# WHICH DISTRIBUTIVE LATTICES HAVE 2-DISTRIBUTIVE SUBLATTICE LATTICES?

By G. CZÉDLI (Szeged)

#### I. Introduction

The concept of *n*-distributivity was introduced by HUHN (cf. [4] and [5]). A lattice is said to be *n*-distributive  $(n \ge 1)$  if it satisfies the identity

(1) 
$$x \wedge \bigvee_{i=0}^{n} y_{i} \leq \bigvee_{j=0}^{n} \left( x \wedge \bigvee_{\substack{i=0 \ i \neq j}}^{n} y_{i} \right).$$

The *n*-distributivity of subalgebra lattices (or congruence lattices) of universal algebras proved to be an important property in several cases. E.g., as it was proved by Huhn ([3] and [4]), the subgroup lattice of an abelian group A is *n*-distributive iff every finitely generated subgroup of A can be generated by at most n elements.

Sublattice lattices were investigated by FILIPPOV [1]. He gave necessary and sufficient conditions for having isomorphism between sublattice lattices of two given lattices. Lattices having modular and (upper) semi-modular sublattice lattices were characterized by KOH [6] and LAKSER [7], respectively.

Our aim is to characterize distributive lattices having *n*-distributive sublattice lattices in case  $n \le 2$ .

#### **II. Preliminaries**

For an *idempotent* algebra A let Su(A) denote the lattice of subalgebras of A. (It contains the empty set as a subalgebra.) Let us recall a non-published result of A. P. HUHN:

LEMMA 1. For an arbitrary idempotent algebra A and  $n \ge 1$ , Su(A) is n-distributive iff for any subset H of A we have

(2) 
$$[H] = \bigcup \{ [G] : G \subseteq H \text{ and } |G| \leq n \}.$$

(Here, [H] means the subalgebra generated by H and  $\cup$  stands for the set-theoretical union.)

PROOF. Suppose Su(A) is n-distributive and  $H = \{h_0, h_1, ..., h_m\} \subseteq A$  for some  $m \ge n$ . n-distributivity implies m-distributivity for all  $m \ge n$  (HUHN [5]), so for an arbitrary  $a \in [H]$ , we have

$$a \in \{a\} \land \bigvee_{i=0}^{m} \{h_i\} \subseteq \bigvee_{j=0}^{m} \left(\{a\} \land \bigvee_{\substack{i=0 \ i \neq i}}^{m} \{h_i\}\right).$$

456 G. CZÉDLI

Hence  $a \in [\{h_0, ..., h_{j-1}, h_{j+1}, ..., h_m\}]$  for some j. This proves (2) for any finite H whence (2) holds for any subset H. Conversely, suppose that (2) holds. Then for any  $Y_i \in Su(A)$ , we have  $\bigvee_{i=0}^n Y_i = \bigcup_{\substack{j=0 \ i\neq j \ i\neq j}}^n \bigvee_{i\neq j} Y_i$  whence the n-distributivity of

Now we define the concept of the special sum of lattices. Let  $(I, \leq)$  be a chain and for every  $i \in I$  let  $L_i$  be a lattice. Let  $\sum_{i \in I} L_i$  denote the ordinal sum of lattices in the usual sense. (I.e., consider the disjoint union of the  $L_i$ -s and let  $x \leq y$  mean that  $x \in L_i$ ,  $y \in L_j$  and i < j, or  $x, y \in L_i$  and  $x \leq y$ .) For  $a, b \in \sum_{i \in I} L_i$ , let  $a \ni b$  denote that "a is the greatest element of  $L_i$ , b is the least element of  $L_j$  and i < j, for some  $i, j \in I$ ". Let  $\Theta$  be the equivalence relation on  $\sum_{i \in I} L_i$  generated by the binary relation  $\Im$ . Then, as it can be seen easily,  $\Theta$  is a congruence relation. Now, denoting by  $\sum_{i \in I} L_i$ , the definition of the special sum is the following:  $\sum_{i \in I} L_i = \sum_{i \in I} L_i / \Theta$ . Let us agree that we write  $\sum_{i \in I} L_i = \sum_{i \in I} L_i$  iff  $\Theta$  is the equality relation. Denoting the lattice



by K we can state our main

Su(A) follows easily. Q.e.d.

