7. Now, if f/¢ F'\F
exists then aAbEF and affb for some a, b6 L\ F. Hence, by Step 6, f'¢{a, b}
and f'=(aVb)r. If fcF then, by Step 6, f=cAd and ¢|d for some ¢c F’ and
d€E’. So f=dt. Le., t is surjective. Q.ed.
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Nowlet 2=1{0, 1} be the two-clement chain and let us defineamap #:2XE —L
by (1, e)—~e and (0, €)—er. Our previous steps imply that # is a (required} iso-
morphism between 2XE’ and L. The proof of Lemma 5 is complete.

Finally, Lemmas 4 and 5 and Corollary ! imply Lemma 3.
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