Theorem. For any distributive lattice L the following three conditions are equivalent:

- (i) Su(L) is 2-distributive
- (ii) L contains neither a sublattice isomorphic to K nor a three-element antichain (antichain means a set of pairwise incomparable elements)
- (iii) L is isomorphic to a special sum  $\sum_{i \in I} L_i$ , where for each  $i \in I$ ,  $L_i$  is a chain or  $L_i = 2 \times C$  for some chain C. (2 denotes the two-element chain.)

**Remark.** As for 1-distributivity, which is the usual distributivity, it is very easy to show that an arbitrary lattice L has distributive sublattice lattice iff L is a chain.

In what follows lattices isomorphic to  $2 \times C$  for some chain C will be referred to as *ladders*. The following sections deal with the proof of the theorem, namely the implications (iii)  $\rightarrow$  (i), (i)  $\rightarrow$  (ii) and (ii)  $\rightarrow$  (iii) are proved.

## III. The first part of the proof

In this section the implications (iii)  $\rightarrow$  (i) and (i)  $\rightarrow$  (ii) will be verified.

PROPOSITION 1. If a lattice L is a chain or a ladder then Su(L) is 2-distributive. If  $L_2$  is a homomorphic image of a lattice  $L_1$  and  $Su(L_1)$  is 2-distributive then so is  $Su(L_2)$ .

The proof is straightforward by making use of Lemma 1, so it will be omitted. It can be easily shown that

(3) 
$$\operatorname{Su}\left(\sum_{i\in I}L_{i}\right)\cong\prod_{i\in I}\operatorname{Su}\left(L_{i}\right)$$

for an arbitrary ordinal sum  $\sum_{i \in I} L_i$  (cf. also FILIPPOV [1, Lemma 1.2]). Now Proposition 1 and (3) yield the proof of (iii) +(i).

To prove (i) + (ii) suppose L is a distributive lattice and Su(L) is 2-distributive. Since neither Su(K) nor  $Su(2^3)$  are 2-distributive by Lemma 1, L does not contain any sublattice isomorphic to K or  $2^3$ . Suppose  $\{a, b, c\}$  is a three-element antichain in L. Then  $\{a \lor b, a \lor c, b \lor c\}$  cannot be a three-element antichain since otherwise it would generate a sublattice isomorphic to  $2^3$  (cf. Grätzer [2, p. 45]). Hence  $a \lor b \lor c \in \{a \lor b, a \lor c, b \lor c\}$  and, by the lattice theoretical Duality Principle,  $a \land b \land c \in \{a \land b, a \land c, b \land c\}$ . If we had  $a \lor b \lor c = a \lor b$  and  $a \land b \land c = b \land c$  then  $c = (a \lor b \lor c) \land c = (a \lor b) \land c \le (a \lor b) \land (a \lor c) = a \lor (b \land c) = a \lor (a \land b \land c) = a$  would contradict  $a \parallel c$ . So  $a \lor c = a \lor b \lor c$  and  $a \land c = a \land b \land c$  can be assumed. Now  $[a, b, c] = = [\{a, b, c\}]$  is a homomorphic image of FD(3)/ $\Theta$  where FD(3) denotes the free distributive lattice freely generated by  $\{x, y, z\}$  and  $\Theta$  denotes the smallest congruence for which  $a \land c \Theta a \land b \land c$  and  $a \lor c \Theta a \lor b \lor c$ . Since the structure of FD(3) is well-known (c.f. Grätzer [2, p. 46]), it is easy to check that FD(3)/ $\Theta$  is the following lattice:



An arbitrary homomorphism  $\varphi \colon \mathrm{FD}(3)/\Theta \to [a,b,c], \ \bar{x} \mapsto a, \ \bar{y} \mapsto b, \ \bar{z} \mapsto c$  must be injective because a,b,c are pairwise incomparable. Hence  $\mathrm{FD}(3)/\Theta$  can be embedded into L. So can K, which is a contradiction. Thus the proof of (i)  $\to$  (ii) is complete.

# IV. A decomposition of lattices

The (decomposability) lemma given below will be an important tool to prove (ii)  $\rightarrow$  (iii). First, for a partially ordered set L, we set

$$C(L) = \{x \in L : x \not\Vdash v \text{ for all } v \in L\}$$

and

$$C'(L) = \{x \in C(L): x \neq 0_T \text{ and } x \neq 1_L\}.$$

(Note that L is not necessarily bounded and the above two sets may coincide.)

LEMMA 2. An arbitrary lattice L is isomorphic to a special sum  $\sum_{i \in I} L_i$  where, for all  $i \in I$ ,  $L_i$  is a chain or  $C'(L_i) = \emptyset$ .

Before proving this lemma we need some preliminaries. Define the binary relation  $\varrho = \varrho_L$  on L in the following way: set  $a\varrho b$  iff one of the conditions

- $--a \parallel b$
- $a \not \mid b$  and  $[a, b] \cap C(L) = \emptyset$
- $a \times b$  and  $[a, b] \subseteq C(L)$

holds, where  $[a, b] = \{x \in L : a \le x \le b \text{ or } b \le x \le a\}$ .

PROPOSITION 2. For an arbitrary lattice L,  $\varrho = \varrho_L$  is an equivalence relation.

**PROOF.** Suppose we have  $a\varrho b$  and  $b\varrho c$  for some  $a,b,c\in L$  and let us show that  $a\varrho c$ . Evidently  $\varrho$  is reflexive and symmetric so, by the Duality Principle, we have to deal only with the following four cases.

Case 1. a||b| and b||c|. If  $a \not | c$ , say a < c, then  $[a, c] \cap C(L) = \emptyset$  because x||b| for all  $x \in [a, c]$ .

Case 2.  $a \parallel b$  and b < c. Suppose  $a \not \mid c$ , then a < c. Now  $[a, c] \cap C(L) = = ([a \lor b, c] \cap C(L)) \cup (([a, a \lor b] \setminus \{a \lor b\}) \cap C(L))$ . But, for all  $x \in [a, a \lor b] \setminus \{a \lor b\}$ ,  $x \parallel b$  and  $[a \lor b, c] \subseteq [b, c]$  so we have  $[a, c] \cap C(L) = \emptyset$ .

Case 3. a < b and b < c. If  $[a, b] \subseteq C(L)$  and  $[b, c] \subseteq C(L)$  then  $[a, c] = [a, b] \cup [b, c] \subseteq C(L)$ . If  $[a, b] \cap C(L) = \emptyset$  then  $[a, c] \cap C(L) = ([a, b] \cap C(L)) \cup ([b, c] \cap C(L)) = \emptyset$ .

Case 4. a < b and b > c. If  $a \not \vdash c$ , say a < c, then  $[a, c] \subseteq [a, b]$  and either  $[a, c] \subseteq [a, b] \subseteq C(L)$  or  $[a, c] \cap C(L) \subseteq [a, b] \cap C(L) = \emptyset$ . This completes the proof of Proposition 2.

PROPOSITION 3. Let L be a lattice and M a  $\varrho_L$ -class in L. Then either  $M \subseteq C(L)$  or  $M \cap C(L) = \emptyset$ . If  $M \subseteq C(L)$  then M is a chain. If  $M \cap C(L) = \emptyset$  then M has neither greatest element nor least element, and exactly one of the following four possibilities

$$[M] = M$$
,  $[M] = M \cup \{1_M\}$ ,  $[M] = M \cup \{0_M\}$ ,  $[M] = M \cup \{0_M, 1_M\}$ 

holds where  $0_M$ ,  $1_M \in C(L) \setminus M$  and they are the zero and unit of [M], respectively.

Acta Mathematica Academiae Scientiarum Hungaricae 35, 1980

PROOF. It is sufficient to prove the last statement. Let  $M \cap C(L) = \emptyset$ . Then  $C(M) = \emptyset$  whence M has neither greatest nor least element. Suppose M is not a join sub-semilattice of L, say  $a, b \in M$  but  $a \lor b \notin M$ , and let us show that  $a \lor b \in C(L)$  and  $M \cup \{a \lor b\}$  is a join-semilattice. Since  $a \bar{\varrho} a \lor b$  (i.e.,  $a \varrho a \lor b$  does not hold), there is an  $x \in [a, a \lor b] \cap C(L)$ . Now  $a \parallel b$  implies  $x \not\equiv b$  and  $b \in M$  implies  $x \not\equiv b$  and  $b \in M$  implies  $x \not\equiv b$  and so  $a \lor b \leq x \in [a, a \lor b]$  implies  $a \lor b = x \in C(L)$ . Now x is the unit of  $M \cup \{x\}$  because otherwise  $x \prec c$  for some  $c \in M$  and  $x \in [a, c] \cap C(L) = \emptyset$ , a contradiction. If, for  $d, e \in M, y = d \lor e \notin M$ , then  $y \leq x$ . But the role of x and y can be interchanged so  $x \leq y$  as well. I.e.,  $M \cup \{a \lor b\}$  is a join-semilattice indeed and the proof is complete by the Duality Principle.

PROOF OF LEMMA 2. Let  $\varrho = \varrho_L$  and for  $D_1, D_2 \in L/\varrho$  we define  $D_1 \leq D_2$  by the formula  $(\exists X_1 \in D_1)(\exists X_2 \in D_2)(X_1 \leq X_2)$ . An easy calculation shows that  $(L/\varrho, \leq)$  is a chain. We assert  $L \cong \sum_{D \in L/\varrho} [D]$ . Let  $\varphi \colon \sum_{D \in L/\varrho} [D] \to L$  be the map for which  $\varphi|_{[D]}$  is the natural embedding of D into L. It follows easily that  $\varphi$  is a homomorphism onto L. It is also seen that if D,  $E \in L/\varrho$ ,  $D \prec E$  and  $X \in [E] \cap [D]$  then  $X = 1_D = 0_E$ , and  $D \prec E$  or  $D \prec \{x\} \prec E$ . Therefore  $L \cong \sum_{D \in L/\varrho} [D]/\ker \varphi = \sum_{D \in L/\varrho} [D]$ , indeed. If  $D \in L/\varrho$  is not a chain then  $C'([D]) = \varnothing$  follows from Proposition 3. Q.e.d.

# V. The second part of the proof

Having Lemma 2, the proof of (ii) + (iii) will be complete if we prove the following

LEMMA 3. Let L be a distributive lattice which satisfies (ii),  $C'(L) = \emptyset$  and  $|L| \ge 3$ . Then L is of the form  $\sum_{i \in I} L_i = \sum_{i \in I}' L_i$  where  $(I, \le)$  is a chain and for all  $i \in I$ ,  $L_i$  is a ladder or consists of a single element.

The proof of this lemma requires several preliminary statements.

PROPOSITION 4. Let a, b, c be elements of a distributive lattice satisfying (ii). If  $a \| b, a \| c$  and b < c then [a, b, c] is isomorphic to one of the following two lattices





**PROOF.** It is an immediate consequence of the well-known fact (cf. GRÄTZER [2, p. 14]) that the free distributive lattice generated by the partially ordered set  $\{a, b, c\}, b \le c\}$  is isomorphic to K.

Let us agree that any use of Proposition 4 in case of [x, y, z] will also mean  $x \parallel y, x \parallel z$  and  $y \le z$ .

Acta Mathematica Academiae Scientiarum Hungaricae 35, 1980

An element x in L is called *join-reducible* if  $x=a \lor b \notin \{a,b\}$  for some  $a,b \in L$ . An element x is said to be *reducible* (doubly reducible) if it is either (both) join-reducible or (and) meet-reducible.

PROPOSITION 5. The lattice L from Lemma 3 (i.e., L distributive, (ii) and  $C'(L) = \emptyset$ ) does not contain any doubly reducible element.

**PROOF.** Suppose  $x \in L$  is doubly reducible. Then  $x = e^{\bigvee b} = f \land c$ ,  $e \parallel b$ ,  $f \parallel c$  and  $a \parallel x$  for some  $a, b, c, e, f \in L$ . Now  $\{a, b, e\}$  and  $\{a, c, f\}$  are not antichains so  $a \parallel c$ , a < f,  $a \parallel b$ , a > e can be assumed. Consider [a, b, c]. Then we have  $a \lor b \le f$ ,  $a \lor c \ge e$  and  $a \land b \ge e$ , which contradicts Proposition 4. Q.e.d.

For a lattice L define the binary relation  $\psi_L$  on L as follows:

Set  $a\psi_L b$  iff for any  $e, f \in [a \land b, a \lor b]$ , where e is join-reducible (in L) and f is meet-reducible (in L),  $e \not\equiv f$  holds.

LEMMA 4. Let L be a distributive lattice satisfying (ii) and  $C'(L) = \emptyset$ . Then  $\psi = \psi_L$  is a congruence,  $L/\psi$  is a chain and  $a \parallel b$  implies  $a \psi b$  for any  $a, b \in L$ .

PROOF. Throughout the proof, let e and f stand for join-reducible and meet-reducible elements of L, respectively. Suppose  $a \parallel b$  but  $a \psi b$  does not hold. So  $e, f \in [a \land b, a \lor b]$  and  $e \leq f$  for some e, f. First, exactly one of  $a \parallel e$  and  $b \parallel e$  holds because otherwise  $e = a \land b$  or  $e = f = a \lor b$  would contradict Proposition 5. Suppose  $a \parallel e$  and  $b \not\parallel e$ . If we had e < b, then e would be doubly reducible by Proposition 4 (considering [a, e, b]). If b < e, then  $a \parallel f$  (otherwise  $f = a \lor b$  is doubly reducible) and, considering [a, e, f], e or f is doubly reducible. Thus e = b. Similarly,  $f \in \{a, b\}$ . Since  $f \leq e, f = b = e$  which contradicts Proposition 5. Now we have shown:

# (4) $a \parallel b$ implies $a \psi b$ .

Suppose we have  $a\psi b$  and  $b\psi c$ . Since  $\psi$  is reflexive by Proposition 5 and symmetric, to prove transitivity only the following four cases have to be considered.

Case 1. a < b and b < c but  $a \overline{\psi} c$ . Then there are  $e, f \in [a, c], e < f$ . Both  $b \parallel e$  and  $b \parallel f$  do not hold by Propositions 4 and 5. Say  $b \not \times f$ , and so, from  $\{e, f\} \subseteq [a, b], b < f$ . Then e < b because otherwise  $\{b \lor e, f\} \subseteq [b, c]$ . Choose an  $x \in L$  such that  $x \parallel b$ . Both  $e \subseteq x$  and  $x \subseteq f$  lead to a contradiction:  $a \subseteq e \subseteq x \land b \subseteq b$  or  $b \subseteq x \lor b \subseteq f \subseteq c$ , respectively. Therefore  $x \parallel e$  and  $x \parallel f$ . But regarding [x, e, f] Probositions 4 and 5 give a contradiction.

Case 2.  $a \parallel b$  and b < c. If  $a \parallel c$  then  $a \psi c$  by (4). Otherwise a < c. Set  $b' = a \lor b$ , then from  $[a, b'] \subseteq [a \land b, a \lor b]$  and  $[b', c] \subseteq [b, c]$  we get  $a \psi b'$  and  $b' \psi c$  whence, by Case 1,  $a \psi c$  follows.

Case 3. a||b, b||c and a < c. Now, by Proposition 4, we have either  $[a, c] \subseteq [a \land b, a \lor b]$  or  $[a, c] \subseteq [b \land c, b \lor c]$ , and so  $a \psi c$ .

Case 4. a < b and c < b and a < c. Then  $a \psi c$  follows from  $[a, c] \subseteq [a, b]$ .

Now we have that  $\psi$  is an equivalence relation. Let us have  $a, b, c \in L$ ,  $a\psi b$ . If  $a\psi c$  then  $a \wedge c\psi a\psi b\psi b \wedge c$ , while in case of  $a\overline{\psi}c$   $a \wedge c\psi b \wedge c$  follows from (4). Therefore, by the Duality Principle,  $\psi$  is a congruence. Finally, (4) implies that  $L/\psi$  is a chain. Q.e.d.

COROLLARY 1. Let L be a distributive lattice satisfying (ii) and  $C'(L) = \emptyset$ . Then  $L = \sum_{D \in L/\psi}' D = \sum_{D \in L/\psi} D$ , where  $\psi$  denotes  $\psi_L$ , for all  $D \in L/\psi$ ,  $C'(D) = \emptyset$  and  $\psi_D = D^2$ .

LEMMA 5. Let L be a distributive lattice for which  $\psi_L = L^2$ ,  $C'(L) = \emptyset$ ,  $|L| \ge 5$  and (ii) hold. Suppose L contains neither a join-irreducible unit nor a meet-irreducible zero. Then L is a ladder.

**PROOF.** The proof consists of several steps. Let E and F denote the set of join-reducible and meet-reducible elements of L, respectively. Then  $e \not\equiv f$  for any  $e \in E$  and  $f \in F$  and therefore  $E \cap F = \emptyset$ .

STEP 1. F is an ideal and E is a dual ideal of L and both are chains.

PROOF. First we show that F is a chain. Suppose  $a, b \in F$ ,  $a \parallel b$ . Let  $a = x \wedge y$  and  $b = u \wedge v$  where  $x \parallel y$  and  $u \parallel v$ . Since  $\{a, u, v\}$  is not an antichain, a < u and  $a \parallel v$  can be assumed. Similarly, b < y and  $b \parallel x$  can be also assumed. So  $a = x \wedge (y \wedge u)$  and  $b = v \wedge (y \wedge u)$ . Hence  $x \parallel y \wedge u$  and  $v \parallel y \wedge u$  and  $x \parallel v$  (from  $a \parallel b$ ), which is a contradiction. I.e., F is a chain and so is E. Now let  $f \in F$ ,  $x \in L \setminus F$  and x < f. Then x is not the zero of E and so  $x \parallel y$  for some  $y \in E$ . Here  $y \parallel f$  since otherwise  $f \geq x \vee y \in E$ . Considering [y, x, f], Proposition 4 leads to a contradiction because of  $f \notin E$ . I.e., F is an ideal and E is a dual ideal by the Duality Principle. Q.e.d.

STEP 2. Both E and F have at least two elements.

**PROOF.** Suppose |F| < 2 and let a, b be incomparable elements in L. Then, by Proposition 4, x || a implies x = b and x || b implies x = a for any  $x \in L$ . Thus  $L = \{a, b\} \cup (a \land b] \cup [a \lor b]$ , which is a contradiction. The proof is complete by the Duality Principle.

Step 3. If  $a, b \in L \setminus (E \cup F), f \in F, a \le b$  and f < a then a = b.

**PROOF.** Suppose a < b, then a | c for some  $c \in L$ . In case c | b, by Proposition 4,  $\{a, b\} \cap (E \cup F) \neq \emptyset$ . Thus c < b. Hence  $b \ge a \lor c \in E$ , which contradicts Step 1.

STEP 4. If  $f \in F$ ,  $a, b \in L \setminus (E \cup F)$ , a > f, b > f and f is not the zero element of L, then a = b.

**PROOF.** If  $a \neq b$  then  $a \parallel b$  by Step 3. Choose an element q in L so that  $f \parallel q$ . Now  $q \notin F$  by Step 1.  $\{a, b, q\}$  is not an antichain, so  $q \in E$  contradicts Step 1 and  $q \notin E$  contradicts Step 3.

STEP 5. If  $f \in F$ , f is not the zero of L and  $[f) \cap (L \setminus (E \cup F)) = \emptyset$ , then F is a prime ideal.

**PROOF.** Suppose  $a \land b \in F$  but  $a \notin F$  and  $b \notin F$ .  $\{a, b\} \nsubseteq E$  by Step 1 so, e.g.,  $a \notin E$ . Consequently, by Step 1 and Proposition 4, we have  $a \parallel f, f < b$  and  $a \lor f \parallel b$ . Hence, by Step 1,  $b \notin E$ , which is a contradiction. Q.e.d.

Now F' is defined as follows: If F is a prime ideal then set F' = F. Otherwise set  $F' = F \cup \{f'\}$  where  $f' \in L \setminus (E \cup F)$  and, for some  $f \in F$ ,  $0_L \neq f < f'$ . E' is defined dually. The previous steps yield the correctness of this definition.

STEP 6. F' is a prime ideal and a chain, and in case  $F' \neq F$ , f' is the greatest element of F'. The dual statement is valid for E'.

PROOF. It is enough to consider the case  $F' \neq F$ . First we show that g < f' for any  $g \in F$ . If  $g \not < f'$  for some  $g \in F$ , then g || f' by Step 1. Since  $g \land f' \neq 0_L$  by Step 1,  $b || f' \land g$  for some  $b \in L \backslash F$ . We have b || g by Step 1 and,  $\{f', g, b\}$  being not an antichain, b < f'. Applying Proposition 4 to [g, b, f'] we get  $f' \in E$  which is a contradiction. Therefore f' is the greatest element of F and, by Step 1, F' is a chain. Suppose  $x \in L$  and x < f' but  $x \notin F$ . For any  $f \in F x || f$  by Steps 1 and 3, however  $x \not || x \land f \in F$  is a contradiction. Therefore F' is an ideal. Suppose  $a, b \notin F'$ , but  $a \land b \in F'$ . Since  $a || b, b \notin E$  can be assumed by Step 1. From Step 3 we have f' || b. Since  $\{b, f', a\}$  is not an antichain, f' < a. Considering [b, f', a], Proposition 4 yields  $f' \in F$  or  $a \land b || f'$ , which is a contradiction. Q.E.D.

STEP 7.  $E' \cap F' = \emptyset$ .

PROOF. Suppose  $E' \cap F' \neq \emptyset$ . Since  $E \cap F = \emptyset$ , we have e' = f'. Consider the set  $H = \{x \in L : x || f'\}$ .  $H \neq \emptyset$ . Suppose H consists of a single element x. Let  $f_1, f_2 \in F, f_1 < f_2$ . Since  $f_2 \notin C'(L), f_2 || x$  and, considering  $[x, f_2, f']$ , Proposition 4 yields a contradiction. Suppose  $x, y \in H, x \not\equiv y$ . Then x > y and considering [f', y, x], Proposition 4 yields a contradiction again. Q.e.d.

STEP 8.  $E' \cup F' = L$ .

PROOF. Suppose  $x \in L \setminus (E \cup F)$ . Let  $0_L \neq f \in F$  and  $1_L \neq e \in E$ . Since  $x \not\equiv f$  and  $e \not\equiv x$  by Step 1, we have f < x or x < e by Step 1 and Proposition 4. Therefore Step 4 (or its dual statement) implies x = f' or x = e'. Q.e.d.

Now we define a map  $\tau: E' \to F'$  as follows:

$$e\tau = \begin{cases} f \land e, & \text{if } f || e \text{ for some } f \in F' \\ f', & \text{if } f < e \text{ for all } f \in F'. \end{cases}$$

STEP 9. The definition of  $\tau$  is correct.

**PROOF.** Suppose  $f_1 < f_2$ ,  $f_1 \| e$  and  $f_2 \| e$  for some  $f_1, f_2 \in F'$ ,  $e \in E'$ . Considering  $[e, f_1, f_2]$ , Proposition 4 and Step 6 imply  $e \land f_1 = e \land f_2$ . Suppose we have an  $e \in E'$  such that  $e \not \mid f$  for all  $f \in F'$ . Steps 6, 8 and  $C'(L) = \emptyset$  imply  $e = 1 = 1_L$ .

We have  $a, b \in L$  such that  $a \parallel b$  and  $a \lor b = 1$ . By Steps 6 and 8  $a \in F'$  and  $b \in E'$  can be assumed. If  $a \in F$  then, for some  $c, d \in L$ ,  $a = c \land d$ ,  $c \parallel d$  and, from  $1 = c \lor b = d \lor b$ ,  $\{b, c, d\}$  is an antichain. Therefore  $a = f' \notin F$  and  $e\tau = 1\tau$  is defined. Q.e.d.

Step 10. The map  $\tau$  is a bijective lattice homomorphism.

PROOF. First we show that  $e_1 < e_2$   $(e_1, e_2 \in E')$  implies  $e_1 \tau < e_2 \tau$ . As we have already seen in the proof of Step 9,  $e_2 \tau = f'$  implies  $e_2 = 1$ . Therefore  $e_2 \neq 1$  can be assumed. Let  $e_i \tau = e_i \land f_i$   $(i=1, 2, f_i \in F')$ . Then  $f_2 || e_1, e_i \tau = f_2 \land e_i$  (i=1, 2) and  $f_2 \lor e_1 \not\models e_2$ . Considering  $[f_2, e_1, e_2]$ , Proposition 4 implies  $e_1 \tau < e_2 \tau$ . Now, if  $f' \in F' \land F$  exists then  $a \land b \in F$  and a || b for some  $a, b \in L \land F$ . Hence, by Step 6,  $f' \in \{a, b\}$  and  $f' = (a \lor b)\tau$ . If  $f \in F$  then, by Step 6,  $f = c \land d$  and  $c \mid| d$  for some  $c \in F'$  and  $d \in E'$ . So  $f = d\tau$ . I.e.,  $\tau$  is surjective. Q.e.d.

Now let  $2 = \{0, 1\}$  be the two-element chain and let us define a map  $\eta: 2 \times E' \to L$ by  $(1, e) \rightarrow e$  and  $(0, e) \rightarrow e\tau$ . Our previous steps imply that  $\eta$  is a (required) isomorphism between  $2 \times E'$  and L. The proof of Lemma 5 is complete.

Finally, Lemmas 4 and 5 and Corollary 1 imply Lemma 3.

## References

- [1] N. D. Filippov, Projectivity of lattices, Mat. Sbornik, 70 (1966), 36-54 (Russian).
- [2] G. GRÄTZER, Lattice theory, W. H. Freeman and Co. (San Francisco, 1971).
   [3] A. P. Huhn, Scwach distributive Verbände, Acta F.R.N. Univ. Comen. Mathematica, Nim. cislo (1971), 51-56. (Summary of the author's lecture on the conference Letná Skola 1970, Ceslovensko.)
- [4] A. P. Huhn, Scwach distributive Verbande. I, Acta Sci. Math. Szeged, 33 (1972), 297-305. [5] A. P. Huhn, n-distributivity and some questions on the equational theory of lattices, Collog.

  M. Soc. J. Bolyai, 17. Contributions to the universal algebra (Szeged, 1975), 167—
- [6] K. M. KoH, On sublattices of a lattice, Nanta Math., 6 (1973), 68-79.
- [7] H. LAKSER, A note on the lattice of sublattices of a finite lattice, Nanta Math., 6 (1973), 55-57.

(Received December 8, 1978)

JATE, BOLYAI INSTITUTE 6720 SZEGED, ARADI VÉRTANÚK TERE <sup>J</sup> HUNGARY

178.